


## Bifurcation Simulations

### Description

In this lab exercise the COMSOL package will be used to study incompressible flow fields inside the two dimensional bifurcation presented in the following figure.



A geometry file for this carotid bifurcation is provided ([bifurcation.dxf](#)). The filling fluid is considered to be blood with density  $\rho = 1050 \text{ kg/m}^3$  and dynamic viscosity  $\eta = 0.004 \text{ Pa} \cdot \text{s}$ . The exit pressure is equal to 80 mmHg. The normal inlet velocity profile has the following form:

$$u = V_{max} \left[ 1 - \left( \frac{y - y_0}{h} \right)^2 \right],$$

with:

$$V_{max} = \frac{3q_l}{4h},$$

where  $q_l$  is the flow rate per unit length,  $(0, y_0)$  is the geometric center of the inlet and  $h$  represents the half of the length of the inflow boundary segment. In our case  $y_0 = 3.271537 \cdot 10^{-4} \text{ m}$  and  $h = 0.0038005 \text{ m}$ .

Solve the incompressible flow field inside the 2D bifurcation for the flow rate per unit length values of  $13.5 \text{ cm}^2/\text{s}$ ,  $27.26 \text{ cm}^2/\text{s}$ , and:

- Make surface plots of the velocity components  $(u, v)$ , of the velocity magnitude (speed) and pressure.
- Plot the streamlines.
- Plot the wall shear stress on the upper and lower walls.
- Evaluate the length of the recirculation zones.

The geometry file data are in SI units, so all units provided in COMSOL must be consistent.