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Introduction to Generalized Linear Models

Beyond Linear Regression

Linear regression is limited when modeling:

Binary outcomes (differentiation/quiescence)

Count data (sequencing reads)

Strictly positive measurements
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Introduction to Generalized Linear Models

The Structure of GLMs
GLMs have three components:

1 Random Component: Distribution of response variable

2 Systematic Component: η = β0 + β1X1 + β2X2 + · · ·
3 Link Function: g(E [Y ]) = η
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Introduction to Generalized Linear Models

The Role of Link Functions

Link functions transform between bounded response space and unbounded linear space.

Normal: Identity link g(µ) = µ

Binomial: Logit link g(µ) = log µ
1−µ

Poisson: Log link g(µ) = logµ

Gamma: Inverse link g(µ) = 1
µ
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Introduction to Generalized Linear Models

Poisson Regression: Modeling Count Data

Ideal for count data like bacterial colonies or sequencing reads.
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Introduction to Generalized Linear Models

Poisson vs. Linear Regression for Count Data
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Poisson regression ensures positive predictions and models increasing variance.
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Introduction to Generalized Linear Models

Log Link in Poisson Regression
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The log link creates a linear relationship on the log scale.
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Introduction to Generalized Linear Models

Marginal Effects in Poisson Regression
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The curve shows multiplicative effects on the response.
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Introduction to Generalized Linear Models

Heteroscedasticity in Count Data

Poisson regression handles increasing variance with the mean:

Var(Y ) = E [Y ] = λ
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Logistic Regression: Modeling Binary Outcomes

From Regression to Classification

Logistic regression addresses a classification problem:

Predicting stem cell differentiation

Diagnosing disease from biomarkers

Classifying protein sequences

Instead of predicting classes directly, logistic regression models the probability of
belonging to the positive class.
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Logistic Regression: Modeling Binary Outcomes

Binary Outcomes in Biology

Binary nature of the data: each observation belongs to exactly one class.
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Logistic Regression: Modeling Binary Outcomes

Problems with Linear Regression for Binary Data

Linear regression is problematic for binary outcomes:
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Logistic Regression: Modeling Binary Outcomes

Classification in Higher Dimensions

In 2D, we look for a line that separates classes.
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Logistic Regression: Modeling Binary Outcomes

Predicted Classification Boundaries
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Logistic Regression: Modeling Binary Outcomes

3D Classification Problems

In 3D, we look for a separating plane.
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Logistic Regression: Modeling Binary Outcomes

3D Classification with Decision Boundary
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Logistic Regression: Modeling Binary Outcomes

Logistic Regression Structure

Logistic regression follows the GLM structure:

1 Random Component: Bernoulli distribution

Y ∼ Bernoulli(p)

2 Systematic Component:

η = β0 + β1X1 + β2X2 + · · ·+ βpXp

3 Link Function: Logit link

g(p) = log

(
p

1− p

)
= η
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Logistic Regression: Modeling Binary Outcomes

The Logistic Function

The inverse link transforms from the linear scale to probabilities:

p =
1

1 + e−η
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Logistic Regression: Modeling Binary Outcomes

The Logit Transformation

Converting from probability to linear scale:
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Logistic Regression: Modeling Binary Outcomes

Logistic Regression Fit
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Logistic Regression: Modeling Binary Outcomes

Odds Ratio Interpretation
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Logistic Regression: Modeling Binary Outcomes

Interpreting Regression Coefficients

In logistic regression, coefficients are interpreted in terms of odds ratios:

Odds: odds = p
1−p

Logistic model: log
(

p
1−p

)
= β0 + β1X1 + · · ·

For coefficient interpretation: eβj is the multiplicative effect on odds when Xj

increases by one unit

Example: If β1 = −0.8 for Oct4, then e−0.8 ≈ 0.45, meaning a one-unit increase in
Oct4 reduces differentiation odds by 55
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Evaluating Classification Models
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Evaluating Classification Models

From Probabilities to Decisions

To convert probabilities to binary predictions, we apply a threshold:

ŷi =

{
1 if p̂i ≥ c

0 if p̂i < c

Typically c = 0.5, but the optimal threshold depends on the relative costs of false
positives and false negatives.
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Evaluating Classification Models

The Confusion Matrix

Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Key metrics:

Accuracy = TP+TN
TP+FP+FN+TN

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Precision = TP
TP+FP
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Evaluating Classification Models

ROC Curve Construction
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Evaluating Classification Models

ROC Curve Interpretation
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AUC = Area Under Curve
Higher is better
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Interpreting Regions of the ROC Curve

ROC Curve (AUC = 0.85)
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Evaluating Classification Models

ROC Curves and AUC: Random Classifier
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AUC = 0.5: No discriminative ability (equivalent to random guessing)
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Evaluating Classification Models

ROC Curves and AUC: Decent Classifier
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AUC = 0.75: Good discriminative ability
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Evaluating Classification Models

ROC Curves and AUC: Excellent Classifier
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AUC = 0.99: Nearly perfect discrimination
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