What is the main role of catabolism in cellular
metabolism?

A. To build large molecules from small ones
Vfo generate energy by breaking down nutrients
C.To transport nutrients into the cell

D.To remove waste from the cell



What is cellular metabolism?
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Overview of major metabolic pathways in cells
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E.g. nucleotides are synthesised to build DNA, RNA, ATP (anabolic) and need to be
degraded (catabolic) ; lipogenesis to build fatty acids from smaller molecules
(anabolic) vs fatty acid b-oxidation into Acetyl-CoA for energy (catabolic)



What determines whether a cell sends pyruvate
to fermentation or oxidative phosphorylation?

A. The amount of glucose available

B. Whether the mitochondria are active

%he presence or absence of oxygen

D. The number of ATP already produced



Energy production through glucose fermentation versus
oxidation
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Why are protons (H*) pumped across the inner
mitochondrial membrane during the electron
transport chain?

A. To break down glucose faster

B. To generate heat

%) create a gradient that powers ATP production

D. To activate oxygen for the Krebs cycle



Electron transport chain and oxidative phosphorylation
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Fatty acid p-oxidation

Fatty acid oxidation produces Acetyl-CoA in

the cytosol, which is imported by CPT
enzymes into the mitochondria for oxidation
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Just like glucose gets converted to Acetyl-CoA and enters the Krebs cycle, fatty acids also get
broken down to make Acetyl-CoA - that Acetyl-CoA then enters the same TCA cycle and electron
transport chain



Which TCA cycle product supports epigenetic
gene regulation?

A. NADH for ATP generation in glycolysis
B. GTP for protein synthesis in mitochondria

%—KG acts as a cofactor for DNA methylation

D. Pyruvate for lactate synthesis only



The TCA cycle is a major producer of cellular building blocks

The TCA cycle produces:
- three NADH,

- one FADH,

- one GTP
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How does acetyl-CoA influence gene expression?

A. It activates DNA polymerase to start replication

% donates acetyl groups to histones, loosening DNA
C. It blocks methylation of cytosines in DNA

D. It is used to generate ATP in the nucleus



Metabolism in cellular signaling
Regulation of gene expression as an example
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What is a primary function of macrophages in
the innate immune response?

A. Producing antibodies
B. Presenting antigens to B cells
%hagocytosing pathogens and initiating inflammation

D. Activating cytotoxic T cells



Innate and adaptive immune response
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Which best describes M1 and M2 macrophage
functions and metabolism?

A. M1 are anti-inflammatory & use fatty acids, M2 are pro-inflamm &
glycolytic

B. M1 are pro-inflammatory & oxidative, M2 are anti-inflamm. &
glycolytic

%/H are pro-inflammatory & glycolytic, M2 are anti-inflamm. &
oxidative

D. M1 and M2 use same metabolism, function differs by surface markers
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Macrophage polarization is accomplished by engagement of specific metabolic pathways
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M1 macrophages, in comparison to M2
macrophages...

JTake up more glucose

B. Take up more fatty acids

C. Take up more acetyl CoA

D. Oxidize more fatty acids
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Which of these statements is NOT correct?

A. Lactate is needed for M2 macrophage transformation
B. Lactyl-CoA binds to the tail of histones

C. Histone lactylation is a recently discovered epigenetic modification

w_actate is a product of OXPHOS in M1 macrophages



What is the role of lactate in macrophage gene
regulation following activation?

A. Lactate blocks glycolysis and promotes histone methylation
B. Lactate enhances oxidative phosphorylation in mitochondria

%actate forms lactyl-CoA, promoting histone lactylation and gene
expression

D. Lactate causes DNA methylation that suppresses inflammation



Histone lactylation, a new epigenetic modification
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Which of the following are required for full activation
of a naive T cell? (multiple answers)

Mecognition of antigen via the T cell receptor

%inding of co-stimulatory molecules

foposu re to cytokines

D. Production of antibodies



3 signals are required to fully activate a T cell
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3 4 signals are required to fully activate a T cell
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Energy demands and supply change during acute and resolving phases
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Which signals can induce T cell exhaustion?
(multiple options)

%ersistent antigen
VChronic inflammation
M\Iegative co-stimulation

D. High nutrient availability




3 signals model to induce T cell exhaustion
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Which inhibitory receptor contributes to
metabolic suppression in exhausted T cells?

A. CD28

{%m

C. IL-2R

D. TCR



Which therapy removes T cell inhibition to boost anti-
tumor activity?

A. Tumor vaccines that stimulate antibody production
B. Engineered microbes presenting cancer antigens

%tibodies that block CTLA-4 or PD-1 pathways

D. B cell-targeted monoclonal antibody treatments



Metabolism in exhaustion
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Glucose level (mM)

Cancer cells steal glucose from T cells

Glucose levels
are low in tumors
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Immunotherapy is enhanced by nutrient supplementation Metabolic reprogramming of terminally exhausted CD8+
through metabolically engineered bacteria T cells by IL-10 enhances anti-tumor immunity
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