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Introduction to Generalized Linear Models

Beyond Linear Regression

Linear regression is limited when modeling:
= Binary outcomes (differentiation/quiescence)
m Count data (sequencing reads)

m Strictly positive measurements

Binary Outcome as Function of Predictor Variable

Binary Outcome (0/1)
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The Structure of GLMs

GLMs have three components:
Random Component: Distribution of response variable
Systematic Component: 1 = 8y + 1. X1 + G Xo + - -
Link Function: g(E[Y]) =17

Count Data with Poisson Regression Fit

Count Outcome
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The Role of Link Functions

Link functions transform between bounded response space and unbounded linear space.
m Normal: Identity link g(p) = p
Binomial: Logit link g(i) = log lﬁ—u

1
m

]
m Poisson: Log link g(u) = log i
|

Gamma: Inverse link g(u) =
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Poisson Regression: Modeling Count Data

Ideal for count data like bacterial colonies or sequencing reads.

Bacterial Colony Counts vs Temperature
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Introduction to Generalized Linear Models

Poisson vs. Linear Regression for Count Data

Poisson vs Linear Regression for Count Data
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Poisson regression ensures positive predictions and models increasing variance.
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Introduction to Generalized Linear Models

Log Link in Poisson Regression

Poisson Regression Model in Log Scale
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The log link creates a linear relationship on the log scale.
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Marginal Effects in Poisson Regression

Effect of Transcription Factor on Transcript Count

5 Poisson Regression
(pH level = 6.51)

RNA Transcript Count
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The curve shows multiplicative effects on the response.
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Introduction to Generalized Linear Models

Heteroscedasticity in Count Data

Poisson regression handles increasing variance with the mean:
Var(Y) = E[Y] =\

Poisson Regression with Residuals
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Logistic Regression: Modeling Binary Outcomes
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Logistic Regression: Modeling Binary Outcomes

From Regression to Classification

Logistic regression addresses a classification problem:
m Predicting stem cell differentiation
m Diagnosing disease from biomarkers
m Classifying protein sequences

Instead of predicting classes directly, logistic regression models the probability of
belonging to the positive class.
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Logistic Regression: Modeling Binary Outcomes

Binary Outcomes in Biology

Binary nature of the data: each observation belongs to exactly one class.

Gene Expression Data for Stem-like vs. Differentiated Cells

Differentiated

Cell Type (0: Stem-like, 1: Differentiated)

Stem-like
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SOX2 Gene Expression Level
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Problems with Linear Regression for Binary Data

Linear regression is problematic for binary outcomes:

Differentiated

= Linear Regression

Stem-like

Cell Type (0: Stem-like, 1: Differentiated)

Impossible

=7 " predictions
1 2 5 6 7

3 4
SOX2 Gene Expression Level

Gioele La Manno April 2025 12 / 38



Logistic Regression: Modeling Binary Outcomes

Classification in Higher Dimensions

In 2D, we look for a line that separates classes.

Gene Expression Data: True Cell Types
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Logistic Regression: Modeling Binary Outcomes

Predicted Classification Boundaries

Gene Expression Data: Predicted Cell Types

® Predicted Stem-like

® Predicted Differentiated
—— Decision Boundary

O Misclassified
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3D Classification Problems

In 3D, we look for a separating plane.

3D Gene Expression Data: True Cell Types
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Logistic Regression: Modeling Binary Outcomes

3D Classification with Decision Boundary

3D Gene Expression Data: Predicted Cell Types
® Predicted Stem-like
® Predicted Differentiated
~—— Decision Boundary
O Misclassified
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Logistic Regression Structure

Logistic regression follows the GLM structure:

Random Component: Bernoulli distribution
Y ~ Bernoulli(p)
Systematic Component:
n=Bo+ B1X1 + B Xo + - + BpXp

Link Function: Logit link
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The Logistic Function
The inverse link transforms from the linear scale to probabilities:

1

p:1+e*77

The Logistic (Sigmoid) Function

Logistic Function

fo=0.5 when n=0

Probability (p)
S

2
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The Logit Transformation

Converting from probability to linear scale:

The Logit Transformation

. 9(p) =log (25)

Linear Predictor (n)
°

n=0whenp=0.5

4 Logit Function
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Probability (p)
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Regression: Modeling Binary Outcomes

Logistic Regression Fit

Gene Expression Data with Logistic Regression Fit

—— Logistic Regression Fit
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Regression: Modeling Binary Outcomes

Odds Ratio Interpretation

Gene Expression Data with Odds Ratio
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Logistic Regression: Modeling Binary Outcomes

Interpreting Regression Coefficients

In logistic regression, coefficients are interpreted in terms of odds ratios:

m Odds: odds = ﬁ

= Logistic model: log <lfpp) =80+ X1+
m For coefficient interpretation: e is the multiplicative effect on odds when X
increases by one unit

Example: If 51 = —0.8 for Oct4, then e~ 98 ~ 0.45, meaning a one-unit increase in
Oct4 reduces differentiation odds by 55
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Evaluating Classification Models

From Probabilities to Decisions

To convert probabilities to binary predictions, we apply a threshold:
. 1 ifpi>c
Yi= oA
0 ifpi<c

Typically ¢ = 0.5, but the optimal threshold depends on the relative costs of false
positives and false negatives.
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The Confusion Matrix

Actual Positive Actual Negative
Predicted Positive | True Positive (TP) | False Positive (FP)
Predicted Negative | False Negative (FN) | True Negative (TN)

Key metrics:
_ TP+ TN
= Accuracy = 5 rp N T
m Sensitivity = %

= Specificity = mTifrV,_-P

i TP
m Precision = TP+ FP
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ROC Curve Construction

Construction of ROC Curve

Trieshoa™focsnola = 0.00

Threshoid = 0.33

True Positive Rate (Sensitivity)
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ROC Curve Interpretation

Interpreting Regions of the ROC Curve

High Sensitivity'
o Specticty

Optimal Region

gty AUC = Area Under Curve
igher is better
Random = 0.5, Perfect = 1.0

True Positive Rate (Sensitivity)

—— ROC Curve (AUC = 0.85)
-~ Random Classifier (AUC = 0.50)
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ROC Curves and AUC: Random Classifier

ROC Curve with AUC = 0.5
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AUC = 0.5: No discriminative ability (equivalent to random guessing)
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Evaluating Classification Models

ROC Curves and AUC: Decent Classifier

ROC Curve with AUC = 0.75

True Positive Rate

02 e AUC = 0.75

e == ROC curve (AUC = 0.75)
e ==+ Random classifier
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AUC = 0.75: Good discriminative ability
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ROC Curves and AUC: Excellent Classifier

ROC Curve with AUC = 0.99
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AUC = 0.99: Nearly perfect discrimination
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