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Drawing Conclusions from Data

In previous lectures, we described and modeled data through probability distributions.
Now we face a greater challenge:

How do we use limited, noisy observations to draw reliable conclusions about broader
phenomena?

Key questions in biological research:

Do two treatments produce different outcomes?

Does a genetic variant affect disease risk?

Is a cell type’s gene expression pattern altered in disease?

Statistical testing provides a systematic framework to address these questions.
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From Samples to Populations: The Key to Statistical
Inference
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How large must an observed difference be before we can claim it represents a genuine
biological effect rather than sampling variation?
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From Samples to Populations: The Key to Statistical
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How large must an observed difference be before we can claim it represents a genuine
biological effect rather than sampling variation?
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Distinguishing Signal from Noise: A Practical Example

Comparing two drug treatments for their effect on blood glucose levels in diabetic mice.

The true distributions of glucose levels under each treatment remain hidden:
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The Problem with Small Samples

Different single samples can lead to contradictory conclusions:
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Another Realization (n=1) finds B > A

Two experimenters might reach opposite conclusions based on different single samples
from each treatment.
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Improved Design: Collecting Multiple Samples

With five samples per treatment, we can calculate more reliable sample means:
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Increasing sample size enhances our ability to detect true effects, but random variation
remains.
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Sample Size and Precision of Estimates

Sampling distributions become narrower with larger sample sizes:
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As sample size increases from n=5 to n=25, sampling distributions become more
distinct, making it easier to detect true differences.
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Distribution of the Difference Between Means

The difference between sample means (∆ = µB − µA) is itself a random variable:
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With larger samples, the distribution of differences becomes narrower and shifts away
from zero.
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The Philosophy of Statistical Testing

Statistical hypothesis testing provides a structured approach to distinguish genuine
effects from random variation.

Fisher’s approach to significance testing focuses on:

Evaluating evidence against a null hypothesis

Not making definitive claims about ”truth”

Quantifying compatibility between observed data and a reference hypothesis

Definition (Null Hypothesis)

The null hypothesis (H0) is a specific statement about a population parameter that
represents the absence of the effect being studied.
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Fisher’s Approach to Significance Testing

A systematic approach to evaluate evidence:
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The p-value represents the probability of obtaining a test statistic as extreme or more
extreme than observed, assuming the null hypothesis is true.
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Interpreting Evidence: Significance Thresholds

Different significance thresholds represent varying levels of evidence against the null
hypothesis:
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Fisher emphasized these thresholds are conventions rather than rigid decision
boundaries.
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The Complete Framework of Statistical Testing

Fisher’s statistical testing framework follows this process:

1 Define the effect of interest and formulate a null hypothesis

2 Collect data and calculate an appropriate test statistic

3 Determine the distribution of this statistic under the null hypothesis

4 Calculate the p-value

5 Interpret the p-value as a measure of evidence against the null hypothesis

This framework applies to a wide range of testing scenarios, with varying test statistics
and distributions.
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

The Sample Mean and its Distribution

The most fundamental estimator is the sample mean:

X̄ =
1

n

n∑
i=1

Xi

Properties of the sampling distribution of the mean:

Property (Expected Value of Sample Mean)

E [X̄ ] = µ
The sample mean is an unbiased estimator of the population mean.

Property (Variance of Sample Mean)

Var(X̄ ) = σ2

n
The variability of the sample mean decreases as sample size increases.
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

Standard Error of the Mean

Definition (Standard Error of the Mean)

The standard error of the mean (SEM) quantifies the precision of the sample mean as
an estimate of the population mean:

SEM =
σ√
n

where σ is the population standard deviation and n is the sample size.

In practice, we estimate the SEM using the sample standard deviation:

ˆSEM =
s√
n

The standard error is fundamental to hypothesis testing because it quantifies how much
the sample mean is expected to vary from the true population mean by chance alone.
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

Sample Standard Deviation

Definition (Sample Standard Deviation)

The sample standard deviation s is an estimator of the population standard deviation σ:

s =

√√√√ 1

n − 1

n∑
i=1

(Xi − X̄ )2

Definition (Chi-Square Distribution)

If Z1,Z2, . . . ,Zk are independent standard normal random variables, then:

X =
k∑

i=1

Z 2
i ∼ χ2

k

The chi-square distribution with k degrees of freedom has probability density:

fχ2
k
(x) =

1

2k/2Γ(k/2)
xk/2−1e−x/2 for x > 0
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

Sampling Distribution of Sample Variance

Property (Sampling Distribution of Sample Variance)

If samples are drawn from a normal distribution with variance σ2, then:

(n − 1)s2

σ2
∼ χ2

n−1

This property means that the sampling distribution of the sample variance is more
complex than that of the sample mean.

Unlike the sample mean, which has a symmetric sampling distribution, the sampling
distribution of the sample variance is right-skewed, especially for small sample sizes.
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

Chi-squared Distribution and Sampling Distribution of
Standard Deviation
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Left: Chi-squared distributions with different degrees of freedom Right: Sampling
distribution of standard deviation for n=5 and n=40 samples
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The Foundation: Sample Mean, Standard Error, and the Central Limit Theorem

The Central Limit Theorem

Theorem (Central Limit Theorem)

For a sufficiently large sample size, the sampling distribution of the mean approaches a
normal distribution regardless of the shape of the population distribution, as long as
the population has a finite variance.
As n increases:

X̄ − µ

σ/
√
n

d−→ N (0, 1)

where
d−→ indicates convergence in distribution.

This remarkable result means that even if our original data comes from a non-normal
distribution (as is common in biological measurements), the sampling distribution of
the mean will still approximate a normal distribution with sufficiently large samples.
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Practical Testing Scenarios
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Practical Testing Scenarios

Starting Simple: One-Sample Tests

The simplest statistical testing scenario occurs when we have a single sample from a
distribution and want to make inferences about the population parameter.

Example: We’ve measured gene expression levels in 30 tumor samples and want to
know if the mean expression level differs from a reference value observed in healthy
tissue.

This scenario helps us understand the fundamental structure of statistical tests before
moving to more complex situations.
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Practical Testing Scenarios

The Z-Test: Testing with Known Variance

When population variance σ2 is known, we can use the z-test:

Under the Central Limit Theorem, the standardized sample mean follows a standard
normal distribution:

X̄ − µ

σ/
√
n
∼ N (0, 1)

Under the null hypothesis H0 : µ = µ0, our test statistic becomes:

z =
x̄ − µ0

σ/
√
n

This z-statistic directly quantifies how many standard errors our observed mean
deviates from the hypothesized value.
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Practical Testing Scenarios

One-Sample Test Visualization

8 10 12 14 16 18 20 22 24
Biomarker Level (ng/mL)

SE = / n = 4.8/ 30 = 0.88
Z = (x - )/SE = (16.35 - 15)/(0.88) = 1.54

Cancer Biomarker Measurements vs Reference Value
Sample mean: 16.35
Reference value ( ): 15

The sample mean (horizontal line) compared to the reference value µ0 (dashed line).
The key question: Does our sample appear to come from a population with mean µ0?
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Practical Testing Scenarios

One-tailed Z-test
For a one-sided test, the p-value is the probability in one tail of the distribution:
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One-tailed p-value: 0.0613

One-Tailed Z-Test: Standard Normal Distribution

Standard Normal Distribution
Z-statistic: 1.54

Upper-tailed test (H0 : µ ≤ µ0 vs Ha : µ > µ0): p = 1− Φ(z)
Lower-tailed test (H0 : µ ≥ µ0 vs Ha : µ < µ0): p = Φ(z)Gioele La Manno BIOENG-210 / LECTURE 4 March 2025 23 / 70



Practical Testing Scenarios

Two-tailed Z-test
For a two-sided test, the p-value accounts for deviations in either direction:
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Two-tailed p-value: 0.1225

Two-Tailed Z-Test: Standard Normal Distribution

Standard Normal Distribution
Z-statistic: 1.54

Two-tailed test (H0 : µ = µ0 vs Ha : µ ̸= µ0):

p = 2×min{Φ(z), 1− Φ(z)}Gioele La Manno BIOENG-210 / LECTURE 4 March 2025 24 / 70



Practical Testing Scenarios

From Theory to Practice - Additional Uncertainty

In reality, we rarely know the population variance σ2 and must estimate it from our
sample.

We substitute the estimated standard deviation into our test statistic:

t =
x̄ − µ0

s/
√
n

This introduces additional uncertainty: s is a random variable calculated from the
sample, not a fixed parameter.

The resulting test statistic t cannot follow a normal distribution—we expect a more
dispersed distribution with heavier tails.
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Practical Testing Scenarios

Deriving the t-Distribution: Joint Distributions

The t-distribution emerges from the relationship between two random variables:
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Left: Joint distribution of Z (standard normal) and V (chi-squared) Right: Joint
distribution after transformation showing how the t-distribution emerges
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Practical Testing Scenarios

Student’s t-distribution

Theorem (Student’s t-distribution)

When sampling from a normally distributed population with unknown variance, the
standardized sample mean follows a t-distribution with n-1 degrees of freedom:

t =
x̄ − µ0

s/
√
n

∼ tn−1

The probability density function of the t-distribution:

f (t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + t2

ν

)− ν+1
2

where ν = n − 1 is the degrees of freedom.
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Practical Testing Scenarios

The t-distribution and its Convergence to Normal
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Left: t-distributions with small degrees of freedom have heavier tails than the normal
distribution Right: As degrees of freedom increase, the t-distribution approaches the
standard normal distribution
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Practical Testing Scenarios

One-sample t-test Example: OCT4 Expression

10 11 12 13 14 15
OCT4 Expression Level

SE = s/ n = 1.77/ 5 = 0.79
t = (x - )/SE = (12.15 - 10)/(0.79) = 2.71

OCT4 Expression vs Reference Value
Sample mean: 12.15
Reference value ( ): 10

Testing whether OCT4 expression in 5 stem cell cultures differs from an established
reference value.
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Practical Testing Scenarios

One-tailed t-test
With unknown variance and small sample size (n=5), we use the t-distribution with 4
degrees of freedom:
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One-tailed p-value: 0.0267

One-Tailed t-Test (df=4)
t-distribution (df=4)
t-statistic: 2.71

The p-value is the probability of observing a t-statistic this extreme or more extreme
under the null hypothesis.
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Practical Testing Scenarios

Two-tailed t-test
For testing whether OCT4 expression differs from the reference in either direction:
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Two-tailed p-value: 0.0534

Two-Tailed t-Test (df=4)

t-distribution (df=4)
t-statistic: 2.71

The p-value includes both tails of the t-distribution, capturing deviations in either
direction.Gioele La Manno BIOENG-210 / LECTURE 4 March 2025 31 / 70



Practical Testing Scenarios

Two-Sample Tests: Comparing Independent Groups

The two-sample t-test is one of the most common statistical tests in biological
research.

In biological papers, this test is typically reported above bar plots showing means with
standard error of the mean (SEM) error bars.

Key elements of the Welch test (which doesn’t assume equal variances):

Parameter of interest: difference between population means µ1 − µ2

Null hypothesis: µ1 − µ2 = 0

Test statistic: t = x̄1−x̄2√
s2
1
n1

+
s2
2
n2
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Practical Testing Scenarios

Two-Sample Tests in Biological Research
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Left: Traditional bar plot with error bars found in papers Right: Modern presentation
showing individual data points (increasingly required by journals)
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Practical Testing Scenarios

Biological Example: Protein Expression in Western Blot
Analysis
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p = 0.0011

Western Blot Protein Quantification

Investigating whether drug treatment alters protein expression by comparing 6 control
and 6 treated samples.
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Practical Testing Scenarios

Two-Sample t-test for Protein Expression Data
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p-value = 0.0011

Two-tailed Two-Sample Welch test
t-distribution (df 8.3)
t = 4.87

With x̄control = 1.0, x̄treated = 1.75, scontrol = 0.22, streated = 0.34, and n=6 for each
group, we calculate t ≈ 4.78 with approximately 9 degrees of freedom, giving
p ≈ 0.001.
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Practical Testing Scenarios

Working with Paired Samples

In many biological experiments, we have natural pairing between observations:

Before and after measurements on the same subjects

Same biological samples measured at different time points

Matched pairs of subjects (e.g., twins, littermates)

When between-subject variability is high, accounting for pairing can dramatically
increase statistical power.

The key insight: Convert a two-sample problem into a one-sample problem by
analyzing the differences within each pair.
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Practical Testing Scenarios

Paired Data Visualization
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Paired Memory Performance Data
Before Training
After Training

Paired measurements from 9 mice before and after cognitive training, with connecting
lines visualizing the within-subject relationships. Despite high between-subject
variability, most subjects show consistent improvement.
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Practical Testing Scenarios

Paired vs. Unpaired Analysis
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Unpaired Analysis (Ignoring Subject Pairing)

Left: Paired analysis showing significant difference
Right: Unpaired analysis showing non-significant difference
Accounting for the experimental design (pairing) dramatically affects statistical power.
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Practical Testing Scenarios

Question 1

What is the standard error of the mean (SEM)?

A) The standard deviation of the population

B) The standard deviation of the sample

C) The standard deviation of the sampling distribution of the mean

D) The variance of the sampling distribution of the mean
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Practical Testing Scenarios

Question 2

A researcher conducts a drug trial and obtains a p-value of 0.03 for the
difference in mean response between treatment and control groups. What is
the correct interpretation of this p-value?

A) There is a 3% probability that the drug has no effect

B) There is a 3% probability that the observed difference occurred by chance

C) If the drug truly has no effect, there is a 3% probability of observing a difference
as large or larger than what was observed

D) 97% of patients will respond positively to the drug
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Practical Testing Scenarios

Question 3

A sample of size n = 20 is drawn from a normal population. The sample
variance s2 is calculated. Which of the following expressions correctly describes

the sampling distribution of the quantity (n−1)s2

σ2 ?

A) A chi-square distribution with n degrees of freedom

B) A chi-square distribution with n − 1 degrees of freedom

C) A t-distribution with n − 1 degrees of freedom

D) A normal distribution with mean 0 and variance 1
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Practical Testing Scenarios

Question 4

In a paired t-test with 15 pairs of observations, the degrees of freedom for the
test statistic is:

A) 14

B) 15

C) 28

D) 29
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Practical Testing Scenarios

Question 5

The figure below shows one-sample data with a reference value (dashed line).
If you wanted to test whether the sample mean is significantly different from
the reference value, what would be the most appropriate test?

10 11 12 13 14 15
OCT4 Expression Level

SE = s/ n = 1.77/ 5 = 0.79
t = (x - )/SE = (12.15 - 10)/(0.79) = 2.71

OCT4 Expression vs Reference Value
Sample mean: 12.15
Reference value ( ): 10

A) Z-test, because the sample size is
small

B) Two-sample t-test, because the
reference represents a second group

C) One-sample t-test, because we deal
with a fixed reference value

D) One-sample Paired t-test, to account
for the experimental design
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Multiple Testing and False Discovery Control

Gioele La Manno BIOENG-210 / LECTURE 4 March 2025

Multiple Testing and
False Discovery Control



Multiple Testing and False Discovery Control

From Evidence to Decisions: The Neyman-Pearson
Framework
While Fisher’s approach focuses on evaluating evidence, Neyman and Pearson
developed a complementary framework emphasizing decision-making with controlled
error rates.

Definition (Alternative Hypothesis)

The alternative hypothesis (Ha or H1) is a statement that contradicts the null
hypothesis and represents the presence of the effect being studied.

Definition (Significance Level)

The significance level (α) is the probability threshold below which we reject the null
hypothesis. It represents the maximum rate of false positives we are willing to accept.

If p < α, we reject H0; if p ≥ α, we fail to reject H0.
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Type I and Type II Errors

This decision process can lead to two types of errors:

Definition (Type I Error)

A Type I error occurs when we reject the null hypothesis when it is actually true (a
false positive).

Definition (Type II Error)

A Type II error occurs when we fail to reject the null hypothesis when it is actually
false (a false negative).
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The Decision Matrix in Hypothesis Testing

H0 True H0 False

Reject H0 Type I Error Correct Decision

Fail to Reject
H0

Correct Decision Type II Error

The probability of a Type I error is controlled by the significance level α. The
probability of a Type II error (β) depends on sample size, effect size, and variability.
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Visualizing Type I Error

Type I error is the probability of rejecting a true null hypothesis (false positive):
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Type I Error: Rejecting a True Null Hypothesis

Null Hypothesis (H  true)
Alternative Hypothesis (H  true)

Critical value: 1.64
Type I Error ( )

The significance level α directly controls the Type I error rate: if α = 0.05, we will
incorrectly reject a true null hypothesis no more than 5% of the time.
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Visualizing Type II Error

Type II error is the probability of failing to reject a false null hypothesis (false negative):
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Type II Error: Failing to Reject a False Null Hypothesis

Null Hypothesis (H  true)
Alternative Hypothesis (H  true)

Critical value: 1.64
Type II Error ( )

The Type II error rate (β) is not directly controlled in the testing procedure and
depends on factors like sample size, effect size, and variability. The power of a test
(probability of correctly rejecting a false null hypothesis) is 1− β.
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A Crucial Property: Uniformity Under the Null

Theorem (Uniformity of P-values Under the Null)

If the null hypothesis is true, and if the test statistic’s distribution is continuous, then
the p-value follows a uniform distribution on the interval [0,1].
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This uniformity ensures that when the null hypothesis is true: The probability of
obtaining a p-value ≤ 0.05 is exactly 0.05
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P-values When the Null Hypothesis is False

When the null hypothesis is false, p-values tend to be smaller:
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Left: Distribution of p-values under the null hypothesis (uniform)
Right: Distribution of p-values when the null hypothesis is false (shifted toward zero)
The extent of this shift depends on the effect size and sample size.
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The Multiple Testing Problem in High-Throughput Biology

Modern biological research often involves testing many hypotheses simultaneously:

Testing thousands of genes for differential expression in RNA sequencing

Examining millions of genetic variants for disease association

Analyzing hundreds of metabolites in a metabolomics study

This creates a fundamental challenge: When we perform many tests, the probability of
obtaining false positives increases dramatically.

Example: Testing 1,000 genes when none are differentially expressed

Each test has a 5% chance of producing a false positive

Expected number of false positives: 1, 000× 0.05 = 50

Without correction, we would expect about 50 ”significant” results even when no real
effects exist!
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Family-Wise Error Rate

Definition (Family-Wise Error Rate)

The Family-Wise Error Rate (FWER) is the probability of making at least one Type I
error (false positive) among all the hypothesis tests conducted.

For m independent tests, each with significance level α:

FWER = 1− (1− α)m

This grows rapidly with the number of tests. For example, with α = 0.05 and m = 100
tests, FWER ≈ 0.994, meaning we’re almost certain to get at least one false positive.
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FWER Growth with Number of Tests

0 200 400 600 800 1000
Number of Tests (m)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
m

ily
-W

ise
 E

rro
r R

at
e 

(F
W

ER
)

5% FWER

m = 14

Growth of Family-Wise Error Rate with Multiple Tests

 = 0.01
 = 0.05
 = 0.1

Figure: As the number of tests increases, the family-wise error rate approaches 1 rapidly, even
with a modest per-test significance level.
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Bonferroni Correction
The Bonferroni correction is the simplest method to control FWER: αcorrected = α

m
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Bonferroni-Corrected Significance Thresholds

For 20,000 genes, the corrected threshold becomes α = 0.05/20, 000 = 0.0000025, which is

extremely stringent. The approach controls false positives but leads to many false negatives.
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P-value Distributions in Real Data
In actual biological datasets, p-values rarely follow a uniform distribution because some
null hypotheses are false:
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P-value Distribution in RNA-seq Analysis

A typical p-value histogram from RNA-seq differential expression analysis shows
enrichment of small p-values (genes that are truly differentially expressed) and a
relatively flat distribution for larger p-values.
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Interpreting P-value Distributions as Mixtures

The observed p-value distribution can be understood as a mixture:
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The relative heights of the uniform component (non-differential genes) versus the
enrichment near zero (differential genes) give insight into the proportion of true vs.
false null hypotheses in our dataset.
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False Discovery Rate: A More Practical Approach

Definition (False Discovery Rate)

The False Discovery Rate (FDR) is the expected proportion of false positives among all
rejected null hypotheses (among all ”discoveries”).

FDR = E

[
Number of false positives

Total number of rejections

]

If we call 100 genes ”significant” and expect an FDR of 0.1, then approximately 10 are
likely false positives, while 90 represent true effects.

This is often a more useful metric for biological research than the more stringent
FWER, providing a balance between false positives and false negatives.
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The Two-Groups Model

A deeper understanding comes from the ”two-groups model” introduced by Efron:

f (p) = π0f0(p) + (1− π0)f1(p)

where:

π0 is the proportion of true null hypotheses

f0(p) is the density of p-values under the null (uniform)

f1(p) is the density of p-values under the alternative (near 0)

f (p) is the overall mixture density observed in data
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The Two-Groups Model: Visual Representation
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Figure: The observed p-value distribution can be decomposed into contributions from true null
hypotheses (uniform component) and false null hypotheses (concentrated near zero).
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Local False Discovery Rate

Definition (Local False Discovery Rate)

The local false discovery rate at a specific p-value p is:

local FDR(p) =
π0f0(p)

f (p)

This gives the probability that a test with exactly that p-value comes from the null
hypothesis.

To extend from local FDR to the overall FDR for a significance threshold:

FDR(p) =
π0p

F (p)

where F (p) =
∫ p
0 f (t)dt is the cumulative distribution function.
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Visualizing Local FDR and Overall FDR
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Figure: The local false discovery rate at each p-value (blue curve) can be integrated to
determine the overall false discovery rate at any threshold.
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The Benjamini-Hochberg Procedure

The most widely used method for controlling FDR is the Benjamini-Hochberg (BH)
procedure:

1 Rank all p-values from smallest to largest: p(1) ≤ p(2) ≤ ... ≤ p(m)

2 Find the largest k such that p(k) ≤ k
mα

3 Reject all null hypotheses with p-values ≤ p(k)

This guarantees that the expected FDR will be at most α.

The BH procedure effectively creates an adaptive threshold that becomes more
stringent as the p-value increases, accounting for the expected proportion of false
discoveries.
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Visualizing the Benjamini-Hochberg Procedure
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The procedure rejects all hypotheses with p-values falling below the BH line with slope
α/m, ensuring FDR control while being less conservative than Bonferroni correction.
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Definition (q-value)

The q-value for a particular test is the expected proportion of false positives among all
tests with equal or smaller p-values.
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Unlike p-values, q-values directly account for multiple testing. A gene with q-value =
0.05 means that 5% of genes considered significant at that threshold are expected to
be false positives.
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Practical Considerations in Biological Applications

When applying multiple testing procedures to biological data:

Independence assumptions: Most correction methods assume independence
between tests, which rarely holds in biology (e.g., correlated gene expression)

Pre-filtering: Removing tests unlikely to yield significant results (e.g., filtering
low-expression genes) can reduce the multiple testing burden

Effect size considerations: Statistical significance does not imply biological
significance

Exploratory vs. confirmatory analysis: In early-stage research, a higher FDR
might be acceptable for generating hypotheses to be validated in follow-up
experiments

The choice of multiple testing strategy should be guided by the research context, the
number of tests, and the relative costs of Type I and Type II errors.
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Question 6

A biologist tests 2,000 genes for differential expression between healthy and
diseased tissue using a significance threshold of α = 0.05, and finds 200
significant genes. If they had not applied any multiple testing correction,
approximately how many false positives would be expected among these 200
genes?

A) 10 false positives

B) 100 false positives

C) 200 false positives

D) It’s impossible to estimate without knowing the true proportion of differentially
expressed genes
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Question 7

When controlling the Family-Wise Error Rate (FWER) at α = 0.05 using the
Bonferroni correction for 1,000 independent tests, what is the corrected
significance threshold for each individual test?

A) αcorrected = 0.05

B) αcorrected = 0.005

C) αcorrected = 0.0005

D) αcorrected = 0.00005
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Question 8

What is the key difference between controlling the Family-Wise Error Rate
(FWER) and controlling the False Discovery Rate (FDR)?

A) FWER controls the probability of making at least one false discovery, while FDR
controls the expected proportion of false discoveries among all rejected null
hypotheses

B) FWER is applicable only to small numbers of tests, while FDR works for any
number of tests

C) FWER requires independence between tests, while FDR does not make any
assumptions about independence

D) FWER is always more powerful than FDR regardless of the number of tests
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Question 9

A researcher calculates a test statistic t = 2.8 from a sample of n = 10
observations. Under the null hypothesis, this statistic follows a t-distribution
with 9 degrees of freedom. If the p-value for a two-tailed test is 0.021, what
would be the p-value if the researcher had inappropriately used a standard
normal distribution instead of the t-distribution?

A) p < 0.005

B) 0.005 < p < 0.01

C) 0.01 < p < 0.02

D) p > 0.02
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Question 10

Referring to the figure showing paired versus unpaired analysis, why does the
paired t-test detect a significant effect while the unpaired t-test does not?
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A) The paired t-test uses more
sophisticated statistical methods

B) The paired t-test accounts for the
consistent within-subject differences
despite high between-subject
variability

C) The paired t-test has a different null
hypothesis than the unpaired t-test

D) The paired t-test requires fewer
assumptions about the data
distribution
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