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1 Introduction to Statistical Testing

In the previous lectures, we explored how to describe and model data through probability distri-
butions. We learned methods to estimate parameters from samples and to quantify relationships
between variables. However, a central challenge in scientific research is moving beyond description
to draw substantive conclusions: Do two treatments produce different outcomes? Does a genetic
variant affect disease risk? Is a cell type’s gene expression pattern altered in a pathological state?

These questions require us to make inferences—to extend our reasoning beyond the immediate
data at hand to broader scientific truths. This process lies at the heart of the scientific method,
where we aim to test hypotheses and evaluate evidence systematically.

1.1 The Challenge of Drawing Conclusions from Data

When we collect biological data, we are typically observing only a small sample from a much larger
population. For instance, we might analyze gene expression in a few dozen tumor samples, but
we’re interested in making claims about the biology of that cancer type in general. This creates
a fundamental challenge: How do we use limited, noisy observations to draw reliable conclusions
about broader phenomena? Inference is the branch of statistics that addresses this question.
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Figure 1: The challenge of inference: From samples to populations

The right panel of this plot displays the distribution of the sample mean. Since the mean is
a function of random variables, it is itself a random variable and thus has its own distribution.
The concept of sample distributions will be discussed later.The figures illustrate a key challenge in
biological data analysis: different samples from the same population show natural variability. Even
if there is no real biological effect, random chance alone will produce differences between samples.
How do we know when an observed difference represents a genuine biological effect rather than
random sampling variation? More precisely one could ask: How large must an observed difference
be before we can confidently claim it represents a genuine biological effect rather than mere sampling
variation?

1.2 Distinguishing Signal from Noise: A Practical Example

Before diving into formal statistical theory, let us consider a concrete biological example that illus-
trates our fundamental challenge:

3



Imagine we are comparing two drug treatments for their effect on blood glucose levels in diabetic
mice. For simplicity, let’s call them Treatment A and Treatment B. We want to determine which
treatment is more effective at lowering glucose levels.

If we measure just one mouse from each treatment group, we might observe that the mouse
receiving Treatment A has lower glucose levels than the mouse receiving Treatment B. But should
we conclude that Treatment A is generally superior?

This would be a dangerously hasty conclusion! There is chance that we have observed a partic-
ularly high or low value by chance.

Each individual mouse’s response is affected by numerous factors beyond the treatment itself:
genetic variation, initial health status, age, stress levels, and simple biological variability. What we
have observed in our single samples might not represent the typical response to each treatment.
More conceptually, ”glucose levels of Treatment A” and ”glucose levels of Treatment B” are random
variables of which single measurements are just realizations. Let’s recall this definition:

Definition 1.1 (Realization of a Random Variable). A realization of a random variable is a specific
observed value or outcome that the random variable takes in a single observation or experiment.
While the random variable itself represents the entire set of possible outcomes along with their
probabilities, a realization is just one concrete value from that set that occurs when we make a
measurement or observation.
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Figure 2: Realizations of random variables: Different conclusions based on single sample

One could then try to be more mindful and have better plan to how many measurement make
to lead to an answer. This is what we are going to call experiment design.

Definition 1.2 (Experiment Design). Experiment design is the process of planning how to collect
data in order to answer a research question or test a hypothesis effectively and efficiently. It involves
determining the number of samples to collect, the type of measurements to make, and the overall
structure of the study.

A basic idea of design is to collect more samples. Say we plan to measure glucose levels in 5 mice
per treatment group, with the plan to compute the sample means and compare them. For example,
if we collect measurements a1, a2, a3, a4, a5 from mice receiving Treatment A and b1, b2, b3, b4, b5 from
mice receiving Treatment B, we would calculate:

µ̂A =
a1 + a2 + a3 + a4 + a5

5
and µ̂B =

b1 + b2 + b3 + b4 + b5
5

The sample means provide better estimates, but random chance might still lead us astray. Why?
Because µ̂A and µ̂B , being sum of random variables, are themselves random variables, subject to
sampling variability.

The fact that a sample mean constitutes a random variable may seem intuitive, but it forms a
crucial foundation for statistical inference. When analyzing the distribution of such an estimator,
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Figure 3: Realizations of random variables: Single samples from Treatment A and Treatment B

we use the term ”sampling distribution” to distinguish it from the fixed population parameter it
estimates. This terminology emphasizes that the variability arises from the sampling process itself,
not from uncertainty about the true parameter value.

Definition 1.3 (Sampling Distribution). A sampling distribution is the probability distribution of
a given statistic (such as a sample mean) based on a random sample. It describes how the statistic
varies from sample to sample when repeatedly drawing samples of the same size from the same
population.

Lastly, continuing on the example, we can realize the statistic of interest is the difference between
the two means, ∆̂ = µ̂B− µ̂A. This is also a random variable, since it is the difference of two random
variables.
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Figure 4: Relation between mean sampling distributions and sample size

The last intuition is that if we had a complete description of this random variable (i.e. its
distribution and parameters would be identified), we could go pretty far. We could answer the
question of how likely is that the difference between the two treatments is due to chance. How?

We have seen this when studying pdf and cdf. We could calculate:

Pθ̂(∆ ≤ 0)

This is just an integral of the distribution of ∆ from 0 to ∞, where θ̂ is the estimated parameter
of the distribution of ∆. In practice one uses the cumulative distribution function (CDF) of the
random variable ∆ to calculate this probability:
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Figure 5: Relation between mean sampling distributions and sample size

Pθ̂(∆ ≤ 0) = CDF∆(0|θ)

This would give us the probability that the difference is just by chance. If this probability is very
low, we could conclude that the difference is not due to chance and that the treatments are indeed
different.

This example illuminates three fundamental insights:

• Individual observations can be misleading due to variability and measurement noise

• Increasing sample size enhances our ability to distinguish true effects from random variation

• The difference between group means is itself a random variable with a ”sampling distribution”
that depends on sample size.

This intuition points us toward a formal framework for drawing conclusions, but several questions
remain unaddressed:

• What distributions best model our sample statistics in different experimental contexts?

• How does sample size quantitatively affect the precision of our estimates?

• How do we convert probabilities into binary decisions (effect exists/doesn’t exist)?

1.3 The Philosophy of Statistical Testing

Statistical hypothesis testing provides a formal framework for distinguishing between genuine effects
and random variation — a structured approach that forms the backbone of scientific inference. It
allows us to move beyond subjective judgments on measurements and make rigorous, quantifiable
statements about the evidence for biological effects.

We will begin with Fisher’s approach to significance testing, which provides clear practical tools
for evaluating evidence against a null hypothesis. At its core lies a philosophical stance about
scientific knowledge: we cannot definitively ”prove” our scientific hypotheses; we can only gather
evidence that supports or contradicts them.

R.A. Fisher, one of the founders of modern statistics, developed significance testing as a frame-
work for evaluating evidence against a specific hypothesis. In this approach, we focus on assessing the
compatibility between our observed data and a reference hypothesis, rather than making definitive
claims about truth.
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Definition 1.4 (Null Hypothesis). The null hypothesis (H0) is a specific statement about a pop-
ulation parameter that represents the absence of the effect or phenomenon being studied. It serves
as a reference point against which we evaluate evidence.

For example, if we are comparing the expression of a gene X between healthy and diseased tissues,
our null hypothesis might be: ”There is no difference in the mean expression level of gene X between
healthy and diseased samples.”

In Fisher’s original framework, we do not explicitly formulate an alternative hypothesis. Instead,
we focus on evaluating how compatible our observed data is with the null hypothesis, which rep-
resents a state of ”no effect” or ”no difference.” By carefully evaluating evidence against the null
hypothesis, we maintain scientific rigor while still allowing for discovery when the evidence warrants
it.

1.4 Developing a Logical Approach to Testing

1.4.1 From Questions to Evidence

Our central challenge is to determine whether an observed difference is likely to be real or could be
attributed to chance alone. In Fisher’s framework, we ask: ”How compatible is our observed data
with the null hypothesis?”

To answer this question, we:

1. Define a precise null hypothesis (the ”no effect” scenario)

2. Calculate a measure of how far our observed results deviate from what we would expect under
this null hypothesis

3. Determine the probability of observing such a deviation (or more extreme) if the null hypothesis
were true

1.5 From Test Statistics to Probability Calculations

For a concrete example, imagine we have measured gene expression in 30 control and 30 treatment
samples, finding that the treatment group’s mean is 2.5 units higher. To determine if this difference
is meaningful, we need to calculate the probability of observing a difference this large or larger by
random chance alone.

But this presents a computational challenge. How do we calculate the probability of all possible
ways to observe a difference of 2.5 or greater? The space of possibilities is vast and complex.

Fisher’s insight was to develop a systematic approach:

1. Summarize the observed effect with a single number (a ”test statistic”)

2. Derive the probability distribution of this statistic under the null hypothesis

3. Compute the probability of observing a value as extreme or more extreme than the one we
observed.

So we are ready to give this definition more formally.

Definition 1.5 (P-value). The p-value is the probability of obtaining a test statistic as extreme as,
or more extreme than, the one actually observed, assuming that the null hypothesis is true.

It is important to note that this concept is frequently misunderstood and misinterpreted, even by
experienced scientists. It is not the probability that the null hypothesis is true! Nor the probability
that the observed effect is due to chance!
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Figure 6: Fisher’s approach to significance testing and evidence interpretation

1.5.1 The Role of Test Statistics and the P-value

In the early days of statistics, calculating probabilities for complex distributions or defining a sam-
pling distribution was challenging. Statisticians needed a clever approach to make these calculations
feasible. They developed test statistics that summarize observed effects into a standardized metric,
accounting for both sample size and variability, while following analytically tractable probability
distributions under the null hypothesis.

Historically, statisticians sought test statistics that were standardized, allowed for consistent
interpretation across different studies. They studied their probability distributions analytically and
tabulated critical values for common significance thresholds.

For our gene expression example, rather than working directly with the raw difference in means,
we would work with the t-statistic:

t =
X̄A − X̄B√

s2A
nA

+
s2B
nB

where X̄A and X̄B are the sample means, s2A and s2B are the standard deviations, and nA and nB

are the sample sizes.
Under the null hypothesis (no difference between populations), this standardized difference fol-

lows a t-distribution, we are going to see this later. Researchers could look up critical values in
statistical tables, eliminating the need for complex probability calculations. While modern comput-
ing has made these tables largely obsolete, the practice of using standardized test statistics remains
deeply embedded in statistical methodology.

Once we have our test statistic and its null distribution, we can calculate the p-value, which is
the cornerstone of Fisher’s approach to evidence evaluation.

Importantly, Fisher emphasized that these thresholds are conventional rather than rigid decision
boundaries, and the exact p-value should be reported to allow readers to form their own judgments
about the strength of evidence.

1.6 The Complete Framework of Statistical Testing

Having built the components step by step, we can now summarize the Fisher’s framework of signif-
icance testing:

1. Define the effect of interest and formulate a null hypothesis

2. Collect data and calculate an appropriate test statistic

3. Determine the distribution of this statistic under the null hypothesis

4. Calculate the p-value as the probability of observing a test statistic as extreme or more extreme,
assuming the null hypothesis is true
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5. Interpret the p-value as a measure of evidence against the null hypothesis

This framework is remarkably general—it applies to a wide range of testing scenarios, from
simple comparisons to complex experimental designs. The specific details (which test statistic,
which distribution) may vary, but the logical structure remains the same.

2 The Foundation: Sample Mean, Standard Error, and the
Central Limit Theorem

2.1 The Foundation: Sample Mean and its Distribution

At the core of statistical testing lies our ability to estimate population parameters from sample data.
The most fundamental estimator is the sample mean:

X̄ =
1

n

n∑
i=1

Xi

where X1, X2, . . . , Xn are independent observations from a population.

2.1.1 Sampling Distribution of the Mean

We already mentioned that when we calculate a sample mean, we are obtaining one realization
of a random variable. The distribution of these potential sample means is called the sampling
distribution.

Definition 2.1 (Sampling Distribution of the Mean). The sampling distribution of the mean is the
probability distribution of the sample mean X̄ across all possible samples of size n from a population.

This distribution has several important properties:

Property 2.2 (Expected Value of Sample Mean). The expected value of the sample mean equals
the population mean:

E[X̄] = µ

This property makes the sample mean an unbiased estimator of the population mean.

Property 2.3 (Variance of Sample Mean). The variance of the sample mean can be derived as
follows:

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2
Var

(
n∑

i=1

Xi

)
Since the observations X1, X2, . . . , Xn are independent, the variance of their sum equals the sum

of their variances:

Var(X̄) =
1

n2

n∑
i=1

Var(Xi) =
1

n2

n∑
i=1

σ2 =
1

n2
· nσ2 =

σ2

n

This reveals a crucial insight: the variability of the sample mean decreases as sample size in-
creases, making larger samples more reliable.
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2.1.2 Standard Error of the Mean

The standard deviation of a sampling distribution is called the standard error. For the sample mean:

Definition 2.4 (Standard Error of the Mean). The standard error of the mean (SEM) quantifies
the precision of the sample mean as an estimate of the population mean:

SEM =
σ√
n

where σ is the population standard deviation and n is the sample size.

In practice, we rarely know the population standard deviation σ. Instead, we estimate it using
the sample standard deviation s:

ˆSEM =
s√
n

The standard error is fundamental to hypothesis testing because it allows us to quantify how
much the sample mean is expected to vary from the true population mean by chance alone. This
forms the basis for determining whether an observed difference is statistically significant.

2.1.3 Sampling Distribution of the Sample Standard Deviation

Definition 2.5 (Sample Standard Deviation). The sample standard deviation s is an estimator of
the population standard deviation σ, calculated as:

s =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2

where X1, X2, . . . , Xn are the observed values and X̄ is the sample mean.

Definition 2.6 (Chi-Square Distribution). The chi-square distribution with k degrees of freedom,
denoted χ2

k, is the distribution of the sum of squares of k independent standard normal random
variables. If Z1, Z2, . . . , Zk are independent standard normal random variables, then the random
variable X =

∑k
i=1 Z

2
i follows a chi-square distribution with k degrees of freedom, written as:

X ∼ χ2
k

and its probability density function is:

fχ2
k
(x) =

1

2k/2Γ(k/2)
xk/2−1e−x/2 for x > 0

where Γ is the gamma function.

Why are we interested in such a specific, seemingly odd, and complex distribution? Summing
independent squared values forms the foundation for constructing variances, standard errors, and
similar measures. As a result, we will encounter this distribution frequently. Unlike the sample
mean, the sampling distribution of the sample standard deviation is more complex. For samples
from a normal distribution:

Property 2.7 (Sampling Distribution of Sample Variance). If samples are drawn from a normal

distribution with variance σ2, then the quantity (n−1)s2

σ2 follows a chi-square distribution with n− 1
degrees of freedom.
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Let’s try to demonstrate it. If samples X1, X2, . . . , Xn are drawn from a normal distribution

N (µ, σ2), we can show that (n−1)s2

σ2 follows a chi-square distribution with (n−1) degrees of freedom.

Let Zi =
Xi−µ

σ , so each Zi ∼ N (0, 1). Then:

(n− 1)s2

σ2
=

1

σ2

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(
Xi − µ

σ
− X̄ − µ

σ

)2

=

n∑
i=1

(Zi − Z̄)2 =

n∑
i=1

Z2
i − nZ̄2 (1)

Since Zi ∼ N (0, 1), we know that
∑n

i=1 Z
2
i ∼ χ2

n by the definition of the chi-square distribution.
Also,

√
nZ̄ ∼ N (0, 1), so nZ̄2 ∼ χ2

1. Furthermore, the sum
∑n

i=1 Z
2
i and the mean Z̄ are

independent. Therefore,
∑n

i=1(Zi − Z̄)2 =
∑n

i=1 Z
2
i − nZ̄2 is the difference of two independent chi-

square variables, with n and 1 degrees of freedom respectively, resulting in a chi-square distribution

with n− 1 degrees of freedom. Hence, (n−1)s2

σ2 ∼ χ2
n−1.
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2.2 The Central Limit Theorem

One of the most important properties of the sample mean is that, regardless of the shape of the
population distribution, the sampling distribution of the mean approaches a normal distribution as
the sample size increases.

Theorem 2.8 (Central Limit Theorem). For a sufficiently large sample size, the sampling dis-
tribution of the mean approaches a normal distribution regardless of the shape of the population
distribution, as long as the population has a finite variance.

Specifically, as n increases:
X̄ − µ

σ/
√
n

d−→ N (0, 1)

where
d−→ indicates convergence in distribution.

This remarkable result implies that even if our original data comes from a non-normal distribution
(even a discrete or strictly positive one, as is often the case with biological measurements!) the
sampling distribution of the mean will still approximate a normal distribution, provided the sample
size is sufficiently large. The Central Limit Theorem justifies our use of normal-based inference in
many situations, even when the underlying data might not be normally distributed. However, for
small samples or when the population is highly skewed, we need to be more cautious about applying
these methods.
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3 Practical Testing Scenarios

With this framework established, we can now apply it to common testing scenarios in biological
research. Rather than memorizing different tests for different situations, we will focus on under-
standing how the general framework adapts to specific contexts. For the following results to follow
smoothly, we will review some basic concepts of probability and statistics.

3.1 Starting Simple: One-Sample Tests

The simplest statistical testing scenario occurs when we have a single sample from a distribution
and want to make inferences about the population parameter. For example, imagine we’ve measured
the expression levels of a particular gene in 30 tumor samples, and, informally speaking, we want to
know if the mean expression level differs from a reference value observed in healthy tissue, assumed
known (with certainty).

3.2 One-Sample Tests: If We Knew the Population Variance

Before diving into the realistic scenario where we must estimate the population variance, it’s in-
structive to consider the simpler case where the population variance σ2 is known.

While this is rarely the case in practice, understanding this scenario provides valuable insight
into how statistical tests work and establishes a foundation for understanding the more practical
case with estimated variance.

3.2.1 The Z-Test: Testing with Known Variance

To address this question, we need a test statistic that quantifies how far our sample mean x̄ is from
the reference value µ0 that we want to compare our sample to. A natural choice would be the simple
difference: x̄− µ0. However, this raw difference doesn’t account for:

• Sample size: The same raw difference is more meaningful with larger samples

• Variability: The same raw difference is more meaningful when data has less variability

Since the sample mean X̄ = 1
n

∑n
i=1 Xi is a sum of random variables, we can apply the Central

Limit Theorem. When the population variance σ2 is known, the standardized sample mean follows
a standard normal distribution:

X̄ − µ

σ/
√
n

∼ N (0, 1)

Under the null hypothesis H0 : µ = µ0, our test statistic becomes:

z =
x̄− µ0

σ/
√
n

This z-statistic directly quantifies how many standard errors our observed mean deviates from
the hypothesized value, with the sampling distribution being standard normal.

3.2.2 Calculating the P-value

We can consider a directional test (one-sided) or a non-directional test (two-sided) based on our
research question. For a one-sided test, the p-value is the probability of observing a value as extreme
as the one we observed in the direction specified by the alternative hypothesis. For a two-sided test,
the p-value is the probability of observing a value as extreme in either direction (bigger or smaller
than the reference value).

For one-sided tests:
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• Lower-tailed test (H0 : µ ≥ µ0 vs Ha : µ < µ0): p = Φ(z)

• Upper-tailed test (H0 : µ ≤ µ0 vs Ha : µ > µ0): p = 1− Φ(z)

where Φ is the cumulative distribution function of the standard normal distribution.
For a two-sided test (where we’re testing whether the population mean differs from µ0 in either

direction), the p-value is:

p = 2×min{P (Z ≤ z), P (Z ≥ z)} = 2×min{Φ(z), 1− Φ(z)}

8 10 12 14 16 18 20 22 24
Biomarker Level (ng/mL)

SE = / n = 4.8/ 30 = 0.88
Z = (x - )/SE = (16.35 - 15)/(0.88) = 1.54

Cancer Biomarker Measurements vs Reference Value
Sample mean: 16.35
Reference value ( ): 15

(a) Sample mean vs reference value
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(b) One-tailed Z-test
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(c) Two-tailed Z-test

Figure 8: One-sample Z-test visualization

The first plot shows the data we want to test: a jittered set of points representing individual
observations, with their sample mean clearly indicated. A horizontal reference line represents the
reference value µ0 that we’re testing against. The second plot illustrates how the test statistic is
calculated and how the p-value is determined from the standard normal distribution.

3.2.3 From Theory to Practice - Additional Uncertainty

In reality, we rarely know the true population variance σ2 and must estimate it from our sample.
This additional uncertainty means we need to modify our approach, leading to Student’s t-test,
which we’ll explore next. Let’s consider this simple substitution to the z-statistic:

t =
x̄− µ0

s/
√
n

It looks like almost the same as the z-statistic, but we have substituted a constant σ with a
random variable s. s is a random variable because it is calculated from the data, and depends on
the specific sample we have drawn.

The intuition of how the summary statistics is affected by this change is that we risks to make
values more extreme than they should be sometimes. So the random variable t cannot follow a
normal distribution, and we expect an overdispersed version of it.

We will derive which distribution exactly is needed in the next section. This is not a trivial
derivation or one to memorize, however it is important to understand how these conclusions are
reached in statistics.

3.3 A simplified derivation of the t-Distribution

To understand where the t-distribution comes from, we’ll start with our test statistic and see how
it relates to distributions we already know. We have:

t =
x̄− µ0

s/
√
n

Let’s multiply and divide the numerator by σ:
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t =
σ(x̄− µ0)/σ

s/
√
n

=
σ/

√
n · (x̄− µ0)/(σ/

√
n)

s/
√
n

=
Z
s
σ

where Z = x̄−µ0

σ/
√
n
∼ N (0, 1) under the null hypothesis.

We know from earlier that (n−1)s2

σ2 ∼ χ2
n−1. Let’s define V = (n−1)s2

σ2 , so s
σ =

√
V

n−1 .

This gives us:

t =
Z√
V

n−1

Now we have t as a function of two random variables, Z and V , with known distributions:

• Z ∼ N (0, 1)

• V ∼ χ2
n−1

• Z and V are independent

To find the distribution of t, we need to apply a change of variables. Let’s define a new variable
W = V , so our transformation is:

T =
Z√

W/(n− 1)
, W = V

The inverse transformation is:

Z = T

√
W

n− 1
, V = W

The Jacobian matrix for this transformation is:

J =

(
∂z
∂t

∂z
∂w

∂v
∂t

∂v
∂w

)
=

(√
w

n−1
t

2
√

w(n−1)

0 1

)

The determinant of this Jacobian is:

|J | =
√

w

n− 1

By the change of variables rule, the joint PDF of T and W is:

fT,W (t, w) = fZ,V (z(t, w), v(t, w)) · |J |

Since Z and V are independent:

fZ,V (z, v) = fZ(z) · fV (v) =
1√
2π

e−z2/2 · 1

2(n−1)/2Γ((n− 1)/2)
v(n−1)/2−1e−v/2

Substituting our transformation:

fT,W (t, w) =
1√
2π

e−(t
√

w
n−1 )

2/2 · 1

2(n−1)/2Γ((n− 1)/2)
w(n−1)/2−1e−w/2 ·

√
w

n− 1
(2)

=
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)
· wn/2−1 · e−

w
2 (1+ t2

n−1 ) (3)
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To find the marginal distribution of T , we integrate over all possible values of W :

fT (t) =

∫ ∞

0

fT,W (t, w) dw

fT (t) =
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)

∫ ∞

0

wn/2−1 · e−
w
2 (1+ t2

n−1 ) dw (4)

This integral takes the form of a gamma function:∫ ∞

0

xα−1e−βx dx =
Γ(α)

βα

With α = n/2 and β = 1
2 (1 +

t2

n−1 ):

fT (t) =
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)
· Γ(n/2)

( 12 (1 +
t2

n−1 ))
n/2

(5)

=
Γ(n/2)√

π(n− 1)Γ((n− 1)/2)
·
(
1 +

t2

n− 1

)−n/2

(6)

After rearranging and using properties of the gamma function, we obtain the probability density
function of Student’s t-distribution with ν = n− 1 degrees of freedom:

f(t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + t2

ν

)− ν+1
2

The t-distribution approaches the standard normal distribution as the degrees of freedom in-
crease, reflecting how our uncertainty about σ diminishes with larger sample sizes.
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(b) Joint distribution of W and T after transformation

Figure 9: Joint distributions in the derivation of the t-distribution

The pdf of this distribution is given by:

f(t) =
Γ
(
n−1
2

)
√
nπΓ

(
n
2

) (1 + t2

n

)−n−1
2

The t-distribution resembles the normal distribution but has heavier tails, reflecting the addi-
tional uncertainty from estimating the population variance.

As sample size increases, the t-distribution approaches the standard normal distribution, reflect-
ing diminishing uncertainty in our variance estimate.
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Theorem 3.1 (Student’s t-distribution). When sampling from a normally distributed population
with unknown variance, the standardized sample mean follows a t-distribution with n-1 degrees of
freedom:

t =
x̄− µ0

s/
√
n

∼ tn−1

where x̄ is the sample mean, µ0 is the population mean, s is the sample standard deviation, and n
is the sample size.
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Figure 10: t-distribution and its convergence to the normal distribution

3.3.1 Performing the Test

In this framework, we can now formally test our hypothesis:

• Our parameter of interest is the population mean µ

• Null hypothesis: µ = µ0 (reference value)

• Test statistic: t = x̄−µ0

s/
√
n
, which follows a t-distribution with n− 1 degrees of freedom

• P-value: probability of observing a test statistic as extreme or more extreme than the one we
calculated

The key insight is that even when the null hypothesis is true, we don’t expect our sample mean
to exactly equal µ0 due to random variation. The test statistic quantifies ”how many standard errors
away” our sample mean is from the hypothesized value, and the t-distribution tells us how likely
such deviations are to happen by chance.

Let’s consider a biological example to illustrate the t-test in practice:

10 11 12 13 14 15
OCT4 Expression Level

SE = s/ n = 1.77/ 5 = 0.79
t = (x - )/SE = (12.15 - 10)/(0.79) = 2.71

OCT4 Expression vs Reference Value
Sample mean: 12.15
Reference value ( ): 10

(a) OCT4 expression data
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(b) One-tailed t-test (df=4)
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(c) Two-tailed t-test (df=4)

Figure 11: One-sample t-test visualization
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Suppose we have measured the expression of the stemness gene OCT4 in 5 stem cell cultures,
and we want to test whether the mean expression differs from a reference value we have established
as normal value for this culture in the past. The above plots show the raw data, the one-tailed t-test
and the two-tailed t-test.

3.4 Two-Sample Tests: Comparing Independent Groups

The two-sample t-test is one of the most common statistical tests found in biological research. In
biological papers, this test is typically reported above bar plots showing means with standard error
of the mean (SEM) error bars, allowing readers to visually assess the difference. These plots often
feature a horizontal line connecting the bars with asterisks indicating the significance level (e.g., *
for p < 0.05, ** for p < 0.01, *** for p < 0.001).

Applying our framework with the Welch test, which doesn’t assume equal variances between
groups:

• Parameter of interest: difference between population means µ1 − µ2

• Null hypothesis: µ1 − µ2 = 0

• Test statistic: t = x̄1−x̄2√
s21
n1

+
s22
n2

, which accounts for potentially different variances in each group

• Null distribution: approximated by a t-distribution with degrees of freedom estimated from
the data

• P-value: probability of observing a test statistic as extreme or more extreme, assuming no
difference between the population means
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Figure 12: Two-sample test visualization in biological research

The Welch test is more general than tests that assume equal variances, making it appropriate
for a wide range of biological data where variance homogeneity cannot be assumed.

3.4.1 Biological Example: Protein Expression in Western Blot Analysis

Let’s consider a concrete biological example. Suppose researchers are investigating the effect of a
drug treatment on the expression of a protein involved in cell signaling. They perform western blot
analysis on protein extracts from control and treated cell cultures, then quantify the band intensities
to measure relative protein levels.

17



The question is whether the drug treatment significantly alters the expression of this protein.
The researchers collect measurements from 6 independent control samples and 6 independent drug-
treated samples.
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(a) Western blot protein quantification data from con-

trol and drug-treated samples
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(b) Two-tailed t-test for the protein expression data

Figure 13: Two-sample t-test applied to western blot protein quantification data

In this example, we calculate:

• Sample means: x̄control = 1.0 (normalized), x̄treated = 1.75

• Sample standard deviations: scontrol = 0.22, streated = 0.34

• Sample sizes: ncontrol = ntreated = 6

Our test statistic is:

t =
x̄treated − x̄control√

s2treated

ntreated
+

s2control

ncontrol

=
1.75− 1.0√
0.342

6 + 0.222

6

≈ 4.78

Under the null hypothesis, this follows approximately a t-distribution with degrees of freedom
calculated using the Welch-Satterthwaite equation (approximately 9 df in this example). For a two-
sided test, the p-value is the probability of observing a t-statistic with absolute value as large or
larger than 4.78, which is approximately p = 0.001.

The small p-value suggests strong evidence against the null hypothesis, indicating that the drug
treatment significantly increases the expression of the target protein.

The Welch t-test is particularly valuable in biological research where equal variances between
groups cannot be assumed.

3.5 Working with Paired Samples

In many biological experiments, we have natural pairing between observations: before and after
measurements on the same subjects, or on the same biological samples at different time points.

This pairing creates a dependency structure that must be accounted for in our analysis. Taking
in consideration the pairing can change significantly our conclusions.

Let’s consider a hypothetical example where we’re testing the effect of a cognitive training pro-
gram on memory performance in mice. We measure the memory scores of 9 mice before and after
training, and we want to know if the training significantly improves memory. The between-subject
variability is high, so it is difficult to identify the improvement from the mean and distribution of
the pre and post training but we observe consistent improvements within each mouse.

The insight with paired designs is that we can convert the two-sample problem into a one-sample
problem by analyzing the differences within each pair. Instead of comparing two separate sets of
measurements, we:
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Figure 14: Paired vs. unpaired tests: How accounting for experimental design affects statistical power

• Calculate the difference for each pair

• Test whether the mean difference is zero using a one-sample test

This approach:

• Accounts for the dependency between paired observations

• Reduces variability by controlling for subject-specific factors

• Typically provides greater statistical power than unpaired comparisons

19



4 Multiple Testing and False Discovery Control

4.1 From Evidence to Decisions: The Neyman-Pearson Framework

While Fisher’s approach focuses on evaluating evidence, Jerzy Neyman and Egon Pearson later
developed a complementary framework that emphasizes decision-making with controlled error rates.
This extension introduces several additional concepts that are now widely used in statistical testing.

4.1.1 Alternative Hypotheses and Binary Decisions

The Neyman-Pearson framework explicitly introduces the concept of an alternative hypothesis and
frames statistical testing as a binary decision problem.

Definition 4.1 (Alternative Hypothesis). The alternative hypothesis (Ha or H1) is a statement
that contradicts the null hypothesis and represents the presence of the effect being studied.

In a gene expression example, the alternative hypothesis would be: ”There is a difference in the
mean expression level of gene X between healthy and diseased samples.” The testing process now
involves deciding between two competing hypotheses based on our observed data, rather than simply
evaluating evidence against a single hypothesis.

4.1.2 Significance Level and Error Types

The Neyman-Pearson approach introduces the concept of a significance level as a decision threshold,
along with a formal categorization of possible errors. Let’s define these key concepts.

Definition 4.2 (Significance Level). The significance level (α) is the probability threshold below
which we reject the null hypothesis. It represents the maximum rate of false positives we are willing
to accept.

When we compare our calculated p-value to this threshold:

• If p < α, we reject the null hypothesis

• If p ≥ α, we fail to reject the null hypothesis

This decision process can lead to two types of errors:

Definition 4.3 (Type I Error). A Type I error occurs when we reject the null hypothesis when it
is actually true (a false positive).

Definition 4.4 (Type II Error). A Type II error occurs when we fail to reject the null hypothesis
when it is actually false (a false negative).

H0 True H0 False

Reject H0 Type I Error Correct Decision

Fail to Reject H0 Correct Decision Type II Error

The significance level α directly controls the Type I error rate: if we set α = 0.05, we ensure
that if the null hypothesis is true, we will incorrectly reject it no more than 5% of the time.

The probability of a Type II error is denoted by β, and the power of a test (the probability of
correctly rejecting a false null hypothesis) is 1− β. Unlike the Type I error rate, the Type II error
rate is not directly controlled in the testing procedure and depends on factors like sample size, effect
size, and variability.
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Figure 15: Type I and Type II errors in hypothesis testing

4.2 A Crucial Property: Uniformity Under the Null

For a valid statistical test, the distribution of p-values under the null hypothesis must be uniform be-
tween 0 and 1. This property is the foundation of error rate control and ensures that our significance
threshold α directly controls the false positive rate.

Theorem 4.5 (Uniformity of P-values Under the Null). If the null hypothesis is true, and if the test
statistic’s distribution is continuous, then the p-value follows a uniform distribution on the interval
[0,1].

This uniformity guarantees that when the null hypothesis is true:

• The probability of obtaining a p-value less than or equal to 0.05 is exactly 0.05

• The probability of obtaining a p-value less than or equal to any threshold α is exactly α
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Figure 16: Uniform distribution of p-values under the null hypothesis

When the null hypothesis is false, the distribution of p-values shifts toward zero, with the extent
of this shift depending on the effect size and sample size. This property becomes particularly
important when we consider multiple testing scenarios.
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4.3 The Multiple Testing Problem in High-Throughput Biology

Modern biological research often involves testing many hypotheses simultaneously, creating unique
statistical challenges that extend beyond traditional hypothesis testing:

• Testing thousands of genes for differential expression in RNA sequencing

• Examining millions of genetic variants for disease association in genome-wide studies

• Analyzing hundreds of metabolites in a metabolomics study

This high-throughput nature creates a fundamental challenge: when we perform many tests,
the probability of obtaining false positives increases dramatically, even when each individual test
maintains a controlled false positive rate.

To understand why, consider testing 1,000 genes for differential expression when none are actually
differentially expressed (i.e., all null hypotheses are true). If we use α = 0.05 for each test:

• Each test has a 5% chance of producing a false positive

• Expected number of false positives = 1, 000× 0.05 = 50

Without correction, we would expect about 50 ”significant” results even when no real effects
exist! This is a serious problem that can lead to spurious conclusions and wasted research efforts.

To illustrate this challenge, let’s consider a typical RNA sequencing experiment comparing gene
expression between two conditions (e.g., disease vs. healthy). For approximately 20,000 human
protein-coding genes, we conduct 20,000 separate statistical tests asking essentially the same question
for each gene: ”Is this gene differentially expressed between conditions?”

4.4 The Problem of P-value Hacking and Multiple Testing

When we test a single hypothesis using a significance threshold of α = 0.05, we accept a 5% risk of
a Type I error (false positive). However, when we conduct multiple tests, this error rate applies to
each individual test, causing the experiment-wide error rate to increase dramatically.

For example, if all 20,000 genes truly had identical expression between conditions (i.e., all null
hypotheses are true), we would still expect 20, 000 × 0.05 = 1, 000 genes to show ”significant”
results by chance alone! This is why researchers performing high-throughput experiments often find
”interesting” results even with random data.

This problem necessitates methods that account for the multiplicity of tests, particularly in
biological research where false discoveries can lead to wasted resources in follow-up experiments or
even misleading clinical applications.

4.5 Family-Wise Error Rate and the Bonferroni Correction

The most straightforward approach to multiple testing is to control the Family-Wise Error Rate
(FWER) - the probability of making even one false discovery across all tests.

Definition 4.6 (Family-Wise Error Rate). The Family-Wise Error Rate (FWER) is the probability
of making at least one Type I error (false positive) among all the hypothesis tests conducted.

For m independent tests, each with significance level α, the probability of making at least one
Type I error is:

FWER = 1− (1− α)m
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which grows rapidly with the number of tests. For example, with α = 0.05 and m = 100 tests,
FWER ≈ 0.994, meaning we’re almost certain to get at least one false positive.

The simplest correction method is the Bonferroni correction, which divides the desired signifi-
cance level by the number of tests:

αcorrected =
α

m
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Figure 17: Family-wise error rate and Bonferroni correction

While mathematically sound, the Bonferroni correction becomes extremely conservative for large
numbers of tests. For 20,000 genes, the corrected threshold would be α = 0.05/20, 000 = 0.0000025,
which is so stringent that many true discoveries might be missed. This trade-off between Type I
and Type II errors becomes increasingly problematic as the number of tests grows.

4.6 A Closer Look at P-value Distributions in Real Data

In actual biological datasets, p-values rarely follow a uniform distribution because some of the null
hypotheses are indeed false (e.g., some genes are truly differentially expressed). Instead, we typically
observe a mixture distribution:
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Figure 18: Empirical p-value distribution

This observed p-value distribution provides valuable information. The relative heights of these
two components (uniform vs. enriched near zero) give us insight into the proportion of true vs. false
null hypotheses in our dataset. This insight forms the foundation for a more practical approach to
multiple testing correction.

23



4.7 False Discovery Rate: A More Practical Approach

In many biological contexts, we’re less concerned with avoiding any false positives and more con-
cerned with maintaining a reasonable proportion of true discoveries among our significant results.
This led to the development of False Discovery Rate (FDR) control by Benjamini and Hochberg.

Definition 4.7 (False Discovery Rate). The False Discovery Rate (FDR) is the expected proportion
of false positives among all rejected null hypotheses (among all ”discoveries”).

FDR = E

[
Number of false positives

Total number of rejections

]
If we call 100 genes ”significant” and expect an FDR of 0.1, then approximately 10 of these

genes are likely false positives, while 90 represent true effects. This is often a more useful metric for
biological research than the more stringent FWER.

With the FDR approach, we can understand the empirical p-value distribution as a mixture of
two components:

• A uniform component representing true null hypotheses

• A component concentrated near zero representing false null hypotheses (true effects)

If we can estimate the proportion of true null hypotheses (π0), we can better understand the
expected proportion of false discoveries when using any particular significance threshold.

4.8 The Two-Groups Model and Local FDR

A deeper understanding of multiple testing comes from the ”two-groups model” introduced by Efron.
This model explicitly separates p-values into two categories:

f(p) = π0f0(p) + (1− π0)f1(p)

where:

• π0 is the proportion of true null hypotheses (tests where there is genuinely no effect)

• f0(p) is the density of p-values under the null hypothesis (uniform on [0,1])

• f1(p) is the density of p-values under the alternative hypothesis (concentrated near 0)

• f(p) is the overall mixture density we observe in our data

This model allows us to directly estimate what proportion of significant results are false positives
at any p-value threshold.

Definition 4.8 (Local False Discovery Rate). The local false discovery rate at a specific p-value p
is the probability that a test with exactly that p-value comes from the null hypothesis:

local FDR(p) =
π0f0(p)

f(p)

Unlike the traditional FDR, which applies to all tests with p-values below a threshold, the local
FDR provides a test-specific measure of reliability. For example, a test with local FDR = 0.1 has
approximately a 10% chance of being a false positive.

To extend from local FDR to the overall FDR for a significance threshold, we integrate over the
p-value distribution:
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F (p) =

∫ p

0

f(t)dt

The overall FDR for a threshold p is then:

FDR(p) =
π0p

F (p)

This represents the expected proportion of false discoveries among all tests with p-values less
than or equal to p.
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Figure 19: Visualizing the Two-Groups Model and FDR Calculation

4.9 The Benjamini-Hochberg Procedure

The most widely used method for controlling FDR is the Benjamini-Hochberg (BH) procedure:

1. Rank all p-values from smallest to largest: p(1) ≤ p(2) ≤ ... ≤ p(m)

2. Find the largest k such that p(k) ≤ k
mα

3. Reject all null hypotheses with p-values less than or equal to p(k)

This procedure guarantees that, under certain assumptions, the expected FDR will be at most
α (also called the q-value in this context).

The BH procedure operates by identifying the significance threshold that balances the expected
proportion of false positives. It’s less conservative than FWER-controlling methods like Bonferroni,
allowing for more discoveries while still maintaining a specified proportion of true findings.

4.10 Beyond BH: q-values and Additional FDR Methods

The q-value, introduced by John Storey, is the FDR analog of the p-value. For a given test, the
q-value represents the minimum FDR that would be incurred if we called that test significant.

Definition 4.9 (q-value). The q-value for a particular test is the expected proportion of false
positives among all tests with equal or smaller p-values.

Unlike p-values, q-values directly account for multiple testing and provide a more interpretable
measure in high-throughput settings. A gene with q-value = 0.05 means that 5% of genes considered
significant at that threshold are expected to be false positives.
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Figure 20: The Benjamini-Hochberg procedure for controlling FDR and q-values

4.11 Practical Considerations in Biological Applications

When applying multiple testing procedures to biological data, several practical considerations arise:

1. Independence assumptions: Many correction methods assume independence between tests,
which rarely holds in biology (e.g., correlated gene expression). More conservative corrections
may be needed when tests are dependent.

2. Pre-filtering: Removing tests that are unlikely to yield significant results (e.g., filtering out
low-expression genes before testing) can reduce the multiple testing burden.

3. Effect size considerations: Statistical significance does not imply biological significance.
Tests with tiny p-values might represent biologically negligible effects in large datasets.

4. The value of exploratory analysis: In early-stage research, a higher FDR might be ac-
ceptable to generate hypotheses that will be validated in follow-up experiments.

The choice of multiple testing strategy should be guided by the specific research context, the
number of tests performed, and the relative costs of Type I and Type II errors in the particular
biological system under study.
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