

Fisher Information Matrix

Arsh Shaikh

École Polytechnique Fédérale de Lausanne (EPFL)

School of Life Science (SV)

March 2025

EPFL - IBI - UPNAE

Fisher Information Matrix

The Fisher Information Matrix (FIM) quantifies the amount of information a sample provides about parameters in a model.

- For a parameter vector θ , the Fisher Information Matrix $I(\theta)$ is defined as:

$$I(\theta) = -\mathbb{E} \left[\frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta^\top} \right]$$

where $\ell(\theta)$ is the log-likelihood.

- Intuitively, $I(\theta)$ measures how sensitive the likelihood is to changes in θ .

Calculation of the Fisher Information in Regression

In linear regression, the Fisher Information Matrix for parameter vector β is calculated based on the model:

$$\mathbf{Y} = \mathbf{X}\beta + \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

For this model,

- The log-likelihood is:

$$\ell(\beta) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mathbf{x}_i^\top \beta)^2$$

- Taking second derivatives with respect to β gives:

$$\mathcal{I}(\beta) = \frac{1}{\sigma^2} \mathbf{X}^\top \mathbf{X}$$

Interpreting the Fisher Information Matrix

The Fisher Information Matrix informs model evaluation and parameter reliability:

- **Variance of Estimates:** A larger Fisher Information indicates more precise estimates.
- **Parameter Sensitivity:** High sensitivity in $\ell(\beta)$ to changes in β implies higher information content.
- **Goodness of Fit:** Information metrics help assess model fit, as more information implies a better fit to observed data.