
Searching

efficient sampling of protein 
conformations

1. conformational degrees of freedom

2. search methods 



Protein folding involves rotations of 
the peptide backbone

Approximation: 
Peptide bond length and angles do not change
Peptide dihedral angles define the structure



Dihedral angles

Dihedral angles c1-c4 define side chain

From wikipedia

• Dihedral angle: defines geometry of 
4 consecutive atoms (given bond 
lengths and angles) 



Formation of a peptide bond



Dihedral angles F and Y define backbone 
conformation

The peptide bond 
is planar and polar



Amino acid side chains can 
adopt multiple conformations

Dihedral angles c1-c4 define side chain geometry



Serine c1 preferences

t=180o

g-=-60og+=+60o

Side chains assume discrete conformations

Staggered conformations minimize 
collision with neighboring atoms

Lovell, 2000

CA
C

N
CB

OG



Rotamer: discrete side chain 
conformation defined by c1-c4

Rotamer libraries contain preferred 
conformations

Dunbrack, 2002

Shapovalov and Dunbrack*         2011                    BBDEP   3854        1.8
* Shapovalov & Dunbrack, Structure 2011



Ponder & Richards, 1987:
Analysis of ~20 proteins 
 (~2000 side chains)

67 rotamers can adequately 
represent side chain 
conformations (for 17/20aa)

Representative rotamer libraries are 
surprisingly small
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Characteristics of the Protein 
Conformational Energy Landscape

smooth? rugged?

Images by Ken Dill

space of conformations

energy



The Problem: Find Local (LM) and Global Minima 
(GM) on a Rugged One Dimensional Surface

Let the ball roll on the landscape 
and explore each minima and maxima?
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Sampling low-energy discrete rotameric states simplifies 
the search in conformational space and allows

rapid exploration of local minima

Sampling low-energy discrete rotameric states (s) flattens the 
conformational energy landscape 

s1

s2

s3 s4

E

NOT EXPLORED

s5 s6

GMEC
Why is rotamer conformation s1 
slightly different than the GMEC? 



Rotamer conformation accuracy

PDB
4 major 
rotameric 
states

Effect of the resolution 
of the rotamer library 
on the conformation 
prediction accuracy

Boas & Harbury , 2007



Rotamers are an approximation to 
the  true side-chain conformation

Boas & Harbury , 2007



Sampling method: Finding near-by local minima

• Derivative-based methods (Gradient Descent, Newton’s 
method, DFP) are excellent at finding near-by local minima

Local minima

s1

s2

E



Gradients and Hessians
Gradients and Hessians generalize the first and second derivatives (respectively) of 

multi-variate scalar functions ( = functions from vectors to scalars)



























∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

=
∂∂

∂
=

!"!"!"

!"!"!"

!"!"!"

!"

##
$

%#
$

&#
$

#%
$

%%
$

&%
$

#&
$

%&
$

&&
$

''
$"!

!!!

!!!

!!!

!

" !!

























∂
∂
∂
∂
∂
∂

=
∂
∂

=∇

!

!

!

!
!

"
#
$
#
%
#

&
#
!

"

Gradient Hessian

Energy = f(x1, y1, z1, … , xn, yn, zn)



Analytical Energy Gradient 
(i) Cartesian Coordinates

E = f(x1, y1 ,z1, … , xn, yn, zn)
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Example: 
Van der-Waals energy between pairs of atoms – O(n2) pairs:
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Sampling method: Finding near-by local minima

How can we now find the GMEC?

Local minima

s1

s2

E

GMEC



Sampling method: Finding Global minima

• Derivative-based methods cannot escape near-by local 
minima

Global minimum

X

local minimum

local minimum

X

E



Sampling method: jumping between discrete minima

• Several algorithms can be used to jump between discrete 
near-by local minima (e.g. Monte Carlo, Genetic algorithm, 
Self consistent Mean Field, Dead End Elimination)

Local minima

Global minimum



Monte Carlo: stochastic sampling of discrete minima

A

B

C

Basic steps:

Random move: A->B 
EB < EA ?
No: move rejected X



Monte Carlo: stochastic sampling of discrete minima

A

B

C

Basic steps:

Random move: A->B 
EB < EA ?
No: move rejected

Random move: A->C 
EC < EA ?
Yes: move accepted

X



Metropolis Monte Carlo

A

B

CD

E

Very low probability
to move out of A 
and reach the 
Global Minimum E

Acceptance with probability
 
P = 1 if EB < EA 

P = 1 if EB > EA &&

P = 0 if EB > EA &&
€ 

P = e−ΔE / kBT

€ 

e−ΔE / kBT ≥ rand(0,1)

€ 

e−ΔE / kBT ≤ rand(0,1)

(Boltzmann weight), DE = EB-EA

X

X
X



Metropolis Monte Carlo

A

B

CD

E

Probability P
to move out of A 
depends on the 
temperature T

P = 1 if EB < EA 

P = 1 if EB > EA &&

P = 0 if EB > EA &&
€ 

P = e−ΔE / kBT

€ 

e−ΔE / kBT ≥ rand(0,1)

€ 

e−ΔE / kBT ≤ rand(0,1)



The Boltzman distribution depends on the in-silico temperature T:

• At low temperatures, we will get stuck in local minima (we will 
always get zero acceptance if the energy rises even slightly)

• At high temperatures, acceptance will always be 1 (always 
jump between conformations regardless of their energies).

In simulated annealing, we gradually 
decrease (“cool down”) the virtual 

temperature factor, until we converge to 
a minimum point

P = 1 if Ej > Ei  &&

P = 0 if Ej > Ei  &&

€ 

e−ΔE / kBT ≥ rand(0,1)

€ 

e−ΔE / kBT ≤ rand(0,1)

Metropolis Monte Carlo with Simulated Annealing



Side chain 
optimization

Minimization
w.r.t all 

conformational
dofs

Random 
perturbation

Monte 
Carlo

Accept?

Basic design cycle step in Rosetta 

START

Random
perturbation

Side chain 
optimization

Minimization

FINISH

En
er

gy

Conformational space

Start: target structure

Random perturbation: amino acid substitution



Take home message

E

GMEC

Conformation space

Computational protein 
design is challenging 
but made possible 
thanks to:

 1. An energy function 
to rapidly rank 
sequences

2. An efficient search 
technique to find the 
GMEC



Main points to remember

1. Protein design challenges: explore astronomically large 
space of possibilities

Approximations to accelerate physics-based protein 
design calculations based on:

2. Simple description physical interactions

3. Discretization of conformational space 

4. Efficient continuous and stochastic search technique to 
find the GMEC


