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1 Introduction to Multiple Linear Regression

1.1 Extending to Multiple Predictors

While simple linear regression provides a powerful framework for modeling the relationship between
two variables, many biological phenomena are influenced by multiple factors simultaneously. For
instance, the total protein content of a cell is not determined solely by its size but also by its
metabolic rate, cell cycle stage, and various other factors.

Consider a scenario where we are studying protein synthesis in cells. In a simple linear regression
model, we might use only the cell size (in um?) as our predictor:

Protein Content = 8y + 31 x Cell Size + ¢
But this model captures only part of the biological story. What if we also measure each cell’s
metabolic rate, quantified by oxygen consumption? We could incorporate this additional predictor:

Protein Content = 5y + 51 x Cell Size 4+ B3 x Metabolic Rate + ¢

This extended model is an example of multiple linear regression, where we use more than one
predictor variable to explain the response. The general form for a multiple linear regression model
with p predictors is:

Y =By + prxy + Bora + ...+ Ppxp + €
Where:

e Y is the response variable we are trying to predict (protein content)
® Iy,1,...,x, are the predictor variables (cell size, metabolic rate, etc.)
e [ is the intercept term (the expected protein content when all predictors are zero)

® B1,02,..., 0y are the regression coefficients

e ¢ is the error term, assumed to be normally distributed with mean 0 and constant variance o2
The interpretation of the regression coefficients in multiple regression differs subtly but im-
portantly from simple regression. Each coefficient represents the expected change in the response
variable for a one-unit increase in the corresponding predictor, holding all other predictors constant.
This ”holding other variables constant” qualification is crucial - it means we are measuring the
unique contribution of each predictor after accounting for the effects of all others.
For instance, in our cell protein content example:



e [3; represents the expected change in protein content (in picograms) for a one-ym? increase in
cell size, for cells with the same metabolic rate

e (35 represents the expected change in protein content for a one-unit increase in metabolic rate,
for cells of the same size

This ability to isolate the effect of individual biological factors while controlling for others makes
multiple regression an exceptionally valuable tool for understanding complex relationships in multi-
variate biological data. It allows researchers to disentangle the various factors that simultaneously
influence cellular processes like protein synthesis, gene expression, or metabolic flux.

1.2 Geometric Representation

To develop intuition for multiple linear regression, it is valuable to understand its geometric interpre-
tation. In simple linear regression, our model corresponds to a line in a two-dimensional space: one
dimension for the predictor variable and one for the response variable. The regression coefficients
Bo and (1 determine the line’s intercept and slope, respectively.

When we add a second predictor, our geometric representation extends to three dimensions: one
for each predictor and one for the response. In this case, the regression model corresponds to a plane
in this three-dimensional space.

For instance, in our cellular protein content example with two predictors (cell size and metabolic
rate), the regression model:

Protein Content = 3y + 31 x Cell Size + 82 x Metabolic Rate + ¢

represents a plane in 3D space where:

e The z-axis represents protein content

e The z-axis represents cell size

e The y-axis represents metabolic rate

e [y is the z-intercept (height of the plane at the origin)
e (31 is the slope of the plane in the z-direction

e (35 is the slope of the plane in the y-direction

The coefficients tell us how the response variable changes as we move along the coordinate axes.
Moving one unit along the z-axis (increasing cell size by one unit while keeping metabolic rate
constant) changes the height of the plane by (; units. Similarly, moving one unit along the y-axis
(increasing metabolic rate by one unit while keeping cell size constant) changes the height by o
units.

For every point (z1,x2) in the predictor space, the model predicts a response value that cor-
responds to the height of the plane at that point. The residuals represent the vertical distances
between the observed data points and this plane.

When we extend to more than two predictors, we move beyond what we can directly visualize.
With p predictors, our model exists in a (p + 1)-dimensional space and corresponds to a hyperplane
— the higher-dimensional analog of a plane. While we cannot visualize hyperplanes in more than
three dimensions, the mathematical principles remain the same:

e (o is the intercept (value of Y when all predictors are zero)

e Each 3; represents the change in Y for a one-unit increase in z;, holding all other predictors
constant
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Figure 1: Geometric visualization of multiple linear regression with two predictors

e Residuals are the differences between observed values and the hyperplane

This geometric perspective provides insight into the fitting process as well. When we estimate the
regression coefficients using least squares, we are essentially finding the hyperplane that minimizes
the sum of squared vertical distances between the observed data points and the hyperplane — a direct
extension of the two-dimensional case.

Understanding this geometric representation helps clarify both the meaning of the regression
coefficients and the overall modeling approach. However, it is important to remember that the
true power of multiple regression lies in its ability to model complex relationships involving many
predictors, even when those relationships cannot be directly visualized.

1.3 Formulation

Moving from specific examples to a general formulation, we can express multiple linear regression in
a more compact and powerful form using linear algebra. This shift from scalar to matrix notation
not only simplifies our representation but also facilitates theoretical analysis and computational
implementation.

Let’s begin with our standard multiple regression model for the i-th observation:

Yi = Bo + Prxin + Boxio + - + Bpxip + &

Here, y; is the observed response value, x;; is the value of the j-th predictor for the i-th obser-
vation, and ¢; is the error term.
Using index notation, we can rewrite this as:

P
yi = Po + Zﬂj%‘j +&

Jj=1

Now, consider a dataset with n observations. We can organize our data as follows:

o y=(y1,y2,---,yn)T - an n x 1 vector of response values
o xj = (71j,22j,...,%n;)T - an n x 1 vector of values for the j-th predictor
e 3= (p1,P,... ,Bp)T - a p x 1 vector of regression coeflicients



T

e ¢ =(g1,62,...,6,)" -ann x 1 vector of error terms

To handle the intercept term [y, we can introduce a predictor that has the value 1 for all
observations. Let’s define x;0 = 1 for all 4, and include Sy in our vector of coefficients. Now our
model becomes:

p
Yi = Zﬁjxij + &
=0

We can organize all predictor values into a matrix X of size n x (p+ 1):

Ti0 T11 o Tip 1 211 - z1p

Too T2l Tap 1z -0 Ty
X = . . . . =

Tno Tp1 - Tnp 1 Tnl " Tnp

With these definitions, we can express our multiple regression model succinctly using matrix
notation:

y=XB+¢

This single equation encapsulates the entire system of n linear equations for our n observations.
If we expand it, we get:

Y1 1 z11 - 71 Bo €1
Y2 1 @y -0 9 B1 €2
= et
Yn 1 zpr - Tnp Bp En

The matrix formulation y = X3 + € is remarkably elegant and concise. It allows us to express a
complex system of equations in a single line and facilitates the application of powerful linear algebra
techniques. However, this elegance comes with a shift in mathematical tools - we must now work
with matrix operations rather than scalar algebra.

This brings both advantages and challenges. On one hand, matrix notation reveals structural
patterns and simplifies manipulations that would be cumbersome with individual equations. On
the other hand, understanding the model requires familiarity with matrix operations. For example,
the product X3 involves multiplying each row of X with the vector 3, producing a vector of fitted
values.

The assumptions of multiple linear regression can also be expressed concisely using matrix nota-
tion. For instance, the assumption that the errors have constant variance and are uncorrelated can
be written as:

Var(e) = 0’1

where I is the n x n identity matrix.
This matrix formulation provides a foundation for extending regression to more complex models
and for developing efficient computational methods for parameter estimation and inference.

1.4 Meet the Design Matrix

The matrix X that we introduced in the previous section plays a central role in regression analysis
and is known as the design matrix or model matrix. This matrix organizes all predictor variables



for all observations, with each row corresponding to an observation and each column corresponding
to a predictor variable (including the intercept).

1 T11 e T1p

1 To1 e T2p
X_ =

1 Tnl . Tnp

The first column of ones represents the intercept term. Each subsequent column contains the
values of a particular predictor variable across all observations. The design matrix serves as the
bridge between our data and the statistical model, encoding the structure of the predictor variables
that we believe influence the response.

Let’s consider some concrete examples of design matrices in biological contexts:

1.4.1 Example 1: Cell Protein Content Study

In our previous example investigating how cell size and metabolic rate affect protein content, we
might have data from 6 cells:

Cell | Protein Content (pg) | Size (um?®) | Metabolic Rate
1 15.2 120 3.2
2 10.7 95 2.8
3 18.3 135 3.5
4 12.9 105 3.0
) 21.1 150 3.9
6 14.5 110 3.1

The design matrix for this dataset would be:

1 120 3.2
1 95 28
1 135 3.5
X = 1 105 3.0
1 150 3.9
1 110 3.1

This 6 x 3 matrix contains the predictor values for each of our 6 observations. The response
vector would be:

15.2
10.7
| 183
Y= 129
21.1
14.5

1.4.2 Example 2: Gene Expression Study

Consider a study examining how gene expression (measured by mRNA levels) is affected by tem-
perature and exposure time in a cell culture. The researchers collect data under various conditions:



Sample | Expression Level | Temperature (°C) | Exposure Time (h)
1 25.3 37.0 6
2 18.7 37.0 3
3 32.6 39.5 6
4 224 39.5 3
5 15.8 34.5 6
6 10.2 34.5 3
7 28.9 38.0 9
8 20.1 36.0 9

The design matrix would be:

37.0
37.0
39.5
39.5
34.5
34.5
38.0
1 360 9

= e e e
O© W WO W™

These examples illustrate design matrices with continuous predictors. In practice, design matrices
can become more complex when we include:

e Transformations of variables (e.g., log transformations or polynomials)
e Interaction terms between predictors

e Categorical predictors (requiring dummy variable encoding)

The careful construction of the design matrix is a critical step in regression modeling, as it
determines the form of the relationship we are assuming between the predictors and the response.
By examining the structure of X, we can understand the model being fitted and its underlying
assumptions.

Additionally, the properties of the design matrix have important implications for estimation. For
example:

e The columns of X must be linearly independent for the model to be identifiable

e The condition number of XTX affects the stability of parameter estimation

e The rank of X determines the degrees of freedom available for estimation

In subsequent sections, we’ll see how the design matrix is used in parameter estimation and
inference, serving as the cornerstone of the regression analysis framework.

1.5 Parameter Estimation

Just as in simple linear regression, our goal in multiple regression is to estimate the unknown
parameters that best describe the relationship between our predictors and the response variable.
The method of least squares provides a principled approach to this estimation problem.

When working with a single predictor, we found values of 5y and f; that minimized the sum of
squared residuals:



n

RSS = (yi — (Bo + rz:)?

i=1
For multiple regression, we extend this approach by minimizing:
2
n p
RSS=> [wi—[Bo+D_ Bz
i=1 j=1

Using our matrix notation, we can express this objective function more elegantly. Since the
vector of residuals is € =y — X3, the sum of squared residuals becomes:

RSS(8) = efe = (y - XB)T(y — XB)

This formulation generalizes the least squares approach from simple to multiple regression in
a natural way. In both cases, we seek to minimize the squared Euclidean distance between the
observed responses and the predictions from our model.

To find the values of 3 that minimize this expression, we need to use calculus - specifically, we
must take the derivative of the RSS with respect to the vector 3 and set it equal to zero. This will
lead us to the normal equations, which we’ll explore in the next section.

1.6 Normal Equations

To find the minimum of the RSS function, we need to differentiate it with respect to the vector of
parameters 3 and set the result equal to zero. This requires us to work with matrix calculus, which
extends the familiar rules of scalar calculus to matrices and vectors.

Starting with our RSS function:

RSS(B) = (y — XB)" (y — XB)

We can expand this expression:

RSS(8) = (y — XB8)" (y — XB)
=yTy —y"XB - p"X"y + B'XTXp

Note that y? X3 is a scalar (specifically, a 1 x 1 matrix), so it equals its transpose BTXTy. This
allows us to simplify:

RSS(B) =yTy — 28" X"y + BTXTXp3

Now, we take the partial derivative with respect to 3. Using the rules of matrix differentiation:
1. 3%5y"y = 0 (constant term) 2. (287 X"y) = 2X"y 3. 5 (8"X"XpB) = 2X"X3
Therefore:

ORSS
= —0-2XTy +2XTX
93 y+ B

Setting this equal to zero:

—2XTy +2XTX3 =0



Dividing by 2 and rearranging:

XT'X3=X"Ty
These are the normal equations for multiple linear regression. They represent a system of p 4+ 1

linear equations in p 4+ 1 unknowns (the elements of 3).
The normal equations have several important properties:

e They provide a necessary condition for the minimizer of the RSS function.

e If the columns of X are linearly independent (i.e., X has full column rank), then X7X is
positive definite and invertible, ensuring a unique solution.

e If X does not have full column rank (e.g., when we have perfect multicollinearity among pre-
dictors), then the normal equations have infinitely many solutions, and additional constraints
are needed to obtain a unique solution.

The normal equations have a clear geometric interpretation as well: they ensure that the residual
vector y — X3 is orthogonal to the column space of X. In other words, the residuals cannot be
further reduced by adjusting the coefficients in any direction within the model’s capabilities.

1.7 Formula for the Solution

When the design matrix X has full column rank, we can solve the normal equations X7"X3 = XTy
by multiplying both sides by (X7X)™!:

B=(X"X)"'X"y
This formula gives the least squares estimator for the regression coefficients. The expression
XTX isa (p+1) x (p+ 1) matrix of sums of squares and cross-products of the predictor variables,
while X7y is a (p+ 1) x 1 vector of sums of products between predictors and the response.
The least squares estimator B possesses several important statistical properties when the standard
regression assumptions hold:

e Unbiasedness: F[3] = 3, meaning the estimator is correct on average.
e Consistency: As the sample size increases, B converges in probability to 3.

e Efficiency: Among all unbiased linear estimators, B has the smallest variance (Gauss-Markov
theorem).

e Normality: If the errors ¢; are normally distributed, then f)’ follows a multivariate normal
distribution:

B~N(B,0*(XTX)™)

This expression generalizes what we saw in simple linear regression. For the simplest case with
one predictor and an intercept, where:

1 I

1 T2
X = )

1 =z,

The formula ﬁ = (XTX)~1XTy yields exactly the familiar expressions:



B = Sy (@i — ) (yi — 9)
Doy (wi — T)?
BO =y- Blf

This demonstrates how the matrix approach provides a unified framework that encompasses both
simple and multiple regression as special cases.

The geometric interpretation of this solution is that ,é' gives the coefficients of the hyperplane
that minimizes the sum of squared vertical distances between the observed data points and the
hyperplane. In the n-dimensional space of observations, XB represents the orthogonal projection of
y onto the column space of X — the space of all possible fitted values that can be achieved with our
model.

In the next sections, we will explore how to make inference about these estimated coefficients
and how to assess the overall quality of the regression model.

1.8 Linear Regression in the Observation Space: A Linear Algebra Per-
spective

While we’ve discussed regression as fitting a hyperplane in the predictor-response space, there’s
another powerful geometric perspective: viewing regression in the n-dimensional observation space.
This approach reveals fundamental properties of the least squares solution.

1.8.1 Two Different Geometric Spaces

it is important to distinguish between two geometric views of regression:
e Predictor-Response Space: Our earlier visualization where we fit a (p)-dimensional hyper-

plane in a (p + 1)-dimensional space (with p predictors and 1 response dimension). Each axis
represents a variable.

e Observation Space: The n-dimensional space where each axis represents an observation. In
this space, vectors have n components, one for each data point.

The observation space perspective provides deeper insights into the mathematical structure of
regression.

1.8.2 Vectors in Observation Space
In the n-dimensional observation space:
)T

e The response vector y = (y1,¥2,.-.,%s)" 18 a single point

e Each column of X is a vector in this space
e The fitted values y = Xﬁ represent another point

The column space of X is the subspace spanned by its columns - all possible linear combinations
of the predictor vectors. This is a (p+1)-dimensional subspace within the n-dimensional observation
space.



Figure 2: Orthogonal projection in observation space for a case with 3 samples and 2 features. The
response vector y is projected onto the column space of X, yielding the fitted values y. The residual
vector e is perpendicular to the column space. In this case, X has two columns, corresponding to
"Feature 1”7 and ”Feature 2”.

1.8.3 Least Squares as Orthogonal Projection

The least squares solution has a remarkable interpretation: y is the orthogonal projection of y onto
the column space of X.
This means:

e y is the closest point in the column space to y (minimizing Euclidean distance)
e The residual vector e = y — y is orthogonal to every vector in the column space

e This orthogonality gives us X”'e = 0, which leads directly to the normal equations

1.8.4 The Projection Matrix
The hat matrix H = X(X7X)~!X” mathematically implements this projection:

10



y =Hy
As a projection matrix, H has several important properties:
e It is idempotent: H? = H (applying the projection twice is the same as applying it once)
e It is symmetric: H' = H
e [ts eigenvalues are either 0 or 1
e Its trace equals p + 1, the dimension of the column space

The complementary projection matrix M = I — H projects onto the orthogonal complement of
the column space:

e =My

1.8.5 Why This Perspective Matters

This geometric understanding reveals why least squares has certain properties:

e The residuals sum to zero when the model includes an intercept (because the residual vector
is orthogonal to the constant vector)

e The residuals are uncorrelated with all predictors (due to orthogonality with the column space)

e Adding more predictors never increases the residual sum of squares (as the column space only
grows larger)

Moreover, this perspective connects regression to broader concepts in linear algebra and provides
the foundation for advanced topics.

1.9 Interpreting Regression Coeflicients

In multiple regression, the interpretation of coefficients requires careful attention to the presence
of other variables in the model. Each coefficient represents the expected change in the response
variable for a one-unit increase in the corresponding predictor, while holding all other predictors
constant.

1.9.1 The Ceteris Paribus Interpretation

The phrase "holding all other variables constant” (or ceteris paribus in Latin) is crucial in multiple
regression. It distinguishes the interpretation from simple regression, where no other predictors are
involved.

For our model Y = By + 1 X1 + foXo + -+ BpXp + €

e [y (intercept): The expected value of Y when all predictors equal zero. This may not always
have a meaningful interpretation, especially if zero values for predictors are outside their
realistic range.

e [3; (slope): The expected change in Y for a one-unit increase in X, while holding all other
predictors constant. Mathematically, this can be expressed as:
OE[Y|X1, X, ..., X,)]
0X;

B =

11



1.9.2 Concrete Examples

To illustrate these interpretations, let’s revisit our cellular protein content example with the model:

Protein Content = Sy + f1 x Cell Size + 52 x Metabolic Rate + ¢

If we estimate Bo = 2.1, Bl = 0.08, and 32 = 2.5, we interpret:

° BO = 2.1: The expected protein content is 2.1 picograms for a cell with zero size and zero
metabolic rate. This is not biologically meaningful since cells cannot have zero size.

° Bl = 0.08: For cells with the same metabolic rate, each additional cubic micrometer of cell
size is associated with an expected increase of 0.08 picograms in protein content.

° Bg = 2.5: For cells of the same size, each additional unit of metabolic rate is associated with
an expected increase of 2.5 picograms in protein content.

1.9.3 Conditional vs. Marginal Effects

A key distinction in multiple regression is between conditional and marginal effects:

e Conditional effect (captured by f;): The effect of X; on Y after controlling for other

predictors in the model.

e Marginal effect (from simple regression of ¥ on X alone): The overall association between

X; and Y without controlling for other variables.

These effects can differ substantially, especially when predictors are correlated. For example,
if cell size and metabolic rate are positively correlated, the marginal effect of cell size on protein
content (without controlling for metabolic rate) would likely be larger than its conditional effect

(controlling for metabolic rate).

Marginal Effect of Cell Size

— B=135

Protein Content (y)

Cell Size (x1)

(a) Marginal effect (simple regression) of x1 on y

Protein Content (y)

Conditional Effect of Cell Size

Metabolic Rate (x2)
® Low

® Medium ®
High
— B =066

Cell Size (x1)

(b) Conditional effect of x1 after controlling for xa

Figure 3: Comparison of marginal effects (simple regression) and conditional effects (multiple regression)

This figure illustrates how the slope of the relationship between X; and Y changes when we
control for another predictor X5. The steeper line represents the marginal effect (simple regression),
while the flatter line represents the conditional effect (multiple regression).



1.9.4 Standardized Coefficients

In multiple regression, predictor variables often have different units of measurement, making direct
comparison of their coefficients challenging. For instance, in a model predicting enzyme activity,
temperature might be measured in degrees Celsius while substrate concentration is in millimolar
units. The coefficient for temperature might be 0.25 activity units per degree, while the coefficient
for concentration might be 2.5 activity units per millimolar. Which variable has a ”stronger” effect?

Standardized coefficients (also called beta coefficients) address this issue by converting all vari-
ables to a common scale, allowing for direct comparison of their relative influences on the response
variable.

Definition and Calculation To compute standardized coefficients, we standardize both the pre-
dictors and the response variable by subtracting their means and dividing by their standard devia-
tions:

Y -Y X;
Iy = ) ZXJ‘:Q
Sy ij

We then perform the regression using these standardized variables:

ZY = ﬂ{)k +6TZX1 +B;ZX2 + - +5;ZXP +€*

The resulting coefficients 3 are the standardized regression coefficients. They can also be cal-
culated directly from the unstandardized coefficients using:

x _ p 5X;
ﬁ] - 6] SY
where 3; is the unstandardized coefficient, sx; is the standard deviation of predictor X, and sy

is the standard deviation of the response variable.

Interpretation Standardized coefficients represent the expected change in the response variable
(in standard deviation units) for a one standard deviation increase in the predictor, holding all other
predictors constant. For example, a standardized coefficient of 0.5 for a predictor means that a one
standard deviation increase in that predictor is associated with a 0.5 standard deviation increase in
the response variable, controlling for other predictors.

This standardization allows for direct comparison of the ”strength” or ”importance” of different
predictors in the model, regardless of their original units of measurement.

This figure illustrates how standardized coefficients can reveal different patterns of variable im-
portance compared to unstandardized coefficients. In this example, the variable pH has the largest
unstandardized coefficient (in absolute value) but not the largest standardized coefficient, indicating
that its apparent importance was partly due to its scale of measurement.

Advantages and Limitations Standardized coefficients make it easier to compare predictors
measured on different scales, helping researchers identify which variables have the strongest statistical
relationships with the outcome. This is particularly valuable when comparing results across different
studies that may use different measurement units or methods.

However, these coefficients have important limitations. Their interpretation becomes more ab-
stract since they’re expressed in standard deviation units rather than natural units. They also
depend on the sample’s variability, meaning they can change across different datasets even when
the underlying relationship remains constant. Perhaps most importantly, standardized coefficients
reflect statistical associations rather than biological significance - a variable might have a large stan-
dardized coefficient simply because it is measured with less error, not because it is more biologically

13



Coefficient Value

X Unstandardized Standardized
Variable Coefficient ( SE) Coefficient ( SE)
Temperature (°C) 4,207 + 0.599 0.276 = 0.039
Concentration (mM) 0.016 = 0.015 0.043 + 0.039
Cell Diameter (um) 7.625 = 0.373 0.803 + 0.039
pH -25.125 * 3.682 -0.271 + 0.040
Reaction Time (min) 0.414 = 0.078 0.210 = 0.040

(a) Comparison table of both coefficient types

Figure 4: Comparison table of unstandardized and standardized coefficients

Unstandardized Coefficients Standardized Coefficients
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(a) Unstandardized regression coefficients (b) Standardized regression coefficients

Figure 5: Comparison of unstandardized (original) and standardized regression coefficients
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meaningful. They also don’t account for non-linearities or correct for multicollinearity between
predictors.

Application in Biological Research Standardized coefficients are valuable in biological research
when comparing variables with different units or when synthesizing results across studies with differ-
ent measurement approaches. They reveal which factors have the strongest statistical associations
with outcomes - for example, showing that age has a stronger relationship with bone mineral den-
sity than calcium intake. However, these statistical relationships don’t necessarily reflect biological
importance; a variable might show a strong association simply because it is measured more pre-
cisely. Meaningful interpretation always requires integrating these statistical results with domain
knowledge about the biological system under study.

2 Model Comparison in Multiple Regression
2.1 Assessing Model Fit: R?> and Adjusted R?

When evaluating regression models, we need measures to assess how well our model fits the data.
The coefficient of determination, R2, is a widely used metric, but it has limitations in the context
of multiple regression. This leads us to the adjusted R?, which addresses some of these limitations.

2.1.1 Coefficient of Determination (R?)

The coefficient of determination, R?, quantifies the proportion of variance in the response variable
that is explained by the regression model:

where:

e RSS is the residual sum of squares (unexplained variation)

e TSS is the total sum of squares (total variation in Y)

e ¢, are the fitted values from the regression model

e 7 is the mean of the response variable

R? ranges from 0 to 1, with:

e R? = 0: The model explains none of the variability in the response
e R? = 1: The model explains all the variability in the response

In simple linear regression, R? equals the square of the Pearson correlation coefficient between
X and Y. In multiple regression, it can be interpreted as the square of the correlation between the
observed values and the fitted values.

While R? provides a seemingly intuitive measure of fit, it has a critical flaw in the multiple
regression context: it always increases (or at least never decreases) when additional predictors are
added to the model, regardless of whether these predictors are actually related to the response.

The figure illustrates how R? tends to increase as more predictors are added to the model, even
when those predictors are random noise. This property makes R? problematic for comparing models
with different numbers of predictors, as it will always favor more complex models.
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2.1.2 Adjusted R?
To address this limitation, the adjusted R? introduces a penalty for including additional predictors:

. RSS/(n—p—1) n—1
Adjusted R2 =1 — — /" % ) 1 _ _° ~
juste TSS/(n—1) n—p-—1
where:

e 1 is the number of observations

e p is the number of predictors (excluding the intercept)

The adjusted R? balances the goodness of fit against model complexity. Unlike the regular R2,
the adjusted R? can decrease when a predictor is added that doesn’t improve the model enough to
justify the loss of a degree of freedom.

R? Always Increases with More Predictors Adjusted R? Decreases with Non-informative Predictors
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Figure 6: Comparison of R? and adjusted R? for model selection

This figure shows how the adjusted R? can actually decrease when non-informative predictors
are added to the model, making it a more reliable metric for model selection.

2.1.3 Interpretation and Limitations

While the adjusted R? is useful for comparing models with different numbers of predictors, it has
several limitations:

e Like R?, it assumes the model is correctly specified (e.g., linear relationship, homoscedasticity).
e It doesn’t provide a formal hypothesis test for model comparison.
e It doesn’t account for multicollinearity, transformations, or interaction terms.

e Adding a variable that is only slightly correlated with the dependent variable can make the
adjusted R? go up, even if it is not materially important.

In biological research, adjusted R? is best used as one of several tools for model assessment,
alongside other metrics, residual analysis, and domain knowledge. Different fields have different
standards for what constitutes a ”good” R? or adjusted R? value.
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2.2 Comparing Nested Models

When working with multiple predictors, researchers often need to determine which variables con-
tribute meaningfully to explaining the response. A fundamental approach to this question is nested
model comparison, where we test whether adding certain variables significantly improves model fit.

Two models are considered "nested” when one model (the restricted model) contains a subset of
the predictors in the other model (the unrestricted model). The statistical question becomes: Does
the addition of extra predictors in the unrestricted model provide a significantly better fit to the
data?

Consider a study examining factors affecting enzyme activity in a biochemical reaction. Re-
searchers measure:

e Y: Enzyme activity (nmol/min)

e X;: Substrate concentration (mM)
o X5: Temperature (°C)

e X5: pH

e X,: Ionic strength (mM)

The researchers want to determine if temperature and pH (variables Xo and X3) significantly
affect enzyme activity after accounting for substrate concentration and ionic strength. This leads to
a comparison between:

e Restricted model: Y = Gy + 51 X1 + B4 X4 + ¢
e Unrestricted model: Y = By + 1 X1 + PoXo + B3 X3+ BaXs+ €

The null hypothesis for this comparison is:
Ho:B2=085=0

This hypothesis states that temperature and pH have no effect on enzyme activity after control-
ling for substrate concentration and ionic strength.

2.3 Likelihood Ratio Test for Nested Models

To test this hypothesis, we can use the likelihood ratio test (LRT), which compares the maximum
likelihood achieved by each model. The LRT is especially valuable because it generalizes beyond
ordinary least squares to any maximum likelihood framework, including generalized linear models
and other statistical approaches.

The test statistic for the likelihood ratio test is:

LR = 2(€unrestricted - Erestricted)

Where Cynrestricted and Crestricted are the log-likelihoods of the unrestricted and restricted mod-
els, respectively. Under the null hypothesis, this LR statistic asymptotically follows a chi-square
distribution with degrees of freedom equal to the difference in the number of parameters between
the two models.

In the context of linear regression with normally distributed errors, the log-likelihood is directly
related to the residual sum of squares (RSS). The relationship is:

RSS
202

(= —g In(270?) —
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Where o2 is the error variance. When comparing nested models, the LR statistic can be expressed
as:

LR =n-ln ( RSSrestricted )

RSSunrestri(:ted

This formulation reveals how model comparison inherently balances improvement in fit against
model complexity.

2.4 Applying the Likelihood Ratio Test

Returning to our enzyme activity example, let’s examine how the likelihood ratio test works in
practice.
Suppose researchers collected data from 50 experimental runs with the following results:

Model Parameters | RSS | df | Log-likelihood
M1: Xy, Xy 3 2450 | 47 -173.6
M2: X1, X5, X35, Xy 5 1820 | 45 -165.2

The likelihood ratio test statistic can be calculated as:
LR =2((—165.2) — (—173.6)) = 2(8.4) = 16.8
Alternatively, using the RSS formulation:

2450
LR=50-In(—> ) =50-1In(1.346) ~ 14.
R =50 n<1820) 50 - In(1.346) 85

With 2 degrees of freedom (the difference in parameters between models), we compare this to a
chi-square distribution. The critical value at o = 0.05 with 2 df is 5.99. Since our calculated LR
value exceeds this threshold, we reject the null hypothesis and conclude that temperature and pH
significantly improve the model’s fit.

This approach can be incorporated into model-building strategies:

1. Begin with predictors supported by prior knowledge
2. Add variables in meaningful groups, using LR tests to evaluate their contribution

3. Examine individual coefficients within significant groups

The LR test provides a principled framework for comparing nested models and extends naturally
to other maximum likelihood frameworks, including generalized linear models and non-linear models
often used in biological research.

3 ANOVA in the Regression Framework

3.1 Introduction

In the lecture on statistical tests, we learned how to compare two groups using methods like the t-test.
But what if we have more than two groups? How do we compare multiple means simultaneously?

One approach could be to test all possible pairs of groups, but this would lead to multiple
hypothesis tests and a higher risk of false positives. A more meaningful question might be whether
all the group means are equal. This is the fundamental idea behind Analysis of Variance (ANOVA),
a statistical method used to compare means across multiple groups.
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3.2 Traditional ANOVA Approach

ANOVA is traditionally presented as a method that partitions the total variation in the data into
components attributed to different sources. For instance, when comparing multiple groups, we
decompose the total sum of squares (SST) into:

e Between-group sum of squares (SSB): Variation due to differences among group means
e Within-group sum of squares (SSW): Variation due to differences within each group

This gives us the fundamental ANOVA identity: SST = SSB + SSW.
The test statistic in ANOVA is the F-ratio:

_ Between-group variation/(k — 1)  MSB
~ Within-group variation/(n — k) ~ MSW

Where:

e MSB is the mean square between groups (SSB divided by its degrees of freedom)
e MSW is the mean square within groups (SSW divided by its degrees of freedom)
e k is the number of groups

e 1 is the total number of observations

Under the null hypothesis that all group means are equal, this F-statistic follows an F-distribution
with (k—1,n—k) degrees of freedom. Large values of F suggest that between-group variation exceeds
what we would expect by chance, leading us to reject the null hypothesis.

3.3 ANOVA as a Special Case of Regression

Although commonly presented as a separate technique, ANOVA is actually a special case of linear
regression with categorical predictors.

Consider a researcher studying the effects of different strains of a bacterial species on growth
rates when stimulated with a particular nutrient. The researcher has four different strains (A, B, C,
and D) and measures bacterial growth rate after 24 hours for multiple samples in each group.

The fundamental question is: Does the strain matter? In other words: Do any of these strains
exhibit different growth responses when exposed to this nutrient?

Rather than performing six separate pairwise comparisons between all possible pairs of strains,
ANOVA tests the single null hypothesis:

Ho:pa=pp=pc=pp

where p; represents the population mean growth rate for strain 1.
We can express this scenario as a regression model with categorical predictors using dummy
variables. If we designate strain A as our reference category, the model becomes:

Yi = Bo+ B1Xpi + B2 Xci + B3 Xpi tei
where:
e Y is the bacterial growth rate for the ith observation
e Xp; equals 1 if the ith sample was strain B, 0 otherwise

e X, equals 1 if the ith sample was strain C, 0 otherwise
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e Xp; equals 1 if the ith sample was strain D, 0 otherwise

In this formulation:

e [y represents the mean growth rate for strain A

e [3; represents the difference between mean growth rates of strains B and A
e [ represents the difference between mean growth rates of strains C and A
e (33 represents the difference between mean growth rates of strains D and A

Our null hypothesis can now be rewritten as Hy : f1 = f2 = f3 = 0, which we can test using the
principles of multiple linear regression.

3.4 Testing in ANOVA Using Model Comparison

In the regression framework, the ANOVA null hypothesis becomes a question of whether the model
with group indicators fits significantly better than a model with just an intercept. This can be
approached as a nested model comparison.

We can formulate this as a comparison between two nested models:

o Restricted model: Y; = By + ¢; (all group means equal)
e Unrestricted model: Y; = B + Zf;ll B; X ;i + €i (potentially different means)

Initially, we can evaluate this using a chi-squared test. Under certain assumptions, the difference
in deviance between nested models follows a chi-squared distribution:

2

X = —2(£restricted - Eunrestricted)

Where ¢ represents the log-likelihood of each model. With normally distributed errors, this can
be expressed in terms of the residual sum of squares:

2 _ n-ln RSSrestricted
X RSSunrestrict@d

This chi-squared statistic has k — 1 degrees of freedom, representing the difference in parameters
between the models.

Interestingly, this test is equivalent to the traditional F-test used in ANOVA. The F-statistic for
this model comparison is:

F= RSSTestricted - Rssunrestricted n—k
B Rssunrestricted k-1

Where:

e RSS,csiricteq 18 the residual sum of squares from the intercept-only model

e RSSynrestricted 1s the residual sum of squares from the model with group indicators
e 1 is the total number of observations

e k is the number of groups
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3.5 Connecting the Two Frameworks - (Optional!)

The equivalence between traditional ANOVA and the regression framework can be demonstrated
mathematically:

e RSS;cstrictea = SST (Total sum of squares)
e RSSunrestricted = SSW (Within-group sum of squares)
e RSS;cstricted — RSSunrestricted = SSB (Between-group sum of squares)

The F-statistic in regression model comparison:

(RSSTestricted - RSSunrestricted)/(k - 1) . SSB/(]C — 1) - MSB
Rssunrestricted/(n - k) N SSW/(TL — k’) N MSW
This is identical to the traditional ANOVA F-ratio, confirming that both approaches test the

same hypothesis.
For the likelihood ratio test:

F=

Rssres ricte
LR = 2(£unrestricted - grestricted) =n-Iln (tt(i)

Rssunrestricted
The relationship between the LR statistic and F-statistic can be established through Taylor

approximation:
n (RSSttd> . <1+ SSB) w 39B

Rssunrestricted SSW - SSW
Therefore:
SSB k—1
LRxn-geg=n =g T

This demonstrates that under the null hypothesis:

e | follows an F-distribution with (k — 1,n — k) degrees of freedom

e LR follows a chi-square distribution with k£ — 1 degrees of freedom
k—1

e As n increases, — - I approximates a chi-square distribution with & — 1 degrees of freedom

These relationships confirm that ANOVA is mathematically equivalent to testing for the signifi-
cance of categorical predictors in a regression model.

21



	Introduction to Multiple Linear Regression
	Extending to Multiple Predictors
	Geometric Representation
	Formulation
	Meet the Design Matrix
	Example 1: Cell Protein Content Study
	Example 2: Gene Expression Study

	Parameter Estimation
	Normal Equations
	Formula for the Solution
	Linear Regression in the Observation Space: A Linear Algebra Perspective
	Two Different Geometric Spaces
	Vectors in Observation Space
	Least Squares as Orthogonal Projection
	The Projection Matrix
	Why This Perspective Matters

	Interpreting Regression Coefficients
	The Ceteris Paribus Interpretation
	Concrete Examples
	Conditional vs. Marginal Effects
	Standardized Coefficients


	Model Comparison in Multiple Regression
	Assessing Model Fit: R2 and Adjusted R2
	Coefficient of Determination (R2)
	Adjusted R2
	Interpretation and Limitations

	Comparing Nested Models
	Likelihood Ratio Test for Nested Models
	Applying the Likelihood Ratio Test

	ANOVA in the Regression Framework
	Introduction
	Traditional ANOVA Approach
	ANOVA as a Special Case of Regression
	Testing in ANOVA Using Model Comparison
	Connecting the Two Frameworks - (Optional!)


