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Simple Linear Regression Analysis

From Joint Distributions to Regression Models

Linear regression can be viewed from a probabilistic perspective, where we model the

conditional distribution of one variable given another, typically assuming a Gaussian
error distribution.

Joint Distribution with KDE Regression with Conditional Distributions
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Simple Linear Regression Analysis

The Linear Model: A Probabilistic Perspective

The core insight of linear regression is modeling the conditional distribution of Y given
X as a normal distribution with linearly changing mean:

Y|X = x ~ N(Bo + Bix,0?)

This tells us:
m For any fixed value of X=x, Y follows a normal distribution

m The mean of this distribution is a linear function: 5y + B1x

m The variance remains constant: o2
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Simple Linear Regression Analysis

The Data Generation Process in Linear Regression

Linear regression assumes data is generated from a deterministic component plus
random noise:

Yi = Bo+ B1X;+ei, where & ~N(0,57)

Step 1: Pure Linear Relation Step 2: The Noise Component
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Simple Linear Regression Analysis

Real Data: Deterministic Trend + Random Noise

When we observe real data, we see the combination of the deterministic trend and
random noise:

Step 3: Data Generated with Noise

+ Linear Component
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Simple Linear Regression Analysis

Interpretation Through Conditional Expectations

The regression model can be understood through conditional expectations:

E[Y|X =x] = Bo + p1x

The conditional expectation of a random variable Y given another random variable X
is defined as:

E[Y|X] = / Yyix(y1x)dy

The parameters have clear interpretations:
m [y (intercept): The expected value of Y when X=0

m 31 (slope): The change in the expected value of Y for a one-unit increase in X
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Simple Linear Regression Analysis

Residuals in Linear Regression
Residuals are the differences between observed and predicted values:

~

gi=yi— 9 =yi— (Bo+ bixi)

Residuals in Linear Regression Histogram of Residuals
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Simple Linear Regression Analysis

When Model Assumptions Are Violated

Non-random patterns in residuals can indicate model inadequacy or violated

assumptions.

Residuals for Two Clouds Dataset

Histogram of Residuals for Two Clouds Dataset
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Simple Linear Regression Analysis

Parameter Estimation: Maximum Likelihood

The likelihood function for the regression model is:

N (vi — (Bo + B1x7))?
L(Bo, fr,07) = ’1_[1 Vg2 P (‘ 252 )

Taking the logarithm and finding the values of 5y and ; that maximize this expression
leads to the same results as ordinary least squares.
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Simple Linear Regression Analysis

Derivation of Least Squares Estimators
Starting with the log-likelihood function:

5(50,51,02)2—4”(270—*'“ 2)— Z — (Bo + Brxi))?

Setting partial derivatives to zero:
o 1

90 ;Z(%‘—Bo—ﬁm) =0
,'_

n

ov 1
6751 = ;ZXI(W - Bo —61Xi) =0

By — doiyXiyi — nXy _ Y (i = X)yi — %)
27:1 Xiz_ nx? Yo (xi —x)?

Gioele La Manno March 2025 10 / 35



Simple Linear Regression Analysis

Least Squares Estimation

The maximum likelihood estimates are:

doimi (i = X)(yvi — %)

S

These formulas show that:

m The slope estimate is the ratio of the covariance between X and Y to the variance
of X

m The intercept estimate ensures the regression line passes through the point (X, )
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Simple Linear Regression Analysis

The Least Squares Principle

Ordinary least squares finds the line that minimizes the sum of squared vertical
distances between observed points and the line.

Least Squares: Optimal Fit Least Squares: Suboptimal Fit
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Simple Linear Regression Analysis

Properties of the Regression Coefficient Estimates

The regression coefficient estimates have important statistical properties:

= They are unbiased: E[fo] = By and E[B1] = 1
m They follow a normal distribution in repeated sampling
m Their precision depends on sample size, predictor variability, and error variance

The sampling distribution of the slope estimator is:

~ N 0'2
Pr~ <ﬁl’ e —x>2>
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Deriving the Sampling Distribution of 5; - Part 1
Starting with the formula for 3; and substituting the model equation:

27:1()9' - X)(yi — )
>l (xi = x)?

By =
Substituting y; = o + B1x; + €

yi—y = (Bo+ Bixi+¢i) — (Bo+ f1x + &)
= ﬁl(X,' —)_<) + (5,‘ —5)

Therefore:
By = S (xi = X)[Bi(xi — X) + (gi — €)]
> (i —x)?
s Sl e
o Soia(xi —X)?
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Deriving the Sampling Distribution of B, - Part 2

Since Y71 (xi — X) = 0, we can simplify:

Z?:l(xi — X)€i
Do (xi — %)

The term Y 7, (x; — X)e; follows a normal distribution with:

E [Z(x,- — x)e,-] =0

Br =P+

Var Z(x,- — )'()5,-] =02 Z(X,' —x)?
i=1 i=1
Therefore:
N 0'2
b (4 S0 - 7)
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Simple Linear Regression Analysis

Hypothesis Testing for Regression Coefficients

To test whether there's a significant linear relationship between X and Y, we test
Hp : B1 = 0 against H, : 51 # 0.
The test statistic is: ~

A
SE(P)

The standard error of the slope coefficient is calculated as:

A2

SE(Bl) =y | =
Z?:l(xi — X)?
where 62 is the estimated error variance:
1 n
A2 LA A L2
o = n_o Z(y: 60 lel)

i=1
Under the null hypothesis, this follows a t-distribution with n-2 degrees of freedom.
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Simple Linear Regression Analysis

Testing Significance: Two Examples

Let's consider two examples to illustrate the concept of significance testing in linear

regression.
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Simple Linear Regression Analysis

Hypothesis Testing Results
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Simple Linear Regression Analysis

Confidence Intervals for Regression Parameters

To quantifying the uncertainty in these estimates. Confidence intervals provide a range
of plausible values for the true parameters, accounting for sampling variability.

Definition

A confidence interval is a range of values constructed from sample data that is likely to
contain the true population parameter with a specified level of confidence.

A 100(1 — )% confidence interval for the slope parameter (; is:

Bl + ta/2,n—2 X SE(BI)

These intervals quantify the precision of our estimates. Where

SE(Bo) = & —+W
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Simple Linear Regression Analysis

Interpreting Confidence Intervals

The correct interpretation of a 95% confidence interval:
If we were to repeat our sampling process many times, and calculate a 95%
confidence interval from each sample, approximately 95% of these intervals
would contain the true parameter value.

The width of the confidence interval reflects estimation precision and depends on:
m Sample size (n): Larger samples yield narrower intervals
m Error variance (02): Lower variance gives narrower intervals
m Variability in the predictor: Greater variability leads to more precise estimates

m Confidence level (1-«): Higher confidence requires wider intervals
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Simple Linear Regression Analysis

Prediction in Regression Analysis

Beyond parameter estimation, regression models are valuable for prediction:

The conditional mean response is the expected value of Y given X = xg, estimated
as Yo = Po + P1xo. Also called the "fitted value” or "predicted value”.

A prediction for an individual response is an estimate of a single future observation
of Y when X = xq.

Key distinction:
m Conditional mean response estimates the average Y for a given X
m Individual prediction accounts for both the regression line and random error
m Individual observations naturally vary around the regression line according to the
error distribution—typically A/(0, o2)
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Simple Linear Regression Analysis

Confidence Intervals for Mean Response

Confidence intervals for the mean response quantify uncertainty about average Y
values:

. (x0 — X)?
0 a/2,n—2 X o ﬁ
Properties of these intervals:
m Uncertainty is smallest when xp = X (center of data)
m Uncertainty increases as xp moves away from X
m Forms a "band” around the regression line

m Width reflects precision of our estimate of the true regression line
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Simple Linear Regression Analysis

Confidence Intervals for Mean Response - Visualization

Confidence Intervals - Significant Relationship

Confidence Intervals - Non-significant Relationship
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Simple Linear Regression Analysis

Derivation of Confidence Intervals for Mean Response

The confidence interval for the mean response at xg can be derived from the variance of Bl:

Bt X 2i1 =B £t X L
1 2,n—2 1 2,n—2 X & 7 (o =
ofze (n—2) X7, (x — %) o/ S — %)
Jo = Bo + Pixo = 7 — Prx + Bixo = 7 + Pi(x0 — X)
Since ¥ is a linear function of /3’1, we can derive its variance:

Var(fo) = Var(y + fi(x0 — X)) = Var(7) + (xo — X)? - Var(f1)

:f+(x0—z)2-27:1&j;)2:”2<,11+%>

Therefore, the confidence interval for the mean response is:

o—X)2

YO:tta2n2><U ~n /. —=\o
/ ¢ B SN
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Simple Linear Regression Analysis

Confidence vs. Prediction Intervals
Two types of intervals serve different purposes:

m Confidence interval for mean response: Quantifies uncertainty about the
average value of Y for a given X value

(x0 — X)?
Vo t X & 5
Y a/2,n—2 \/ lex,—X)

m Prediction interval for individual observation: Includes both uncertainty in the
regression line and random variability of individual observations

Vo = t, X 04/1 1 —( 0 )?)2
0 _ o + -+
Y a/2,n—2 Z, ]_(XI X)2

Note the additional " 1" under the square root for prediction intervals, representing the
inherent variability of individual observations.
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Simple Linear Regression Analysis

Sources of Uncertainty in Prediction

Prediction intervals are wider than confidence intervals because they account for two
sources of uncertainty:

Uncertainty in the estimated regression line: Captured by the terms
(x0—%)

ER e
Random variability of individual observations: Captured by the "1" term,
which comes from Var(g) = o2

Mathematically, if epred = Ynew — Jo. then:

(0 — %) >

1
V. _ 2 2 (1
ar(epred) =0°+0 <n + Zle(xi — 3y
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Simple Linear Regression Analysis

Visualizing Both Types of Intervals

Confidence and Prediction Intervals - Dataset 1

1509 — Regression line
140 95% ClI
95% PI
1301
>
o 1204
I
=4
o
2110
U
4
100
904 e
°
80 1
35 40 45 50 55 60 65

Feature X

Response Y

Confidence and Prediction Intervals - Dataset 2
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Inner bands (confidence intervals) show uncertainty about the mean response.
Outer bands (prediction intervals) show uncertainty about individual observations.
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Choosing the Right Interval for Your Question

m Use confidence intervals when interested in the average effect: "What is the
average protein content for cells of size 120 m3?"

m Use prediction intervals when forecasting individual outcomes: "What range of
protein content might we observe in the next cell of size 120 m3?”

Both intervals have important applications in biological research:
m Confidence intervals help assess general trends and relationships

m Prediction intervals guide experimental design and set expectations for individual
outcomes
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Simple Linear Regression Analysis

Common Misconceptions About Confidence Intervals

When interpreting confidence intervals, be aware of these common misunderstandings:

m A 95% confidence interval does not mean there is a 95% probability that the true
parameter falls within the interval

m Narrower confidence intervals don’t always indicate better statistical estimates if
model assumptions are violated

m Non-overlapping confidence intervals between groups don't automatically indicate
statistically significant differences (this test is too conservative)

Formal hypothesis testing provides the appropriate framework for determining
significance.
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Simple Linear Regression Analysis

Limitations in Biological Applications

Several important caveats apply when using regression intervals in biological contexts:

m They assume the model is correct in its functional form (linearity)
m They assume homoscedasticity (constant error variance across all X values)
m They may not account for all sources of biological variability

m Extrapolation beyond the range of observed X values is particularly risky in
biological systems, which often exhibit non-linear responses outside observed
ranges
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Simple Linear Regression Analysis

Sample Question 1

In simple linear regression, the model Y = 3y + 51X + € assumes that the error term ¢
follows which distribution?

Uniform distribution

B Student's t-distribution

Normal distribution with mean 0 and constant variance
B Chi-square distribution

Exponential distribution
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Simple Linear Regression Analysis

Sample Question 2

Which of the following would increase the precision (reduce the standard error) of the
slope estimate?

Collecting data points with x-values close to the mean X
B Increasing the error variance o2

Reducing the sample size n

B Increasing the spread of x-values around their mean

Focusing on values of x that produce the largest residuals
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Simple Linear Regression Analysis

Sample Question 3

Consider the regression bands shown in the figure. If we observed a new data point at

X = 3 with Y = 15, which of the following statements would be correct?
This observation provides evidence

that the regression modeI is incorrect » Confidence and Prediction Intervals - Dataset 1
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Simple Linear Regression Analysis

Sample Question 4

In constructing a confidence interval for the slope parameter in simple linear regression,
which of these factors would make the interval narrower?

Decreasing the sample size

B Increasing the confidence level from 95% to 99%

Smaller variability in the response variable (smaller o2)

B Collecting data points with x-values very close to each other

Using a one-tailed rather than two-tailed test
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Sample Question 5

A researcher measures enzyme activity (Y) as a function of substrate concentration
(X) and fits a simple linear regression model. The 95% prediction interval at X = 5 is
[10, 30], while the 95% confidence interval for the mean response at X = 5 is [15, 25].
Which of the following statements is correct?

The confidence interval is wider because it accounts for more sources of
uncertainty

| The estimate of the mean response at X = 5 is 15

B
If the experiment were repeated many times, about 95% of individual observations
at X = 5 would fall between 10 and 30

B The true mean response at X = 5 has a 95% probability of falling between 15 and
25

The prediction interval and confidence interval would become identical with a
large enough sample size
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