Searching

efficient sampling of protein
conformations

[1. conformational degrees of freedom]

2. search methods



Protein folding involves rotations of
the peptide backbone
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Approximation:
Peptide bond length and angles do not change
Peptide dihedral angles define the structure



Dihedral angles
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Formation of a peptide bond
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Dihedral angles @ and ¥ define backbone
conformation
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The peptide bond
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Amino acid side chains can
adopt multiple conformations

Dihedral angles y,—y, define side chain geometry




Side chains assume discrete conformations
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Rotamer libraries contain preferred

conformations

Rotamer: discrete side chain
conformation defined by y,—4

Table 1

Published rotamer libraries.

Authors Year Type of library Number of proteins in Resolution (A)
library
Chandrasekaran and Ramachandran [2] 1970 BBIND 3 NA
Janin et al. [4] 1978 BBIND, SSDEP 19 2.5
Bhat et al. [3] 1979 BBIND 23 NA
James and Sielecki [5] 1983 BBIND 5 1.8, R-factor <0.15
w' ] 1983 BBIND 238 peptides R-fmuuLI<
Ponder and Richards [7] 1987 BBIND 19 2.0
eqor et ar. 19] o057 SSUEP O 2.0
Tuffery et al. [9] 1991 BBIND 53 2.0
unbrack and Karplus [10] 1993 BBIND, BEDEP 132 2.0 [
c/mumy roes BENE-aStEER 'aY; ranv,
Kono and Doi [12] 1996 BBIND 103 NA
De Maeyer et al. [13] 1995 BBIND 19 2.0
[Dunbrack and Cohen [14] 1997/ -2002 BEIND, BEDEDP 850" 1.7 ]
Lovell et al. [157] 2000 BBIND, SSDEP 240 1.7
[Shapovalov and Dunbrack* 2011 BBDEP 3854 1.8 |

* Shapovalov & Dunbrack, Structure 2011
P Dunbrack, 2002



Representative rotamer libraries are
surprisingly small
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Characteristics of the Protein
Conformational Energy Landscape

space of conformations

energy

Images by Ken Dill



The Problem: Find Local (LM) and Global Minima
(GM) on a Rugged One Dimensional Surface

E: Energy of amino acid X in a protein A

i

Let the ball roll on the landscape
and explore each minima and maxima®?
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Side-chain dihedral space for amino acid X



Sampling low-energy discrete rotameric states simplifies
the search in conformational space and allows
rapid exploration of local minima

Sampling low-energy discrete rotameric states (s) flattens the
E , conformational energy landscape
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Why is rotamer conformation s1
— GMEC slightly different than the GMEC?




Rotamer conformation accuracy

4 major
rotameric
states
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Rotamers are an approximation to
the true side-chain conformation

bevacizumab-VEGF VEGF (unbound) RBP (unbound)
RMS error: 0.621 A RMS error: 1.11 A RMS error: 0.483 A

Crystal structure / Predicted structure

Boas & Harbury , 2007



Sampling method: Finding near-by local minima

« Derivative-based methods (Gradient Descent, Newton's
method, DFP) are excellent at finding near-by local minima

E

S1

Local minima




Gradients and Hessians

Gradients and Hessians generalize the first and second derivatives (respectively) of

multi-variate scalar functions ( = functions from vectors to scalars)

Energy = f(x4, ¥4, Z4, ... , Xpy Yy Z1)

(oE) ( 3*E  #*E  O'E )
ox. e Ox,0x; Ox,0y, 0x,0z;
- ©OE | OE .. O'E 0’E  9'E  O’E
V, = = hl_] = =
oor | oy, oror, | dy,ox, Oy0y; Oy,0z;
or O’E  9E  OE
\%z; ) (Oz.0x; 0z,0y; 02,0z )

Gradient Hessian



Analytical Energy Gradient
(i) Cartesian Coordinates

E= f(X1, Y1215 <+« 5 Xns Yo Zn)
o_(OE OE OE OE OE OE
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Example:
Van der-Waals energy between pairs of atoms — O(n?) pairs:
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Sampling method: Finding near-by local minima

How can we now find the GMEC?

S1

Local minima

GMEC



Sampling method: Finding Global minima

* Derivative-based methods cannot escape near-by local
minima

E

local minimum

local minimum

Global minimum



Sampling method: jumping between discrete minima

« Several algorithms can be used to jump between discrete
near-by local minima (e.g. Monte Carlo, Genetic algorithm,
Self consistent Mean Field, Dead End Elimination)

Local minima

Global minimum



Monte Carlo: stochastic sampling of discrete minima

Basic steps:

Random move: A->B
Eg <EA?
No: move rejected




Monte Carlo: stochastic sampling of discrete minima

Basic steps:

Random move: A->B
Eg <EA?
No: move rejected

Random move: A->C
Ec <EAp?
Yes: move accepted




Metropolis Monte Carlo

Very low probability ﬁ B
to move out of A

and reach the
Global Minimum E

Acceptance with probability P = ¢ 2E/%sT (Boltzmann weight), AE = Eg-Ea
P=1ifE, < E,
P=1ifEs>E,&& e " = rand(0,])

P=0ifEg > Ex &% ¢ ™" < rand(0,1)



Metropolis Monte Carlo

Probability P

to move out of A
depends on the
temperature T

E
P =€—AE//@
P=1ifEg <E,

P=1ifE;>E,&& ¢ """ =rand(0,)

P=0ifEg > Er&& ¢ """ < rand(0,1)



Metropolis Monte Carlo with Simulated Annealing

The Boltzman distribution depends on the in-silico temperature T:

« Atlow temperatures, we will get stuck in local minima (we will
always get zero acceptance if the energy rises even slightly)

« At high temperatures, acceptance will always be 1 (always
jump between conformations regardless of their energies).

P=1ifE>Ei & ¢ ' > rand(0,])

—AE [ kT
P=0ifEj>Ei & e ¢ =rand(0,l)

In simulated annealing, we gradually
decrease (“cool down”) the virtual
temperature factor, until we converge to
a minimum point



Basic design cycle step in Rosetta

Start: target structure

Random perturbation: amino acid substitution

Side chain
optimization

[

Random
perturbation

Minimization
w.r.t all
conformational

dofs y

‘ Random

perturbation

=

Side chain
optimization

Minimization

FINISH

v

Conformational space



Take home message

Computational protein
design is challenging
but made possible
thanks to:

1. An energy function
to rapidly rank
sequences

2. An efficient search

technique to find the
GMEC




Main points to remember

1. Protein design challenges: explore astronomically large
space of possibilities

Approximations to accelerate physics-based protein
design calculations based on:

2. Simple description physical interactions
3. Discretization of conformational space

4. Efficient continuous and stochastic search technique to
find the GMEC



