

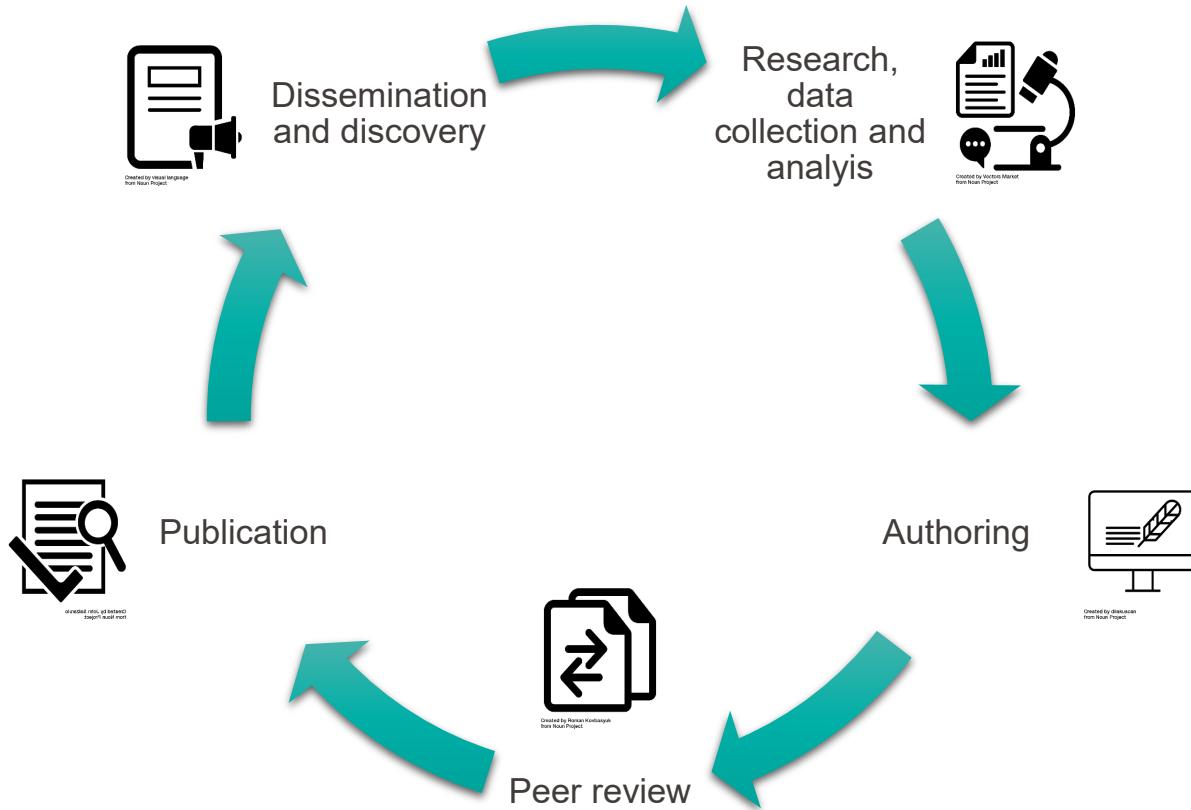
How to Cite in Life Sciences

BIOENG-390

Miriam Petrilli
Vincenzo Palatella
EPFL Library

03.03.2025

Learning objectives


At the end of this training you will be able to:

- Illustrate the main principles of scholarly communication
- Explain the main differences between PubMed and Google Scholar
- Define plagiarism and explain how to avoid it with correct citations
- Use efficiently the reference manager software Zotero

- Acquisition of practical skills in experimentation and data analysis
- Acquisition of skills in information literacy
 - Search for scholarly publications
 - Keep track of your sources
 - Reuse/cite your sources
- Research is always based on pre-existing knowledge coming from other scientists

The scholarly communication context

The Scholarly Communication Cycle

Elements of an academic article

Journal title

the
FEBS
Journal

STATE-OF-THE-ART REVIEW

Authors

Genome modification by CRISPR/Cas9

Yuanwu Ma¹, Lianfeng Zhang¹ and Xingxu Huang²

¹ Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China

² MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing Biomedical Research Institute, National Resource Center for Mutant Mice, China

Article title

Author's affiliation

Keywords

Keywords

Cas9, CRISPR, genome editing, gene targeting, sgRNA

Correspondence

X. Huang, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing Biomedical Research Institute, National Resource Center for Mutant Mice, Nanjing 210061, China
Fax: +86 25 58641500
Tel: +86 25 58641517
E-mail: xingxu@nju.edu.cn

(Received 4 June 2014, revised 21 August 2014, accepted 3 October 2014)

doi:10.1111/febs.13110

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas)9-mediated genome modification enables us to edit the genomes of a variety of organisms rapidly and efficiently. The advantages of the CRISPR/Cas9 system have made it an increasingly popular genetic engineering tool for biological and therapeutic applications. Moreover, CRISPR/Cas9 has been employed to recruit functional domains that repress/activate gene expression or label specific genomic loci in living cells or organisms, in order to explore developmental mechanisms, gene expression regulation, and animal behavior. One major concern about this system is its specificity; although CRISPR/Cas9-mediated off-target mutation has been broadly studied, more efforts are required to further improve the specificity of CRISPR/Cas9. We will also discuss the potential applications of CRISPR/Cas9.

Article history

DOI

Information retrieval: Strategy and tools

Padlet: searching with keywords

Padlet

formationsbib + 3 • 11h

Search terms wall

How to Cite in Life Sciences - BIOENG-390

Rabies glycoprotein1,625 results
81 reviews

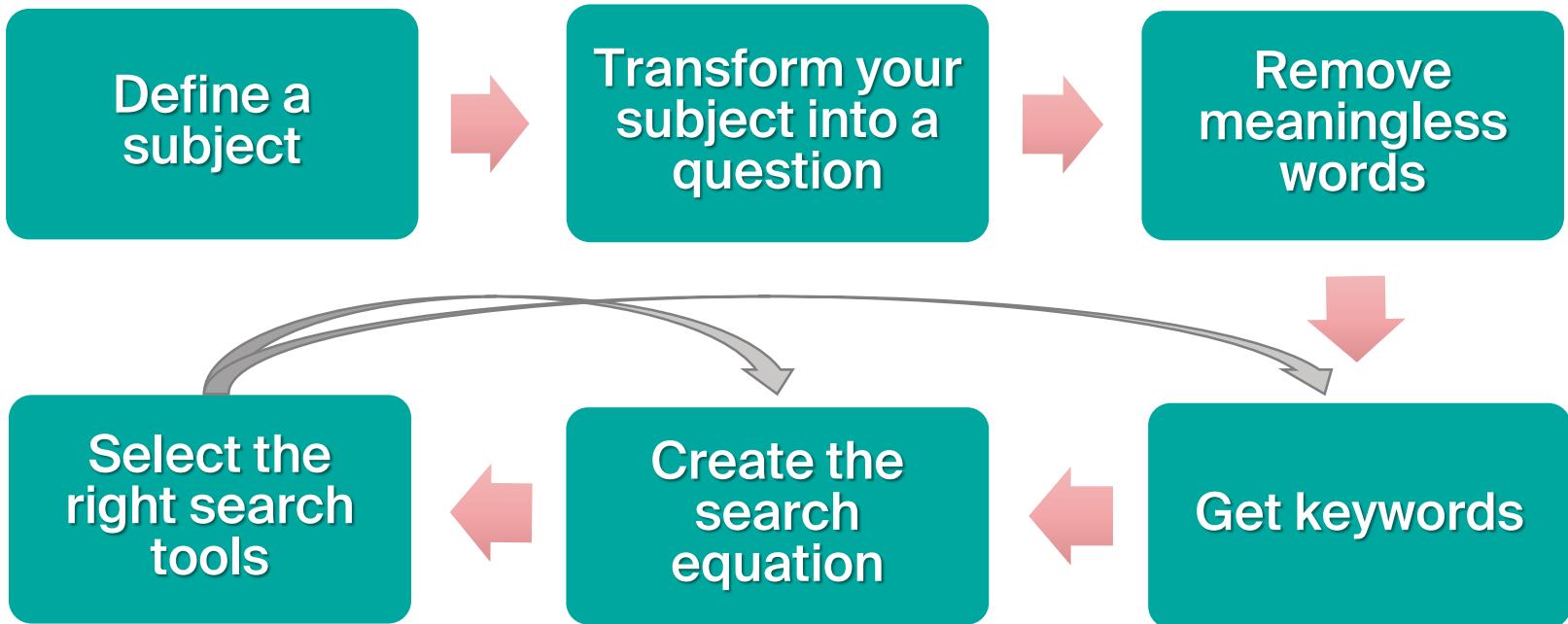
0

KBTBD4

0

Cartilage Tissue Engineering20851 results found
3326 reviews found

0


Cancer Centriole886 articles
124 reviews

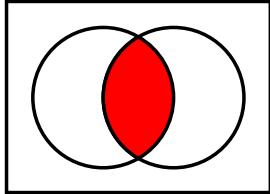
0

- Padlet search terms wall
(If you didn't do it yet) Add a couple of keywords related to your research subject

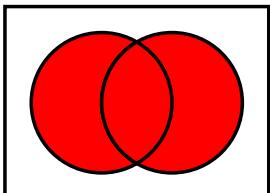
Information retrieval strategy

The research grid

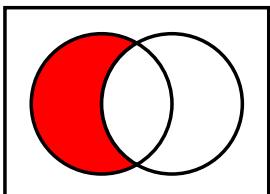
Define a subject and transform it into a question	Subject: CRISPS/Cas9 Question: How does CRISPR/Cas9 work in cancer therapy?
Extract the main concepts and get keywords	
Search for synonyms and related terms	
Create the search equation	
Search 2 databases and compare their results	
Refine your search equation	


The research grid

Define a subject and transform it into a question	Subject: CRISPS/Cas9 Question: How does CRISPR/Cas9 work in cancer therapy?		
Extract the main concepts and get keywords	CRISPR/Cas9	Cancer therapy	
Search for synonyms and related terms			
Create the search equation			
Search 2 databases and compare their results			
Refine your search equation			


The research grid

Define a subject and transform it into a question	Subject: CRISPS/Cas9 Question: How does CRISPR/Cas9 work in cancer therapy?		
Extract the main concepts and get keywords	CRISPR/Cas9	Cancer therapy	
Search for synonyms and related terms	Gene editing Gene correction	Cancer treatment	
Create the search equation			
Search 2 databases and compare their results			
Refine your search equation			


Boolean operators and more

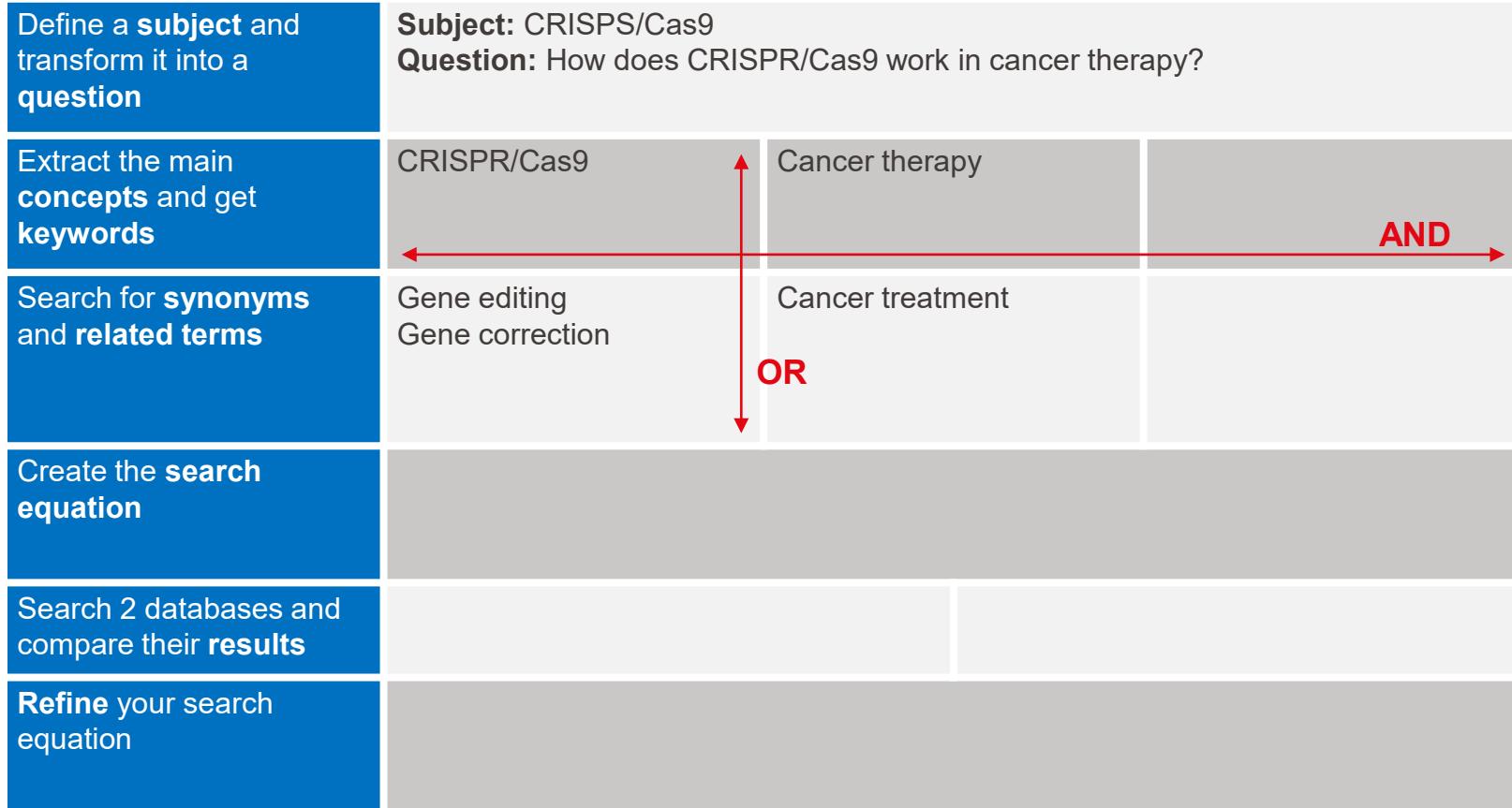
AND to combine key concepts

OR to add alternative key concepts

NOT to exclude concepts

()

Group the keywords


* or ?

Wildcard

« » or " "

Exact expression

The research grid

The research grid

Define a subject and transform it into a question	Subject: CRISPS/Cas9 Question: How does CRISPR/Cas9 work in cancer therapy?		
Extract the main concepts and get keywords	CRISPR/Cas9	Cancer therapy	
Search for synonyms and related terms	Gene editing Gene correction	Cancer treatment	
Create the search equation			
Search 2 databases and compare their results			
Refine your search equation			

Where can I use my search equation?

<https://pubmed.ncbi.nlm.nih.gov/>

<https://scholar.google.com>

PubMed: What Is It?

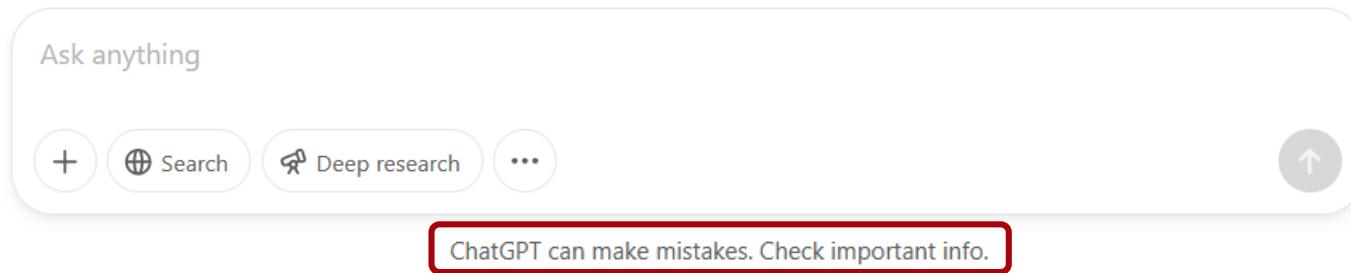
- Biomedical and life sciences literature only
- Free U.S. National Library of Medicine database
- Search Builder and Search History
 - Build complex searches and keep track of your searches
- Human curated
- Free account with more features and possibilities
 - Use your EPFL email to create your account

Google Scholar: What Is It?

- Google service limited to scholar literature
- Searches vast array of information: academic articles, technical reports, preprints, grey literature
- Citation information provided
- Full-text if available (Open Access) or via your institution's subscription
- Good coverage for hard sciences (less coverage in social sciences)

Not only scholarly publications available - items retrieved are not necessarily peer-reviewed

Few options to filter search results



Material selection criteria unknown

The research grid

Define a subject and transform it into a question	Subject: CRISPS/Cas9 Question: How does CRISPR/Cas9 work in cancer therapy?		
Extract the main concepts and get keywords	CRISPR/Cas9	Cancer therapy	
Search for synonyms and related terms	Gene editing Gene correction	Cancer treatment	
Create the search equation	(``CRISPR/Cas9'' OR (gene AND (editing OR correction))) AND (Cancer AND (therap* OR treatment*))		
Search 2 databases and compare their results	PubMed: 19 940	Google Scholar: 14 100	
Refine your search equation	Too many results? Use filters / Add concepts Too few results? Remove concept(s) / Add synonyms		

What can I help with?

Keep in mind:

- It's a tool, not a source
- It uses patterns, it doesn't have a full understanding of the subject

Ask yourself:

- Where the information comes from?
Can we retrieve the sources?
- Is the context right?
- Do I really need to cite it if I use it?

LLMs – Basic recommendations

- Fine-tune language/style
- Get new ideas if you are stuck
- Create pictures
- Inform the final reader about the AI tool you used

- Get a basic idea about a new subject (but always double check the information)
- It can generate “hallucinations”, false information presented as facts

- Write a paper from scratch
- Use it as the only source of information
- Cite it in a paper
- Made-up references

What else is there?

- BEAST – EPFL's library catalogue (books, articles, patents, standards, etc.)
- Thematic preprints repositories (e.g. bioRxiv, medRxiv)
- Multi-disciplinary databases (e.g. Scopus, Web of Science)
- Discipline-specific databases (e.g. Biomedical & Life Sciences Collection)
- Open alternatives to Google Scholar (e.g. OpenAlex, Matilda)

Copyright, citations & plagiarism

Copyright...

- ...applies **automatically** (no need to ask/apply)
- ...according to the Swiss and European laws, it includes **moral rights** (authorship, integrity of the work), which are inalienable...
- ...and **property rights** (diffusion, commercial use), which are transferable
- ...protects **the form**, not the idea!
- ...provides, conditionally, some exceptions. In particular, those related to **education** and to **citation** (in Switzerland: [LDA art. 19 al. 1b](#) et [art. 25](#))

What is a citation?

C. tyrobutyricum is a spore-producing, rod-shaped, strictly anaerobic, gram-positive bacterium widely used in industrial production. It can use a wide range of available carbon sources, including glucose, xylose, glycerol, and mannose. These components can enter the cell through the **phosphotransferase system (PTS) with specific transport vectors** (Akhtar et al. 2018). *C. tyrobutyricum* produces the intermediate product pyruvate and a key precursor, butyryl CoA, via **a series of enzymatic reactions** (Jiang et al. 2010). With the catalysis of butyryl phosphate transferase and butyryl kinase, the precursor forms the main product (butyric acid), by-product (acetic acid), and a small amount of lactic acid. This process is accompanied by **the production of hydrogen and carbon dioxide** (Baroi et al. 2015).

References

Akhtar, T., A.S. Hashmi, M. Tayyab, A.A. Anjum, S. Saeed, and S. Ali. 2018. Bioconversion of agricultural waste to butyric acid through solid state fermentation by *Clostridium tyrobutyricum*. *Waste and Biomass Valorization* 11: 2067–2073.

[Article](#) [Google Scholar](#)

Baroi, G.N., I.V. Skidas, P. Westermann, and H.N. Gavala. 2015. Effect of in situ acids removal on mixed glucose and xylose fermentation by *Clostridium tyrobutyricum*. *AMB Express* 5: 67.

[Article](#) [PubMed](#) [PubMed Central](#) [Google Scholar](#)

Bhatnagar, A., K.K. Kesari, and N. Shurpali. 2015. Multidisciplinary approaches to handling wastes in sugar industries. *Water, Air, & Soil Pollution*. <https://doi.org/10.1007/s11270-015-2705-y>.

[Article](#) [Google Scholar](#)

In-body citation

- Paraphrase
- It can also be an excerpt of the cited text, properly highlighted (quotation marks, italic, different indentation...)

Call

- Textual (e.g. Author, year) or numeric (e.g. [1], [2], etc-)

Bibliographic entry

- According to the citation style used

Citing enables you to...

- ...make clear what's **your own** (and **new**) contribution and what comes from previous publications
- ...add **credibility** to your work (you have read what was published in your domain and you know what you are talking about)
- ...place your work into its context and show the **originality** of your input
- ...provide the reader with further **references** that were useful to you in case they would like to know more.

Not citing means...

- Claiming as yours someone else's work
- Present as brand new something that it's not

Plagiarism

- Doesn't matter if it's intentional or not
- Doesn't matter if we're plagiarizing others or ourselves (self-plagiarism)
- Can have consequences! From blame to exclusion (see <https://www.fedlex.admin.ch/eli/cc/2021/482/fr>)

Paraphrasing

The original:

Human emissions of greenhouse gases are the primary driver of climate change today.

(from <https://ourworldindata.org/co2-and-greenhouse-gas-emissions>)

The paraphrase:

Greenhouse gas emissions, particularly carbon dioxide, are the primary cause of global climate change (Ritchie and Roser 2020)

(from <https://link.springer.com/article/10.1007/s10311-022-01468-z>)

How to insert a citation – Other options

The short excerpt

In his article *The biology of dying democracies*, Kováč (2019) states that «Marxist communism became a gigantic experiment in the 20th century to test the European rationalism. The experiment failed.»

The longer excerpt

The approach chosen for this article is the one presented by Kováč in *The biology of dying democracies* (2019), described as follows:

Humans are controversial beings, an inconsistent mixture of nature and culture and dominated by both. Biological hominization was followed by cultural humanization. So far, biologists mostly tended to conceive the biological individual as a Darwinian unit communicating with another individual in interest of one's own Darwinian fitness. Signals should serve to modify the behaviour of the receiver to benefit the signaler.

Multiple sources

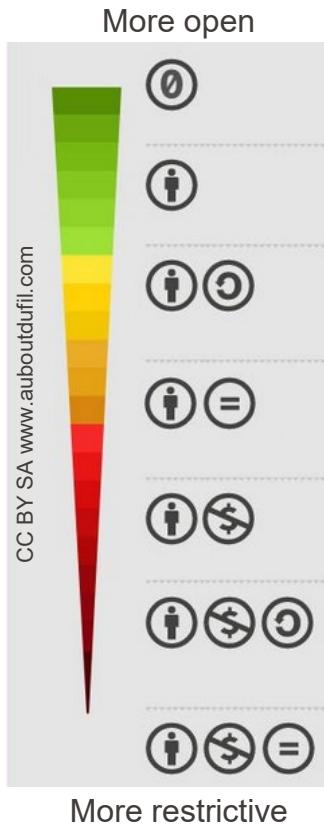
Renewable green energy transitions are necessary to mitigate global climate change and reduce carbon emissions worldwide (Levenda et al. 2021; Chen et al. 2022).

OR

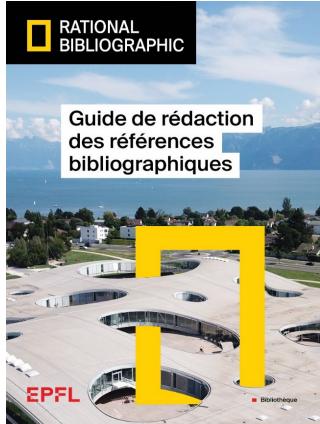
Experts believe that better information literacy knowledge will help students to judge the appropriateness of information[1-3].

Reusing images & tables

From <https://actu.epfl.ch/news/la-bibliotheque-de-l-epfl-se-transforme/>


- Check reuse license ([Creative Commons](#))
- If needed, get the author's permission
- Copy and paste
- Cite the source

Country	Total	Wastewater treatment plant	Biowaste	Agriculture residues treating plants	Industrial treating plants and landfill
Germany	10 551	1 271	292	8 400	280
United Kingdom	685	170	127	342	46
Sweden	282	134	36	54	58
Brazil	638	57	N/A	503	78
Norway	162	27	6	6	81
Switzerland	434	271	29	112	22


Data from
<https://link.springer.com/article/10.1007/s10311-022-01468-z/tables/1>

- Get the data (whole or partial)
- Create a new layout for the table
- Cite the source

Creative Commons (CC) licenses

Knowing more about citation and Information Literacy

Refer to our **Rational Bibliographic guide** to create and verify your references:
go.epfl.ch/guide-bibliographique

GAGNER DU TEMPS ET RÉALISER DE MEILLEURS TRAVAUX

Use **Infosphère** our **Information Literacy plateforme** to search, analyse, use and cite information in your works: go.epfl.ch/guide-bibliographique

Introduction to Zotero

Download and install: zotero.org

Documentation: go.epfl.ch/zot23

Contact us if you need help: go.epfl.ch/bookalibrarian

Zotero: questions after the introductory video?

- Installation (standalone software + browser connector)
- Interface
- Different ways to add references to your library
- Collections, tags, notes
- Using it with your favorite word processor
- Citation styles

- Create groups: <https://www.zotero.org/support/fr/groups>
- You must have an account to create a new group
- Take into account that the group owner stores the group files in her/his own Zotero account
- As a group, define rules (tree structure, file naming, adding tags and notes)
- Maintain high quality of metadata when collecting references (check that the main fields are filled in: title, author, date, publisher, etc.)
- Respect the work done by others

- Use the same search terms as in [Padlet](#) (or your new search equation) on PubMed. Use filters (publication date, reviews, clinical trials etc.) to refine your search.
- Select one review and one research article and add them to a new Zotero collection named “Bachelor Project”.
- Use the collection you’ve just created to add a bibliography in the [provided template](#) using the citation format ‘EMBO Press’.
- Submission due by **17 March 2025**

Self-evaluate yourself

- Quiz Information Literacy and Scholarly communication (link on Moodle)

Questions and assessment

Please take the time to assess this training:

Scan the QR code or

<https://library-survey.epfl.ch/c/gjzetaf>

It will help us improve !

 CONTACT

 formations.bib@epfl.ch

 library.epfl.ch
 [Book a librarian](#)