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The Problem - Finding Model Parameters

m We have data xi, ..., x,
m Data is assumed following a distribution family

e Problem: Need to determine specific parameters but Infinite combinations
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The Problem - Finding Model Parameters

m We have data xi, ..., x,

m Data is assumed following a distribution family

e Problem: Need to determine specific parameters but Infinite combinations
Example: Height measurements follow normal distribution

Student Heights with Different Normal Distributions

Data

Density
o
s
2
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Height (cm)
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Introduction to Maximum Likelihood Estimation

The Problem - Finding Model Parameters

We have data xq, ..., X,

Data is assumed following a distribution family

Problem: Need to determine specific parameters but Infinite combinations
Example: Height measurements follow normal distribution

m Which p and o best describe our data?

Student Heights with Different Normal Distributions Candidate Normal Distributions for Height Data
Data 0.10 — u=170, 0=8
0.07
0.06 4 0.08
0.05
> > 0.06
2 0.04 a
a a
0.034 0.04
0.02 4 0.02
0.01
0.00
0.00
150 155 160 165 170 175 180 185 130 140 150 160 170 180 190 200 210
Height (cm) Height (cm)
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Introduction to Maximum Likelihood Estimation

A few examples

RNA Molecule Counts RNA Molecule Counts - Model Fitting
(Poisson Distribution)

'_é\ 0.10
2]
5 0.05
go
0‘000 5 10 15 20 25 0.00 0 5 10 15 20 25
Protein Lifetimes Protein Lifetimes - Model Fitting
(Gamma Distribution) 0.04 -~
0.04 - / --- a=15,6=12
. > / — a=2.0,0=10
-éu “5 === a=2.5,0=8
[}
£ 0.02 5 0.02
L A
a
0.00 0 20 40 60 80 0.00 0 20 40 60 80
Mixed Cell Populations Mixed Cell Populations - Model Fitting
(Bimodal Normal Distribution)
0.10
Z
%]
g 0.05
O
[a]
0.00 5 10 15 20 25 0.00 5 10 15 20 25
Value Value
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The Likelihood Function: A New Perspective

(0], %) = ]| plxl6)
i=1
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Introduction to Maximum Likelihood Estimation

The Likelihood Function: A New Perspective

(0], %) = ]| plxl6)
i=1

From: P(data — parameters) To: L(parameters — data)

Treat observed data as fixed

Parameters become variables

"Which parameters make our data most probable?”
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Introduction to Maximum Likelihood Estimation

Independence in the Likelihood

L(Olx, - xa) = [ (1)
i=1

¢ Independence: The product is allowed only between terms corresponding to
different observations

m Example: Nuclear and cytoplasmic diameters of the same cell - not independent -
a single vector observation - in bold
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The Log-Likelihood: From Products to Sums

((8) = log L(B]x1, ..., xa) = Y _ log p(x;|0)
i=1
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Introduction to Maximum Likelihood Estimation

The Log-Likelihood: From Products to Sums

((8) = log L(B]x1, ..., xa) = Y _ log p(x;|0)
i=1

Why? Products become sums

Preserves maximum (log is monotonic)

Prevents numerical underflow

m Easier to optimize
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The Maximum Likelihood Principle

e The Core Principle:

Onmie = argmax L(0|x1, ..., xp) = arg max £(6)
0 0

e Intuitive Interpretation:
m Choose parameters that make observed data most probable
m " Which distribution most likely generated our data?”

Student Heights with Different Normal Distributions

Data
0.07 u=170, 0=8 (true)
u=175, 0=8
0.06 —— p=170, 0=12
0.05
2
2 0.04
5
8
0.03
0.02
0.01
0.00
140 150 160 170 180 190 200
Height (cm)
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Introduction to Maximum Likelihood Estimation

The Likelihood Surface

Student Heights with Different Normal Di

Data

0.07 —— =170, 0=8 (true)
—— u=175,0=8
0.06 — u=170,0=12
005
2
2004
&

e Bivariate Optimization:

180 190 200

m Must find optimal ¢ and o simultaneously

B B . . 140 150 160 170
m Surface height indicates goodness of fit Helot (em
m Maximum corresponds to MLE solution Log tlkelihood Surface for Helght Datz.

> T veemaes] [

11 ® MLE estimate -36

e Visualization: § 72
m Each point represents parameter g :
combination g g
m Brighter colors indicate higher likelihood ;g ’:‘I’ZZ-“

° -252

—288

155 160 165 170 175 180 185 190
H (mean height in cm)
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Reflecting on the Likelihood

L(Olxs, - xa) = [ p(x:10)
i=1

m The likelihood is primarily function of the parameters 8, because typically the
data xi, ..., x, was collected and can be considered fixed.

m Yet its expression depends on both the data and parameters, meaning that adding
new observations changes the entire function.
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Reflecting on the Likelihood (1)

Data Distribution (n=1) Log-likelihood Surface

2.0
1.2 Y Ground True
MLE
1.01 0
15 35
] O o
2 0.8 g E
=1 Q -4Q
0.6 1.0
8 5 <
= o
0.44 o o
0.5 -5~
0.24
0.0 -6
20 40 60 1 2 3 4 5
Value u (log-scale)

e With one observation: Very broad likelihood
m Many parameter combinations explain the data well

m High uncertainty in parameter estimates
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (2)

Data Distribution (n=2) Log-likelihood Surface

2.0
1.2 Y Ground True
MLE
1.0 %
15 1 -10 5
] ) <)
208 g £
2 0.6 51.0 -11¢
© o =
= =
0.44 o )
05 -127
0.24
0.0 T T ' -13
20 40 60 1 2 3 4 5
Value u (log-scale)

e With eight observations: Likelihood narrows
m Fewer parameter combinations are compatible

m Parameter estimates become more precise
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (3)

Data Distribution (n=8) Log-likelihood Surface

25 2.0
Y Ground True
i O MLE -30
2.0
15 ; -
. <]
2 151 5] -31¢
= Q T
3 510 g
©1.01 o =
. < -329
—
05 0.5
-33
0.0 T T !
20 40 60 1 2 3 4 5
Value u (log-scale)

e With thirty-two observations: Sharp likelihood
m Clear peak emerges
m Much more confident parameter estimates

Gioele La Manno
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (4)

Data Distribution (n=32) Log-likelihood Surface

2.0
* Ground True ~119
O MLE
6
15 °
() — o
- © 1202
S4 b =
=3 d Q
38 1.0 =
) — _|
% 121 >
—
2 05
-122
0
20 40 60 1 2 3 4 5
Value H (log-scale)

e With 100 observations: Likelihood narrows
m Fewer parameter combinations are compatible

m Parameter estimates become more precise
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roduction to Maximum Likelihood Estimation

Marginal Likelihood Profiles

Log-likelihood Surface for Height Data

*  True parameters
o MLE estimate
| /

e Marginal Likelihood:

o

Lmarginal(,u) = ; L(u,o)do

o
B &
8 %
Log-likelihood

-216

0 (standard deviation in cm)

-252

[ee)

Lmarginal(o') - L(H) O-)dll 155 16 165 170 ; 180 185 190

1 (mean height in cm)

-288

—00
Marginal Log-likelihood for Mean Height Marginal Log-likelihood for Height Standard Deviation
o a = T 0 — -—- Trueo
- MLEM --- MLEO
-25 _5
-50
3 o -10
g g
£ -75 £
3 =-15
% ~100 5
g g-2
=125
-25
-150
=30
=175
150 155 160 165 170 175 180 185 190 5 6 7 8 9 0 11 12
1 (mean height in cm) o (standard deviation in cm)
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Finding Maximum Likelihood Estimates: The Setup

e The Problem: Find ;1 and o2 that maximize likelihood
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: The Setup

e The Problem: Find ;1 and o2 that maximize likelihood

e Starting point: The likelihood function as product of the pdf evaluated per

observation .
1 (xi — p)?
L ,02 = exp ('

Log-likelihood function

n 2
n Xip —
U, 0%) = ) log(2m0?) — E (202)
i=1
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: The Setup

e The Problem: Find ;1 and o2 that maximize likelihood

e Starting point: The likelihood function as product of the pdf evaluated per

observation .
1 (xi — p)?
L ,02 = exp ('

Log-likelihood function

n 2
n Xip —
U, 0%) = ) log(2m0?) — E (202)
i=1

e Strategy:
m Take partial derivatives
m Set each equal to zero
m Solve resulting equations

Gioele La Manno February 2025 15 / 47



Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Mean

e Step 1: Take derivative with respect to u

o _ 0 gl )’
o Ou _ 202

i=1
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Mean
e Step 1: Take derivative with respect to u
o _ 0 gl )’
o Ou — 202

e Step 2: Simplify

n P
:ZXIazu

i=1
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Mean

e Step 1: Take derivative with respect to u
o _ 0 gl )’
o Ou — 202

e Step 2: Simplify

n
3yt
g2
i=1
e Step 3: Set equal to zero and solve

n

Sbi-p)=0 = =
i=1 i=1

Xi

1
n

Result: MLE for y is the sample mean
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

e Step 1: Take derivative with respect to o2

o2~ 202

of n Xj —
Z ( 1)
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

e Step 1: Take derivative with respect to o2

8f n “ Xj — 2
Z( 1)

o2~ 202 2(02)2
e Step 2: Set equal to zero and solve
n 2
n (xi —n)
—_ —_— 0
252 + Z; 2(02)2
=
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

e Step 1: Take derivative with respect to o2

o2~ 202

8f n “ Xj — 2
Z( 1)

e Step 2: Set equal to zero and solve
n 2
n 3 (xi —n)
—_ —_— 0
202 + p 2(02)?

e Step 3: Use plug-in estimation (7 for )
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

e Step 3: Use plug-in estimation (/1 for p)

Key Points:

m Sequential estimation works here
m MLE uses n in denominator (not n — 1)

Gioele La Manno February 2025 18 / 47



Introduction to Maximum Likelihood Estimation

The Bias in MLE Variance Estimation
m Why n instead of n — 1 in MLE?

. 1 .
0'/2\//LE = - Z(Xi - M)2

n

e The Reason:
m Using /i forces data to be centered
m Systematic underestimation: deviations (x; — 2)? < (x; — )2
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Introduction to Maximum Likelihood Estimation

The Bias in MLE Variance Estimation
m Why n instead of n — 1 in MLE?

1
N A2
OMLE = " Z(Xi —p)
e The Reason:
m Using /i forces data to be centered
m Systematic underestimation: deviations (x; — 2)? < (x; — )2
e The Bias:

n—1
o2

E[67mel =

The Solution: Unbiased estimator

n 1 "
s* = n_la%/lLE: n—lg(xi_ﬂ)z

Key Point: MLEs can be biased despite their optimal properties!
February 2025 19 / 47



Beyond Analytical Solutions

e The Challenge:
m Some distributions and more complex models lack closed-form MLEs
m Or too complex to solve analytically

e Solution:
m Optimization algorithms (Iterative numerical methods)

L-BFGS-B Optimization Path

W
R
Log-likelihood

—— Optimization path = -36
® |Initial guess
*  Final estimate
* True parameters

“15 2.0 25 3.0 35 4.0 4.5
a (shape)

Gioele La Manno BIOENG-210 February 2025 20 / 47



Example: MLE for the Gamma Distribution

Gamma Distribution: Data and Fits

e Problem: Protein degradation times 0164

Data
0.14 4 == True distribution

/BO( a— —Bx 012 = MLE fit
F(xfa ) = L e

e Log-likelihood:

{(a, B) = nalog B — nlog T (a)

+(a—1) Z log(x;) — ,BZX,'

Challenge: No closed-form solution!
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Gradient Descent for Gamma MLE

e Compute Gradients:

‘ —nIogB—mb

—i—ZIog X;)

ol  na o
R

e Update Rules:
a(t—‘r]‘) — a(t) + arate—

or
= B(t) + /Brate_

(t+1)

Gioele La Manno BIOENG-210 / L

Introduction to Maximum Likelihood Estimation

L-BFGS-B Optimization Path

-12

-18

[
w N
o S
Log-likelihood

—— Optimization path -36

® |Initial guess "
% Final estimate —42
% True parameters _48

15 2.0 25 3.0 35 4.0 4.5
a (shape)

February 2025 22 / 47



Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 1: What is the fundamental idea behind Maximum Likelihood Estimation
(MLE)?

Finding parameters that minimize the probability of observed data

B Maximizing the probability of the observed data given the parameters

Finding parameters that match the sample mean exactly

B Estimating parameters by averaging all possible values

B Choosing the parameters that yield the largest standard deviation

Gioele La Manno February 2025 23 / 47



Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 2: Suppose a dataset consists of independent and identically distributed
(i.i.d.) observations following a normal distribution with unknown mean f and variance
o2. What is the likelihood function L(u,o?) for this dataset?

The sum of probability densities for all observations

B The product of probability densities for all observations

The difference between the probability densities of the first and last observation
B The average of probability densities for all observations

@ The cumulative distribution function evaluated at the mean

Gioele La Manno February 2025 24 / 47



Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 3
Given a dataset with n independent observations xi, x2, ..., x,, following an exponential
distribution with rate parameter )\, what is the Maximum Likelihood Estimator (MLE)
for A?
1 n
B 2im Xi
n
B
Dy Xi
=
1
O ie1 %

D i1 Xi
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Measuring Association

Measuring Association in Biological Data

e Why Study Associations?

m Understanding relationships more insightful than isolated variables
m Reveals how biological elements influence each other
m Fundamental to understanding complex systems
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Measuring Association

Measuring Association in Biological Data

e Why Study Associations?

m Understanding relationships more insightful than isolated variables
m Reveals how biological elements influence each other
m Fundamental to understanding complex systems

e The Challenge:

m Different/Complex types of relationships
m Need quantitative measures

Linear Relationship Nonlinear Relationship Clustered Pattern Presence of Outliers
8 10 o 12
10 o of ° o o
7{ & » L 10 o
8 8 o’ ep '
> o ® B [} L] >~ g "
£ 2 2 % o 2
3 6 = = o = £
| <5 & < 6 T 6
3 s 3 3 3 wS
s 4 F = = ° I
& 4
0 2 2 0
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0 2 4 6 8 2 4 6 8
Variable X Variable X Variable X Variable X
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Measuring Association

Scatter Plots: Fundamental Tool for Visualization
e What is a Scatter Plot?

m Each point represents one observation
m Position determined by two variables

Linear Relationship Nonlinear Relationship

Clustered Pattern Presence of Outliers
8 10 ° 12
10 o of ° o
7] & & _° 10 ™
8 8 ".’ ° ¢
> [ | ] > ] L d = g -
e 2 2 %% o 2
5 6 =} = ° g . &
I} €5 » < 6 S 6
3 3 3 ] akg
s 4 r ) = 03 LR o
£ 4
: ’ # :
0 2 2 0
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0 2 4 6 8 2 4 6 8
Variable X Variable X Variable X Variable X

e What can one see?

m Direction: Increase together, decrease together, or move in opposite directions

m Form: Whether the relationship appears linear, curved, or follows some other pattern
m Strength: How closely the points adhere to a pattern

m Qutliers: Points that deviate substantially from the overall pattern
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Measuring Association

Example - Proteomics Data

e Data Structure:

Matrix format

Rows: Proteins (thousands)
Columns: Samples/Patients
Values: Protein abundance

Protein P1 P2 | P3| P4
Protein A | 10.2 | 15.3 | 8.7 | 12.1
Protein B | 5.6 | 7.2 | 43| 6.8
Protein C | 0.3 | 0.2 |35 | 04

e Values Represent:

m Mass spectrometry intensities
m Antibody-based measurements
m Normalized abundance values
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Measuring Association

Analysis Approaches in Proteomics

e Two Key Perspectives:

m Protein-Protein correlations
m Sample-Sample comparisons

e Biological Questions:

m Which proteins are co-regulated?

m Do protein complexes show coordinated expression?
m How do disease states differ?

m Are there distinct patient subgroups?
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Measuring Association

Scatter: Protein-Protein View

e Points: Each represents one sample

1400 1400
500
1200 1200
400
~ 1000 - —~ 1000
§ 800 § 300 § 800
< . N < < P
g 600 e ° g g 600 I
@ . T 200 &
400 400
100 *
200 200
0 o o
o 5000 10000 15000 20000 0 25 50 75 100 125 150 175 0 20 40 60 80 120 140 160
GPM3 (Protein level) GPP2 (Protein level) SSAL (Protein level)

Different patterns of protein co-expression
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Measuring Association

Scatter Plots in Proteomics: Sample-Sample View

e Points: Each represents one protein

124

15.0 . 104 . ° e
° DDO ° 0‘ °
i ° o ° 101 L)
12.5 . s s ° % o . o ® oo 8
° @ e o % i ® o o
10.01 s ; <o L8 . ATy
A € R V64 %6' Pl Y ° o o28¢
7.5 Ol ! DA ! 6 °3, %Y
' o2 0 : 5 B : . £ &
- i 41 w@@ oo gl e 8% s
5.0 1 L , oo 0¥ ; AR
2 B 54e 0;5%, %%DG . %olob°
254 T Re°-° 9% « 24,88 %
20,082 o ¢ am% ° Bomp®
8 oo .o o Yem
0.0]e e 01 oocoam o 04 oo
0 5 10 0 5 10 15 0 5 10
i e - lin ana

Different pattern;in sample comparisons

Gioele La Manno BIOENC February 2025 31/ 47



Measuring Association

Covariance: The Basic Measure

Definition (Covariance)

The covariance between random variables X and Y is:

Cov(X,Y) = E[(X — E[X])(Y — E[Y])]

e Sample estimate:

Cov(x,y) = —Z i—X)yi —¥)
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Measuring Association

Correlation: A Normalized Measure

Definition (Pearson Correlation)

Cov(X,Y)
Var(X)Var(Y)

PX,Y =
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Measuring Association

Key Properties of Correlation

e Symmetry:
PX)Y = PY.X

e Range:
—1<pxy<1

e Scale Invariance: For a,c # 0

Pax+b,cy+d = sign(ac) - px,y
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Measuring Association

Visual Guide to Correlation Values

p=0 p=o04 p=-06 p=09
(No Correlation) (Moderate positive) (strong Negative) (strong Positive)
Actual p = 0.02 Actual p = 0.48 Actual p =-0.57 Actual p = 0.8
2
2 2 2
1 1 1 B
>0 >0 >0 >0
1 a 1 o
2 -2 2
-2
3 2 iy ] T H H 3 2 T [ H 3 H 5 2 1 [ i 3 3 3 2 1 13 T H
x x x x

e Values near +1: Strong linear relationship

e Values near 0: No linear relationship
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Measuring Association

Correlation - Avoiding Misconceptions

Correlation # Causation

Linear Relationships Only

Zero Correlation # Independence

Outlier Sensitivity
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Measuring Association

Why Visualize? Same Correlation, Different Stories

6.0

Clusters

p =057

Clustered Data
p=081

Linear

p = 0.57

Linear Relationship
p =082

Outlier Effect Outlier
p=081

Outliers

p =057

e First three: Same correlation, radically different patterns

e Last one: Strong relationship, but correlation near zero

Gioele La Manno

BIC

Nonlinear

p=0

Non-linear Relationship
p=0.03

-
9 e

February 2025
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Measuring Association

Geometric Interpretation of Correlation

e For centered vectors x. and y.:

Xc*Yc

px,y = cos(l) = ————
©) = TxeMyel

e 0 is angle between vectors in R”

e Correlation = cosine of angle

Gioele La Manno February 2025 38 / 47



Measuring Association

Geometric Properties of Correlation

e Perfect positive:
mEp=1
m =0
m Same direction

e Perfect negative:
mEp=-1
m § =180
m Opposite directions

e No correlation:
mp=0
m 0=90
m Perpendicular vectors
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Measuring Association

Data Transformations in Correlation Analysis

e Common Challenges: pebrson; 01322 e, o
25000 ;160
- E
= Non I|nea.r re.Iatlc'mshlps < o $
m Skewed distributions i £
m Multiple orders of magnitude N g o
10000 g 60 .o,
¢ Transformations: § o]« e
'.:, ’g 20 3
= Square root o ¥ ) 4
. 0 100000 200000 300000 o 100 200 300 400 500 600
M Logarlthm Sample_5 (Raw counts) Sample_5 (square root transformed)
Raw counts Square root transformed
. Logit Pearson: 0.705 Pearson: 0.734
T 175
30000 g
e Goals: % sso0
3 Sa2s
m Reduce skewness i
. - . . 3 15000 5
m Linearize relationships B g”
EIUDDO é 50 4 =
e Warning: # 5o i ?
. . . LI
[ ] Dlﬂ:el'ent transformatlons 00 05 10 15 20 25 0 250 500 750 1000 1250 1500
Sample_61 (Raw counts) 1e6 Sample_61 (Square root transformed)

m — Different correlations
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Measuring Association

Data Transformations in Correlation Analysis

R: it Log-tr fi d
e Common Challenges: pearson 0532 Peson o7

25000 10
m Non-linear relationships ~ 3 .
Z 20000 E 8 i,
m Skewed distributions i i
m Multiple orders of magnitude = §
e Transformations: 5 o
[ &
m Square root ol ¥ ofsee
- o 100000 200000 300000 o 2 4 6 8 10 12
M Logarlthm sample_5 (Raw counts) sample_5 (Log-transformed)
a Logit RS es gy
30000 1
e Goals:
m Reduce skewness e o
. . . . & 15000 El
m Linearize relationships % e e
£ g
e Warning: #5000 i 570

| Dlﬂ:el'ent transformations 00 05 10 15 20 25 00 ;2,5 50 75 100 125 150
. . Sample_61 (Raw counts)  1e6 Sample._61 (Log-transformed)
m — Different correlations
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Measuring Association

Spearman’s Rank Correlation: Beyond Linear Relationships

e Formula:

ps = ,0( rank ( X) ,ran Kk ( Y) ) O on = 03 U Pearson = 064

. 10 o

°
500 ° 35 '.‘."

s =25 c’..
300 s
: JA 220 ...,-‘
200 o 15
'] 10 ..-,-f.
100
v P .
5 ee® .

e Features:

2 4 6 8 10 0 10 20 30 40
Variable X

N
3
g
w
8
%,

e Key ldea: Replace values with ranks

Variable Y

Rank of X

m Detect non-linear relationships

Gioele La Manno BIC
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Measuring Association

Spearman’s Rank Correlation: Beyond Linear Relationships

Original Data with Strategic Outliers. Ranked Data
L] 40 L] °
500 L 35 ...".
. 30 X 4
e Formula: 00 o ~
> o o »25 ..c'
k! 300 : % 20 . ..‘.
B ® 3 o
ps = p(rank(X), rank(Y)) 00 ¢ = .
o 10
100 /
° 5 L]
0 ese® bt ° o -'"
. 2 4 6 8 10 0 10 20 30 40
o Key ldea: Replace values with ranks
Original Data (Skewed) Ranked Data (Uniform)

w
&
0
s
3

g 35 ° °
gzs a0 ° .
e Features: £ e e
. . . H z o °
m Detect non-linear relationships i1 .« 20 e Lt
. . % ® 0 15 @ .
m Less sensitive to outliers E R PR woLe e et
o :’...".r ° 5 * ..
o o¥ s’ e o %o
0 2 4 6 8 0 10 20 30 40
Variable X (lognormal) Rank of X (uniform)
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Measuring Association

Transformation Invariance: A Key Advantage

Sigmoid Relationship

e Invariance Property: Pearson r = 0,89, Spearman p = 1.00
1.4 -7
m If Y = f(X) where f is monotonic: 12
ps(X.Y) = £1
208 o~
m Same value for raw or transformed Ep
data 0.4 ///
02 .7
. 0.0 S
o BeHEflts' - - \'ananblex 2 ‘
m No need to choose " correct” scale Portoct Monaeons Saaahip (o = 1.0
m Platform-independent comparisons %
m Reveals relationships automatically 0 o
£30
£20 ’,/"
10 ,,"”
0 <
0 10 20 30 40 50
Rank of X
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Measuring Association

When to Use Spearman Correlation in Biological Data
Analysis

e Use Spearman when:

Data contains influential outliers

Comparing different measurement platforms
Expecting monotonic but non-linear relationships
Uncertain about measurement scale

Key Advantage:
m Reveals biological relationships
m No subjective data transformation needed
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Example of Exam Questions

Question 4: A researcher is testing whether two continuous variables X and Y are
associated. She computes their Pearson correlation coefficient and finds r = 0.85.
What does this indicate?

X and Y have a strong negative linear relationship
B X and Y are independent

X and Y have a strong positive linear relationship
B X is the cause of Y

E X and Y follow a nonlinear relationship
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Example of Exam Questions

Question 5 Which of the following best describes the key difference between Pearson
and Spearman correlation coefficients?

Pearson measures linear relationships, while Spearman measures monotonic
relationships.

B Pearson is only used for categorical data, while Spearman is for continuous data.
Spearman considers the mean of the data, whereas Pearson does not.
Bl Spearman correlation requires normally distributed data, while Pearson does not.

[E Pearson correlation can only be positive, while Spearman can be negative.
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Example of Exam Questions

Question 6 Which is the mathematical expression of Cov(X, Y) for two random
variables X and Y7

E[XY] — E[X]E[Y]
B E[X]E[Y] - E[XY]
E[X] — E[Y]

B E[X]+ E[Y]

@ E[X]E[Y]
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