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Simple Linear Regression Analysis

From Joint Distributions to Regression Models

Linear regression can be viewed from a probabilistic perspective, where we model the
conditional distribution of one variable given another, typically assuming a Gaussian
error distribution.
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Simple Linear Regression Analysis

The Linear Model: A Probabilistic Perspective

The core insight of linear regression is modeling the conditional distribution of Y given
X as a normal distribution with linearly changing mean:

Y |X = x ∼ N (β0 + β1x , σ
2)

This tells us:

For any fixed value of X=x, Y follows a normal distribution

The mean of this distribution is a linear function: β0 + β1x

The variance remains constant: σ2
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Simple Linear Regression Analysis

The Data Generation Process in Linear Regression

Linear regression assumes data is generated from a deterministic component plus
random noise:

Yi = β0 + β1Xi + εi , where εi ∼ N (0, σ2)
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Simple Linear Regression Analysis

Real Data: Deterministic Trend + Random Noise
When we observe real data, we see the combination of the deterministic trend and
random noise:
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Simple Linear Regression Analysis

Interpretation Through Conditional Expectations

The regression model can be understood through conditional expectations:

E [Y |X = x ] = β0 + β1x

The conditional expectation of a random variable Y given another random variable X
is defined as:

E [Y |X ] =

∫
yfY |X (y |x)dy

The parameters have clear interpretations:

β0 (intercept): The expected value of Y when X=0

β1 (slope): The change in the expected value of Y for a one-unit increase in X
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Simple Linear Regression Analysis

Residuals in Linear Regression

Residuals are the differences between observed and predicted values:

ε̂i = yi − ŷi = yi − (β̂0 + β̂1xi )

30 40 50 60 70
Feature X

80

90

100

110

120

Re
sp

on
se

 Y

Residuals in Linear Regression

20 15 10 5 0 5 10 15 20
Residual Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

Histogram of Residuals

Gioele La Manno BIOENG-210 / LECTURE 5 March 2025 7 / 35



Simple Linear Regression Analysis

When Model Assumptions Are Violated

Non-random patterns in residuals can indicate model inadequacy or violated
assumptions.

20 30 40 50 60
Feature X

80

100

120

140

160

Re
sp

on
se

 Y

Residuals for Two Clouds Dataset

40 30 20 10 0 10 20 30
Residual Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

Histogram of Residuals for Two Clouds Dataset

Gioele La Manno BIOENG-210 / LECTURE 5 March 2025 8 / 35



Simple Linear Regression Analysis

Parameter Estimation: Maximum Likelihood

The likelihood function for the regression model is:

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − (β0 + β1xi ))

2

2σ2

)
Taking the logarithm and finding the values of β0 and β1 that maximize this expression
leads to the same results as ordinary least squares.

Gioele La Manno BIOENG-210 / LECTURE 5 March 2025 9 / 35



Simple Linear Regression Analysis

Derivation of Least Squares Estimators
Starting with the log-likelihood function:

ℓ(β0, β1, σ
2) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(yi − (β0 + β1xi ))
2

Setting partial derivatives to zero:

∂ℓ

∂β0
=

1

σ2

n∑
i=1

(yi − β0 − β1xi ) = 0

∂ℓ

∂β1
=

1

σ2

n∑
i=1

xi (yi − β0 − β1xi ) = 0

β0 = ȳ − β1x̄

β̂1 =

∑n
i=1 xiyi − nx̄ ȳ∑n
i=1 x

2
i − nx̄2

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
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Simple Linear Regression Analysis

Least Squares Estimation

The maximum likelihood estimates are:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

These formulas show that:

The slope estimate is the ratio of the covariance between X and Y to the variance
of X

The intercept estimate ensures the regression line passes through the point (x̄ , ȳ)
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Simple Linear Regression Analysis

The Least Squares Principle

Ordinary least squares finds the line that minimizes the sum of squared vertical
distances between observed points and the line.
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Simple Linear Regression Analysis

Properties of the Regression Coefficient Estimates

The regression coefficient estimates have important statistical properties:

They are unbiased: E [β̂0] = β0 and E [β̂1] = β1

They follow a normal distribution in repeated sampling

Their precision depends on sample size, predictor variability, and error variance

The sampling distribution of the slope estimator is:

β̂1 ∼ N
(
β1,

σ2∑n
i=1(xi − x̄)2

)
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Simple Linear Regression Analysis

Deriving the Sampling Distribution of β̂1 - Part 1

Starting with the formula for β̂1 and substituting the model equation:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

Substituting yi = β0 + β1xi + εi :

yi − ȳ = (β0 + β1xi + εi )− (β0 + β1x̄ + ε̄)

= β1(xi − x̄) + (εi − ε̄)

Therefore:

β̂1 =

∑n
i=1(xi − x̄)[β1(xi − x̄) + (εi − ε̄)]∑n

i=1(xi − x̄)2

= β1 +

∑n
i=1(xi − x̄)(εi − ε̄)∑n

i=1(xi − x̄)2
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Simple Linear Regression Analysis

Deriving the Sampling Distribution of β̂1 - Part 2

Since
∑n

i=1(xi − x̄) = 0, we can simplify:

β̂1 = β1 +

∑n
i=1(xi − x̄)εi∑n
i=1(xi − x̄)2

The term
∑n

i=1(xi − x̄)εi follows a normal distribution with:

E

[
n∑

i=1

(xi − x̄)εi

]
= 0

Var

[
n∑

i=1

(xi − x̄)εi

]
= σ2

n∑
i=1

(xi − x̄)2

Therefore:

β̂1 ∼ N
(
β1,

σ2∑n
i=1(xi − x̄)2

)
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Simple Linear Regression Analysis

Hypothesis Testing for Regression Coefficients

To test whether there’s a significant linear relationship between X and Y, we test
H0 : β1 = 0 against Ha : β1 ̸= 0.
The test statistic is:

t =
β̂1

SE (β̂1)

The standard error of the slope coefficient is calculated as:

SE (β̂1) =

√
σ̂2∑n

i=1(xi − x̄)2

where σ̂2 is the estimated error variance:

σ̂2 =
1

n − 2

n∑
i=1

(yi − β̂0 − β̂1xi )
2

Under the null hypothesis, this follows a t-distribution with n-2 degrees of freedom.
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Simple Linear Regression Analysis

Testing Significance: Two Examples

Let’s consider two examples to illustrate the concept of significance testing in linear
regression.
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Simple Linear Regression Analysis

Hypothesis Testing Results
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Simple Linear Regression Analysis

Confidence Intervals for Regression Parameters

To quantifying the uncertainty in these estimates. Confidence intervals provide a range
of plausible values for the true parameters, accounting for sampling variability.

Definition

A confidence interval is a range of values constructed from sample data that is likely to
contain the true population parameter with a specified level of confidence.

A 100(1− α)% confidence interval for the slope parameter β1 is:

β̂1 ± tα/2,n−2 × SE (β̂1)

These intervals quantify the precision of our estimates. Where

SE (β̂0) = σ̂
√

1
n + x̄2∑n

i=1(xi−x̄)2
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Simple Linear Regression Analysis

Interpreting Confidence Intervals

The correct interpretation of a 95% confidence interval:

If we were to repeat our sampling process many times, and calculate a 95%
confidence interval from each sample, approximately 95% of these intervals
would contain the true parameter value.

The width of the confidence interval reflects estimation precision and depends on:

Sample size (n): Larger samples yield narrower intervals

Error variance (σ2): Lower variance gives narrower intervals

Variability in the predictor: Greater variability leads to more precise estimates

Confidence level (1-α): Higher confidence requires wider intervals
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Simple Linear Regression Analysis

Prediction in Regression Analysis

Beyond parameter estimation, regression models are valuable for prediction:

Definition

The conditional mean response is the expected value of Y given X = x0, estimated
as ŷ0 = β̂0 + β̂1x0. Also called the ”fitted value” or ”predicted value”.

Definition

A prediction for an individual response is an estimate of a single future observation
of Y when X = x0.

Key distinction:

Conditional mean response estimates the average Y for a given X
Individual prediction accounts for both the regression line and random error
Individual observations naturally vary around the regression line according to the
error distribution—typically N (0, σ2)
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Simple Linear Regression Analysis

Confidence Intervals for Mean Response

Confidence intervals for the mean response quantify uncertainty about average Y
values:

ŷ0 ± tα/2,n−2 × σ̂

√
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

Properties of these intervals:

Uncertainty is smallest when x0 = x̄ (center of data)

Uncertainty increases as x0 moves away from x̄

Forms a ”band” around the regression line

Width reflects precision of our estimate of the true regression line
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Simple Linear Regression Analysis

Confidence Intervals for Mean Response - Visualization
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Simple Linear Regression Analysis

Derivation of Confidence Intervals for Mean Response
The confidence interval for the mean response at x0 can be derived from the variance of β̂1:

β̂1 ± tα/2,n−2 ×

√ ∑n
i=1 ε̂

2
i

(n − 2)
∑n

i=1(xi − x̄)2
= β̂1 ± tα/2,n−2 × σ̂

√
1∑n

i=1(xi − x̄)2

ŷ0 = β̂0 + β̂1x0 = ȳ − β̂1x̄ + β̂1x0 = ȳ + β̂1(x0 − x̄)

Since ŷ0 is a linear function of β̂1, we can derive its variance:

Var(ŷ0) = Var(ȳ + β̂1(x0 − x̄)) = Var(ȳ) + (x0 − x̄)2 · Var(β̂1)

=
σ2

n
+ (x0 − x̄)2 · σ2∑n

i=1(xi − x̄)2
= σ2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
Therefore, the confidence interval for the mean response is:

ŷ0 ± tα/2,n−2 × σ̂

√
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2
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Simple Linear Regression Analysis

Confidence vs. Prediction Intervals
Two types of intervals serve different purposes:

Confidence interval for mean response: Quantifies uncertainty about the
average value of Y for a given X value

ŷ0 ± tα/2,n−2 × σ̂

√
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

Prediction interval for individual observation: Includes both uncertainty in the
regression line and random variability of individual observations

ŷ0 ± tα/2,n−2 × σ̂

√
1 +

1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

Note the additional ”1” under the square root for prediction intervals, representing the
inherent variability of individual observations.
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Simple Linear Regression Analysis

Sources of Uncertainty in Prediction

Prediction intervals are wider than confidence intervals because they account for two
sources of uncertainty:

1 Uncertainty in the estimated regression line: Captured by the terms
1
n + (x0−x̄)2∑n

i=1(xi−x̄)2

2 Random variability of individual observations: Captured by the ”1” term,
which comes from Var(ε) = σ2

Mathematically, if epred = Ynew − ŷ0, then:

Var(epred) = σ2 + σ2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

)
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Visualizing Both Types of Intervals
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Inner bands (confidence intervals) show uncertainty about the mean response.
Outer bands (prediction intervals) show uncertainty about individual observations.
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Simple Linear Regression Analysis

Choosing the Right Interval for Your Question

Use confidence intervals when interested in the average effect: ”What is the
average protein content for cells of size 120 µm3?”

Use prediction intervals when forecasting individual outcomes: ”What range of
protein content might we observe in the next cell of size 120 µm3?”

Both intervals have important applications in biological research:

Confidence intervals help assess general trends and relationships

Prediction intervals guide experimental design and set expectations for individual
outcomes
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Simple Linear Regression Analysis

Common Misconceptions About Confidence Intervals

When interpreting confidence intervals, be aware of these common misunderstandings:

A 95% confidence interval does not mean there is a 95% probability that the true
parameter falls within the interval

Narrower confidence intervals don’t always indicate better statistical estimates if
model assumptions are violated

Non-overlapping confidence intervals between groups don’t automatically indicate
statistically significant differences (this test is too conservative)

Formal hypothesis testing provides the appropriate framework for determining
significance.
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Simple Linear Regression Analysis

Limitations in Biological Applications

Several important caveats apply when using regression intervals in biological contexts:

They assume the model is correct in its functional form (linearity)

They assume homoscedasticity (constant error variance across all X values)

They may not account for all sources of biological variability

Extrapolation beyond the range of observed X values is particularly risky in
biological systems, which often exhibit non-linear responses outside observed
ranges
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Simple Linear Regression Analysis

Sample Question 1

In simple linear regression, the model Y = β0 + β1X + ε assumes that the error term ε
follows which distribution?

A) Uniform distribution

B) Student’s t-distribution

C) Normal distribution with mean 0 and constant variance

D) Chi-square distribution

E) Exponential distribution
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Simple Linear Regression Analysis

Sample Question 2

Which of the following would increase the precision (reduce the standard error) of the
slope estimate?

A) Collecting data points with x-values close to the mean x̄

B) Increasing the error variance σ2

C) Reducing the sample size n

D) Increasing the spread of x-values around their mean

E) Focusing on values of x that produce the largest residuals
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Simple Linear Regression Analysis

Sample Question 3
Consider the regression bands shown in the figure. If we observed a new data point at
X = 3 with Y = 15, which of the following statements would be correct?

A) This observation provides evidence
that the regression model is incorrect

B) This observation falls within the
95% prediction interval but outside
the 95% confidence interval

C) This observation is considered an
outlier because it falls outside both
intervals

D) The probability that the true mean
response at X = 3 equals 15 is 95%

E) We’s expect 95% of observations at
X = 3 to fall within the inner band
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Simple Linear Regression Analysis

Sample Question 4

In constructing a confidence interval for the slope parameter in simple linear regression,
which of these factors would make the interval narrower?

A) Decreasing the sample size

B) Increasing the confidence level from 95% to 99%

C) Smaller variability in the response variable (smaller σ2)

D) Collecting data points with x-values very close to each other

E) Using a one-tailed rather than two-tailed test
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Sample Question 5

A researcher measures enzyme activity (Y) as a function of substrate concentration
(X) and fits a simple linear regression model. The 95% prediction interval at X = 5 is
[10, 30], while the 95% confidence interval for the mean response at X = 5 is [15, 25].
Which of the following statements is correct?

A) The confidence interval is wider because it accounts for more sources of
uncertainty

B) The estimate of the mean response at X = 5 is 15

C) If the experiment were repeated many times, about 95% of individual observations
at X = 5 would fall between 10 and 30

D) The true mean response at X = 5 has a 95% probability of falling between 15 and
25

E) The prediction interval and confidence interval would become identical with a
large enough sample size
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