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The Limits of Maximum Likelihood and Shrinkage Methods

The James-Stein Phenomenon: A Theoretical Foundation

The James-Stein phenomenon showed that maximum likelihood estimation is not
always optimal, especially when estimating multiple parameters simultaneously.

Consider estimating multiple means of a multivariate normal distribution:

Y = (Y1,Y2, . . . ,Yp) ∼ N (µ, I)

James and Stein proved that for p ≥ 3, we can achieve better estimation with:

µ̂JS
i =

(
1− (p − 2)∑p

j=1 Y
2
j

)
· Yi

This ”shrinks” each estimate toward zero, reducing overall error.
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The Limits of Maximum Likelihood and Shrinkage Methods

James-Stein Phenomenon: Visual Comparison
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MLE estimates (dashed lines) vs. ground truth (solid lines). The MLE uses each
observation directly as the estimate of its mean.
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The Limits of Maximum Likelihood and Shrinkage Methods

James-Stein Phenomenon: Visual Comparison
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James-Stein estimates (dashed lines) vs. ground truth (solid lines). The shrinkage
estimator produces values closer to the true means on average.
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The Limits of Maximum Likelihood and Shrinkage Methods

Underdetermination in Regression

In high-dimensional settings where parameters approach or exceed observations, MLE
tends to capture noise rather than underlying patterns.

Consider a gene expression study with:

y ∈ Rn (clinical measurements) (1)

X ∈ Rn×p (gene expression values) (2)

β ∈ Rp (gene effects) (3)

When n ≪ p, our system becomes underdetermined, allowing infinitely many solutions
that fit the training data perfectly.
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The Limits of Maximum Likelihood and Shrinkage Methods

Underdetermined vs. Well-Determined Systems

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Observed Values

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5
Pr

ed
ict

ed
 V

al
ue

s
R² = 1.0000

Underdetermined Model (p > n)
Training Data

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Observed Values

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Pr
ed

ict
ed

 V
al

ue
s

R² = 0.9863

Well-determined Model (p < n)
Training Data

In an underdetermined system (p > n), we can achieve perfect fit to training data
(points fall exactly on diagonal line), but this often leads to poor generalization.
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The Limits of Maximum Likelihood and Shrinkage Methods

Coefficient Stability in Regression Models

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Coefficients (full dataset)

0.15

0.10

0.05

0.00

0.05

0.10

Co
ef

fic
ie

nt
s (

95
%

 d
at

as
et

)

Correlation = 0.9311

Underdetermined Model (p > n)
Coefficient Stability

In underdetermined systems, coefficient estimates become highly unstable. Small
changes in the training data lead to drastically different coefficient values.
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Coefficient Stability in Well-Determined Systems
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In contrast, well-determined systems (n > p) yield stable coefficient estimates that
remain similar when small changes are made to the training data.
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The Limits of Maximum Likelihood and Shrinkage Methods

Overfitting and Generalization

Overfitting occurs when our model captures random noise rather than underlying
patterns, compromising its ability to generalize to new data.

Definition (Overfitting)

Overfitting occurs when a statistical model captures random noise or fluctuations in
the training data that do not represent the underlying relationship, leading to poor
generalization performance on unseen data.

The primary goal of most biological modeling is to discover patterns that extend
beyond our specific samples to the broader biological phenomenon.
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The Limits of Maximum Likelihood and Shrinkage Methods

Overfitting: Training vs. Test Performance
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Training Data: Predictions vs Observed

An overfit model performs deceptively well on training data (points align along
diagonal), potentially misleading researchers about its predictive value.
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The Limits of Maximum Likelihood and Shrinkage Methods

Overfitting: Poor Generalization
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Test Data: Predictions vs Observed

The same model performs poorly on new test data, revealing that it captured noise
rather than the underlying biological relationship.
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The Limits of Maximum Likelihood and Shrinkage Methods

Cross-Validation: A Robust Approach to Model Assessment

Cross-validation offers a systematic approach to assess model generalization by
repeatedly partitioning data:

In K-fold cross-validation:

Data is divided into K equally sized subsets or ”folds”

Model is trained K times, each using a different fold as validation

Performance is averaged across all K iterations

Advantages:

Uses all data points for both training and validation

Reduces impact of random partitioning

Provides measure of performance variability
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Controlling Coefficient Magnitude

Inspired by the James-Stein phenomenon, ridge regression modifies the standard loss
function by adding a penalty on coefficient magnitudes:

Minimize: ∥y − Xβ∥22 + λ∥β∥22

The regularization parameter λ ≥ 0 controls the trade-off between:

Fitting the data well (first term)

Keeping coefficients small (second term)

This approach introduces bias toward smaller coefficient values but can substantially
reduce variance.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression as Constrained Optimization
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Contours of the likelihood function for two coefficients (β1 and β2). Without ridge
regularization, the MLE is at the center of the contours.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression as Constrained Optimization
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With ridge regularization, we add a penalty represented by concentric circles. The
solution (marked with X) is where these circles meet the likelihood contours, shrinking
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Coefficient Shrinkage
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Histogram of OLS coefficients for a gene expression dataset with 1000 genes. Without
regularization, many coefficients take extreme values.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Effect of Regularization
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Ridge regression with different λ values. As regularization strength increases,
coefficients are progressively shrunk toward zero, reducing model complexity.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression in Biological Applications
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Ridge regression produces more stable coefficient estimates, preventing any single gene
from having excessive influence on predictions.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Improved Generalization
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Ridge regression typically improves prediction accuracy on new data by reducing
overfitting, leading to better alignment between predicted and observed values.
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The Limits of Maximum Likelihood and Shrinkage Methods

Bias-Variance Trade-off: The Theoretical Foundation

Any predictor’s mean squared error can be decomposed into three components:

MSE(f̂ (x)) = Bias2(f̂ (x)) + Variance(f̂ (x)) + Irreducible Error

Where:

Bias: Systematic deviation from the true parameter value

Variance: Sensitivity to random fluctuations in training data

Irreducible Error: Inherent randomness in the data-generating process

Regularization methods like ridge regression introduce some bias but can substantially
reduce variance, improving overall prediction performance.

Gioele La Manno BIOENG-210 / LECTURE 9 April 2025 20 / 36



The Limits of Maximum Likelihood and Shrinkage Methods

Derivation of the Bias-Variance Decomposition

Starting with the Mean Squared Error at a fixed point x :

MSE(f̂ (x)) = E[(Y − f̂ (x))2] = E[(f (x) + ε− f̂ (x))2] (4)

Since E[ε] = 0 and ε is independent of f̂ (x):

MSE(f̂ (x)) = E[(f (x)− f̂ (x))2] + σ2
ε (5)

Adding and subtracting E[f̂ (x)]:

E[(f (x)− E[f̂ (x)] + E[f̂ (x)]− f̂ (x))2] + σ2
ε (6)

= E[(f (x)− E[f̂ (x)])2 + 2(f (x)− E[f̂ (x)])(E[f̂ (x)]− f̂ (x)) + (E[f̂ (x)]− f̂ (x))2]
(7)

= (f (x)− E[f̂ (x)])2 + E[(E[f̂ (x)]− f̂ (x))2] + σ2
ε (8)
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The Limits of Maximum Likelihood and Shrinkage Methods

The Geometry of Regression and Rank Deficiency

In linear regression, we seek parameters β that minimize:

min
β

∥y − Xβ∥22

Leading to the normal equations:

XTXβ = XTy

When XTX is invertible, the unique solution is:

β̂ = (XTX)−1XTy

When p approaches or exceeds n, X becomes rank deficient, making the solution
unstable or non-unique.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Mathematical Solution

Ridge regression modifies the normal equations by adding a diagonal matrix:

Ridge objective : min
β

∥y − Xβ∥22 + λ∥β∥22 (9)

Setting the derivative to zero and solving:

(XTX+ λI)β = XTy (10)

β̂ridge = (XTX+ λI)−1XTy (11)

This ensures invertibility even when p ≥ n or predictors are collinear, stabilizing the
solution.
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The Limits of Maximum Likelihood and Shrinkage Methods

Choosing the Regularization Parameter: The Lambda
Dilemma
The regularization parameter λ controls the trade-off between:

Low λ: Minimal shrinkage, closer to OLS, potential overfitting

High λ: Strong shrinkage, potentially oversimplified model

Cross-validation offers a principled approach to selecting λ:

1 Split data into K folds
2 For each candidate λ value:

Train ridge model on K-1 folds
Evaluate performance on held-out fold

3 Average performance across all K iterations

4 Select λ with lowest cross-validation error

This produces a characteristic U-shaped error curve that reveals the optimal
regularization strength.
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The Limits of Maximum Likelihood and Shrinkage Methods

Choosing the Regularization Parameter: Visual
Representation
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The U-shaped curve illustrates how
prediction error initially decreases as λ
increases (reducing overfitting), then
increases again as excessive shrinkage
introduces bias.

This visualization helps identify the
optimal regularization strength that
balances the bias-variance tradeoff for
your specific biological dataset.
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The Limits of Maximum Likelihood and Shrinkage Methods

Ridge Regression: Regularization Path
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Ridge Regression: Regularization Path
(High-dimensional Data: n=50, p=500)

Fast decay 1 (feature 494)
Fast decay 2 (feature 222)
Fast decay 3 (feature 451)
Slow decay 1 (feature 0)
Slow decay 2 (feature 2)
Slow decay 3 (feature 4)
Best  = 2.49e+02

The regularization path illustrates how
coefficients change as λ varies. Each
line represents a coefficient’s
magnitude, revealing which features
are most resistant to shrinkage (likely
the most important predictors).
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Bayesian Perspective and Maximum a Posteriori Estimation

The Bayesian Framework: Incorporating Prior Knowledge

The Bayesian approach treats parameters as random variables with probability
distributions, not fixed but unknown quantities.

At the heart of Bayesian statistics lies Bayes’ rule:

P(A|B) = P(B|A) · P(A)
P(B)

In parameter estimation, this becomes:

P(θ|y) = P(y|θ) · P(θ)
P(y)

Where:

P(θ|y): Posterior distribution
P(y|θ): Likelihood function
P(θ): Prior distribution
P(y): Normalizing constant
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Bayesian Perspective and Maximum a Posteriori Estimation

Maximum a Posteriori Estimation: A Bridge Between
Paradigms

MAP estimation finds parameter values that maximize the posterior probability:

θ̂MAP = argmax
θ

P(θ|y) = argmax
θ

[P(y|θ) · P(θ)]

Taking logarithms:

θ̂MAP = argmax
θ

[logP(y|θ) + logP(θ)]

This reveals that MAP estimation equals maximum likelihood estimation plus a term
representing the log-prior. The prior effectively serves as a regularization term,
penalizing parameter values that are a priori unlikely.
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Bayesian Perspective and Maximum a Posteriori Estimation

Connection Between Ridge Regression and MAP Estimation

For regression coefficients, a common choice is a Gaussian prior centered at zero:

βj ∼ N (0, τ2)

The log of this prior is:

logP(β) = − 1

2τ2

p∑
j=1

β2
j + constant

Incorporating this into MAP estimation:

β̂MAP = argmax
β

logP(y|β)− 1

2τ2

p∑
j=1

β2
j


This is mathematically equivalent to ridge regression with λ = 1

2τ2
.
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Bayesian Perspective and Maximum a Posteriori Estimation

Beyond Ridge: Lasso Regression for Feature Selection

While ridge regression shrinks coefficients toward zero, it rarely sets any coefficient
exactly to zero. Lasso addresses this limitation with a different penalty:

Minimize: ∥y − Xβ∥22 + λ∥β∥1

Where ∥β∥1 =
∑p

j=1 |βj | is the L1 norm of the coefficient vector.

This seemingly minor change produces a fundamentally different effect: the lasso can
shrink some coefficients exactly to zero, performing automatic feature selection.
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Bayesian Perspective and Maximum a Posteriori Estimation

Lasso vs. Ridge: Geometric Comparison
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Ridge regression uses an L2 penalty, creating circular constraint regions that shrink
coefficients proportionally but rarely to exactly zero.
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Bayesian Perspective and Maximum a Posteriori Estimation

Lasso vs. Ridge: Geometric Comparison
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Lasso uses an L1 penalty, creating diamond-shaped constraint regions. When contours
touch the corners of this region, some coefficients become exactly zero, enabling
feature selection.
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Bayesian Perspective and Maximum a Posteriori Estimation

Bayesian Interpretation: Different Priors
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Ridge regression corresponds to MAP estimation with a Gaussian prior. The rounded
peak reflects the belief that coefficients are likely small but rarely exactly zero.
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Bayesian Interpretation: Different Priors
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Lasso corresponds to MAP estimation with a Laplace (double-exponential) prior. The
sharp peak at zero reflects the belief that many coefficients are likely exactly zero.
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Bayesian Perspective and Maximum a Posteriori Estimation

Lasso Regression: Variable Selection
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Lasso Regression: Regularization Path
(High-dimensional Data: n=50, p=500)
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Lasso’s regularization path shows
coefficients reaching exactly zero
as λ increases, performing
automatic variable selection by
retaining only the most important
predictors.
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Bayesian Perspective and Maximum a Posteriori Estimation

Lasso in Biological Applications
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In genomics, lasso can identify a
subset of genetic variants
associated with disease risk from
thousands of candidates, providing
a focused set of targets for
functional validation studies.
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