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.3l A two-dimensipnal, incompressible flow is given by
u = —yamd v = & Show that the streamline passing through
the point x = L and v = 005 a cirele centered at the origin,
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6,22 Inacertainsteady, two-dimensional flow
field the fluid density varies linearly with respect
to the coordinate 1) that is, g = Ax where A is
a constant. If the x component of velogity u is
given by the eguation & = y, determine an
expression for v .
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6.25  The stream function for an incompres-
sible flow field is given by the equation

w o= 3ry = . 1.0
where the stream function has the units of m'/s
with x and y in meters, () Skeich the stream-
line(s) passing through the origin. (b) Determine
the rate of flow across the straight path A8 shown

in Fig. P6.25. A
10 = m
FIGURE P6.25
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6.33 A two-dimensional flow field for a non- ¥
viscous, incompressible fluid is described by the
velocity components

uw Uy + 2y

ved

where [/, is a constant. If the pressure at the origing -
(Fig. P6.33 is py, determine an expression for the AL
pressure at (a) point A, and (b) point 8. Explain - - =
clearly how you obtained your answer. Assume

the units are consistent and hody forces may be FIGURE P6.33
neglected.
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G641  The velocity potential for a cerain inviscid, incom-
pressible flow field is given by the equation
@ = 26y - @y
where  has the wnits of m®/s when & and yrare in mefers.

Deetermine the pressure at the pointx = Im.y = 2 mif the
pressure 8t = lm, y = 1 mis 200 kPa. Elevation changes

can be neglected and the fluid is water.
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6. 4% The velocity potential

¢ = =k(x* - y) (k= constant)
may be used to represent the flow against an in-
finite plane boundary as illustrated in Fig. P6.4%
For flow in the vicinity of a stagaation point it is
frequently assumed that the pressure gradient -

along the surface is of the form
!‘E-A: i " L
dax _ FIGURE P6.44

where A is a constant. Use the given velocity
potential to show that this is tree,
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