
Maximum Likelihood Estimation and Measuring Association

Gioele La Manno
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Introduction to Maximum Likelihood Estimation

The Problem - Finding Model Parameters

We have data x1, ..., xn

Data is assumed following a distribution family

• Problem: Need to determine specific parameters but Infinite combinations

• Example: Height measurements follow normal distribution

Which µ and σ best describe our data?
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Introduction to Maximum Likelihood Estimation

A few examples
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Introduction to Maximum Likelihood Estimation

The Likelihood Function: A New Perspective

L(θ|x1, ..., xn) =
n∏

i=1

p(xi |θ)

• From: P(data — parameters) To: L(parameters — data)

Treat observed data as fixed

Parameters become variables

”Which parameters make our data most probable?”
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Introduction to Maximum Likelihood Estimation

Independence in the Likelihood

L(θ|x1, ..., xn) =
n∏

i=1

p(xi |θ)

• Independence: The product is allowed only between terms corresponding to
different observations

Example: Nuclear and cytoplasmic diameters of the same cell - not independent -
a single vector observation - in bold

Gioele La Manno BIOENG-210 / LECTURE 2 February 2025 5 / 47



Introduction to Maximum Likelihood Estimation

The Log-Likelihood: From Products to Sums

ℓ(θ) = log L(θ|x1, ..., xn) =
n∑

i=1

log p(xi |θ)

• Why? Products become sums

Preserves maximum (log is monotonic)

Prevents numerical underflow

Easier to optimize
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Introduction to Maximum Likelihood Estimation

The Maximum Likelihood Principle

• The Core Principle:

θ̂MLE = argmax
θ

L(θ|x1, ..., xn) = argmax
θ

ℓ(θ)

• Intuitive Interpretation:
Choose parameters that make observed data most probable
”Which distribution most likely generated our data?”
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Introduction to Maximum Likelihood Estimation

The Likelihood Surface

• Bivariate Optimization:
Must find optimal µ and σ simultaneously
Surface height indicates goodness of fit
Maximum corresponds to MLE solution

• Visualization:
Each point represents parameter
combination
Brighter colors indicate higher likelihood
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood

L(θ|x1, ..., xn) =
n∏

i=1

p(xi |θ)

The likelihood is primarily function of the parameters θ, because typically the
data x1, ..., xn was collected and can be considered fixed.

Yet its expression depends on both the data and parameters, meaning that adding
new observations changes the entire function.
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (1)
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• With one observation: Very broad likelihood

Many parameter combinations explain the data well

High uncertainty in parameter estimates
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (2)
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• With eight observations: Likelihood narrows

Fewer parameter combinations are compatible

Parameter estimates become more precise
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (3)
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• With thirty-two observations: Sharp likelihood

Clear peak emerges

Much more confident parameter estimates
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Introduction to Maximum Likelihood Estimation

Reflecting on the Likelihood (4)
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• With 100 observations: Likelihood narrows

Fewer parameter combinations are compatible

Parameter estimates become more precise
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Introduction to Maximum Likelihood Estimation

Marginal Likelihood Profiles

• Marginal Likelihood:

Lmarginal(µ) =

∫ ∞

0
L(µ, σ)dσ

Lmarginal(σ) =

∫ ∞

−∞
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: The Setup

• The Problem: Find µ and σ2 that maximize likelihood

• Starting point: The likelihood function as product of the pdf evaluated per
observation

L(µ, σ2) =
n∏

i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
Log-likelihood function

ℓ(µ, σ2) = −n

2
log(2πσ2)−

n∑
i=1

(xi − µ)2

2σ2

• Strategy:
Take partial derivatives
Set each equal to zero
Solve resulting equations
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Mean

• Step 1: Take derivative with respect to µ

∂ℓ

∂µ
=

∂

∂µ

[
−

n∑
i=1

(xi − µ)2

2σ2

]

• Step 2: Simplify

=
n∑

i=1

xi − µ

σ2

• Step 3: Set equal to zero and solve
n∑

i=1

(xi − µ̂) = 0 =⇒ µ̂ =
1

n

n∑
i=1

xi

• Result: MLE for µ is the sample mean
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

• Step 1: Take derivative with respect to σ2

∂ℓ

∂σ2
= − n

2σ2
+

n∑
i=1

(xi − µ)2

2(σ2)2

• Step 2: Set equal to zero and solve

− n

2σ2
+

n∑
i=1

(xi − µ)2

2(σ2)2
= 0

• Step 3: Use plug-in estimation (µ̂ for µ)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2
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Introduction to Maximum Likelihood Estimation

Finding Maximum Likelihood Estimates: Variance

• Step 3: Use plug-in estimation (µ̂ for µ)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

• Key Points:
Sequential estimation works here
MLE uses n in denominator (not n − 1)
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Introduction to Maximum Likelihood Estimation

The Bias in MLE Variance Estimation
Why n instead of n − 1 in MLE?

σ̂2MLE =
1

n

n∑
i=1

(xi − µ̂)2

• The Reason:
Using µ̂ forces data to be centered
Systematic underestimation: deviations (xi − µ̂)2 ≤ (xi − µ)2

• The Bias:

E [σ̂2MLE ] =
n − 1

n
σ2

• The Solution: Unbiased estimator

s2 =
n

n − 1
σ̂2MLE =

1

n − 1

n∑
i=1

(xi − µ̂)2

Key Point: MLEs can be biased despite their optimal properties!
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Introduction to Maximum Likelihood Estimation

Beyond Analytical Solutions

• The Challenge:
Some distributions and more complex models lack closed-form MLEs
Or too complex to solve analytically

• Solution:
Optimization algorithms (Iterative numerical methods)
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Introduction to Maximum Likelihood Estimation

Example: MLE for the Gamma Distribution

• Problem: Protein degradation times

f (x |α, β) = βα

Γ(α)
xα−1e−βx

• Log-likelihood:

ℓ(α, β) = nα log β − n log Γ(α)

+(α− 1)
∑

log(xi )− β
∑

xi

• Challenge: No closed-form solution!
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Introduction to Maximum Likelihood Estimation

Gradient Descent for Gamma MLE

• Compute Gradients:

∂ℓ

∂α
= n log β − nψ(α) +

n∑
i=1

log(xi )

∂ℓ

∂β
=

nα

β
−

n∑
i=1

xi

• Update Rules:

α(t+1) = α(t) + αrate
∂ℓ

∂α

β(t+1) = β(t) + βrate
∂ℓ

∂β
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Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 1: What is the fundamental idea behind Maximum Likelihood Estimation
(MLE)?

A. Finding parameters that minimize the probability of observed data

B. Maximizing the probability of the observed data given the parameters

C. Finding parameters that match the sample mean exactly

D. Estimating parameters by averaging all possible values

E. Choosing the parameters that yield the largest standard deviation
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Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 2: Suppose a dataset consists of independent and identically distributed
(i.i.d.) observations following a normal distribution with unknown mean µ and variance
σ2. What is the likelihood function L(µ, σ2) for this dataset?

A. The sum of probability densities for all observations

B. The product of probability densities for all observations

C. The difference between the probability densities of the first and last observation

D. The average of probability densities for all observations

E. The cumulative distribution function evaluated at the mean
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Introduction to Maximum Likelihood Estimation

Example of Exam Questions

Question 3
Given a dataset with n independent observations x1, x2, ..., xn, following an exponential
distribution with rate parameter λ, what is the Maximum Likelihood Estimator (MLE)
for λ?

A.
1
n

∑n
i=1 xi

B.
n∑n
i=1 xi

C.

∑n
i=1 xi
n

D.
1∑n
i=1 xi

E.
∑n

i=1 xi
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Measuring Association
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Measuring Association

Measuring Association in Biological Data

• Why Study Associations?
Understanding relationships more insightful than isolated variables
Reveals how biological elements influence each other
Fundamental to understanding complex systems

• The Challenge:
Different/Complex types of relationships
Need quantitative measures
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Measuring Association

Scatter Plots: Fundamental Tool for Visualization
• What is a Scatter Plot?

Each point represents one observation
Position determined by two variables
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• What can one see?
Direction: Increase together, decrease together, or move in opposite directions
Form: Whether the relationship appears linear, curved, or follows some other pattern
Strength: How closely the points adhere to a pattern
Outliers: Points that deviate substantially from the overall pattern
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Measuring Association

Example - Proteomics Data

• Data Structure:
Matrix format
Rows: Proteins (thousands)
Columns: Samples/Patients
Values: Protein abundance

Protein P1 P2 P3 P4
Protein A 10.2 15.3 8.7 12.1
Protein B 5.6 7.2 4.3 6.8
Protein C 0.3 0.2 3.5 0.4

• Values Represent:
Mass spectrometry intensities
Antibody-based measurements
Normalized abundance values
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Measuring Association

Analysis Approaches in Proteomics

• Two Key Perspectives:
Protein-Protein correlations
Sample-Sample comparisons

• Biological Questions:
Which proteins are co-regulated?
Do protein complexes show coordinated expression?
How do disease states differ?
Are there distinct patient subgroups?
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Measuring Association

Scatter: Protein-Protein View

• Points: Each represents one sample
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Scatter Plots in Proteomics: Sample-Sample View

• Points: Each represents one protein
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Covariance: The Basic Measure

Definition (Covariance)

The covariance between random variables X and Y is:

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

• Sample estimate:

Cov(x, y) =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Gioele La Manno BIOENG-210 / LECTURE 2 February 2025 32 / 47
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Correlation: A Normalized Measure

Definition (Pearson Correlation)

ρX ,Y =
Cov(X ,Y )√
Var(X )Var(Y )
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Measuring Association

Key Properties of Correlation

• Symmetry:
ρX ,Y = ρY ,X

• Range:
−1 ≤ ρX ,Y ≤ 1

• Scale Invariance: For a, c ̸= 0

ρaX+b,cY+d = sign(ac) · ρX ,Y
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Visual Guide to Correlation Values
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• Values near ±1: Strong linear relationship

• Values near 0: No linear relationship
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Correlation - Avoiding Misconceptions

• Correlation ̸= Causation

• Linear Relationships Only

• Zero Correlation ̸= Independence

• Outlier Sensitivity
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Why Visualize? Same Correlation, Different Stories
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• First three: Same correlation, radically different patterns

• Last one: Strong relationship, but correlation near zero
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Geometric Interpretation of Correlation

• For centered vectors xc and yc :

ρX ,Y = cos(θ) =
xc · yc

||xc ||||yc ||

• θ is angle between vectors in Rn

• Correlation = cosine of angle
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Geometric Properties of Correlation

• Perfect positive:
ρ = 1
θ = 0
Same direction

• Perfect negative:
ρ = −1
θ = 180
Opposite directions

• No correlation:
ρ = 0
θ = 90
Perpendicular vectors
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Data Transformations in Correlation Analysis

• Common Challenges:
Non-linear relationships
Skewed distributions
Multiple orders of magnitude

• Transformations:
Square root
Logarithm
Logit

• Goals:
Reduce skewness
Linearize relationships

• Warning:
Different transformations
→ Different correlations
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Association Under Different Transformations
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Data Transformations in Correlation Analysis

• Common Challenges:
Non-linear relationships
Skewed distributions
Multiple orders of magnitude

• Transformations:
Square root
Logarithm
Logit

• Goals:
Reduce skewness
Linearize relationships

• Warning:
Different transformations
→ Different correlations
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Association Under Different Transformations
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Spearman’s Rank Correlation: Beyond Linear Relationships

• Formula:

ρs = ρ(rank(X ), rank(Y ))

• Key Idea: Replace values with ranks

• Features:
Detect non-linear relationships
Less sensitive to outliers
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Spearman’s Rank Correlation: Beyond Linear Relationships

• Formula:

ρs = ρ(rank(X ), rank(Y ))

• Key Idea: Replace values with ranks

• Features:
Detect non-linear relationships
Less sensitive to outliers
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Transformation Invariance: A Key Advantage

• Invariance Property:
If Y = f (X ) where f is monotonic:
ρs(X ,Y ) = ±1
Same value for raw or transformed
data

• Benefits:
No need to choose ”correct” scale
Platform-independent comparisons
Reveals relationships automatically
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When to Use Spearman Correlation in Biological Data
Analysis

• Use Spearman when:
Data contains influential outliers
Comparing different measurement platforms
Expecting monotonic but non-linear relationships
Uncertain about measurement scale

• Key Advantage:
Reveals biological relationships
No subjective data transformation needed
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Example of Exam Questions

Question 4: A researcher is testing whether two continuous variables X and Y are
associated. She computes their Pearson correlation coefficient and finds r = 0.85.
What does this indicate?

A. X and Y have a strong negative linear relationship

B. X and Y are independent

C. X and Y have a strong positive linear relationship

D. X is the cause of Y

E. X and Y follow a nonlinear relationship
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Example of Exam Questions

Question 5 Which of the following best describes the key difference between Pearson
and Spearman correlation coefficients?

A. Pearson measures linear relationships, while Spearman measures monotonic
relationships.

B. Pearson is only used for categorical data, while Spearman is for continuous data.

C. Spearman considers the mean of the data, whereas Pearson does not.

D. Spearman correlation requires normally distributed data, while Pearson does not.

E. Pearson correlation can only be positive, while Spearman can be negative.
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Example of Exam Questions

Question 6 Which is the mathematical expression of Cov(X, Y) for two random
variables X and Y?

A. E [XY ]− E [X ]E [Y ]

B. E [X ]E [Y ]− E [XY ]

C. E [X ]− E [Y ]

D. E [X ] + E [Y ]

E. E [X ]E [Y ]
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