

Series 8 (18 April 2025)

TAs: Cemre Celikbudak, Soroush Rafiei, Sokratis Anagnostopoulos, Ramin Mohammadi, Ellen Jamil Dagher, Veronika Pak, El Ghali Jaidi, Coline Jeanne Leteurtre

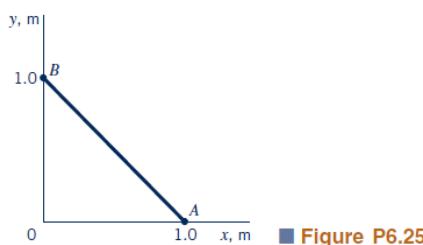
6.21. A two dimensional, incompressible flow is given by $u = -y$ and $v = x$. Show that the streamline passing through the point $x = 10$ and $y = 0$ is a circle centered at the origin.

6.22. In a certain steady, two-dimensional flow field the fluid density varies linearly with respect to the coordinate x : that is, $\rho = Ax$ where A is a constant. If the x component of velocity u is given by the equation $u = y$, determine an expression for v .

6.25. The stream function for an incompressible flow field is given by the equation:

$$\psi = 3x^2y - y^3$$

where the stream function has the units of m^2/s with x and y in meters. (a) Sketch the streamline(s) passing through the origin. (b) Determine the rate of flow across the straight path AB shown in Fig. P6.25.



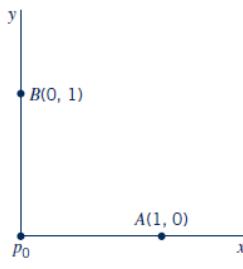
■ **Figure P6.25**

6.33. A two-dimensional flow field for a non-viscous, incompressible fluid described by the velocity components:

$$u = U_0 + 2y$$

$$v = 0$$

where U_0 is a constant. If the pressure at the origin (Fig. P6.33) is p_0 , determine an expression for the pressure at (a) point A, and (b) point B. Explain clearly how you obtained your answer. Assume that the units are consistent and body forces may be neglected.



■ **Figure P6.33**

6.41. The velocity potential for a certain inviscid, incompressible flow field is given by the equation:

$$\varphi = 2x^2y - (2/3)y^3$$

where φ has the units of m^2/s when x and y are the in meters. Determine the pressure at the point $x = 2m, y = 2m$ if the pressure at $x = 1m, y = 1m$ is 200 kPa. Elevation changes can be neglected, and the fluid is water.

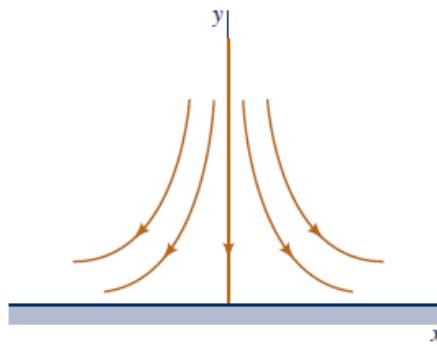
6.44. The velocity potential

$$\varphi = -k(x^2 - y^2) \quad (k: \text{constant})$$

may be used to represent the flow against an infinite plane boundary, as illustrated in Fig. P6.44. For flow in the vicinity of a stagnation point, it is frequently assumed that the pressure gradient along the surface is of the form:

$$\frac{\partial p}{\partial x} = Ax$$

where A is a constant. Use the given velocity potential to show that this is true.



■ **Figure P6.44**