

Maximum Likelihood Estimation and Measuring Association

Gioele La Manno

École Polytechnique Fédérale de Lausanne (EPFL)

School of Life Science (SV)

February 2025

EPFL - BMI - UPLAMANNO

Contents

1 Introduction to Maximum Likelihood
Estimation

2 Measuring Association

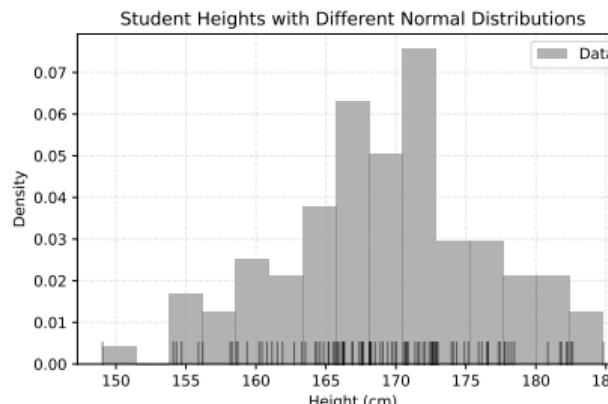
Introduction to Maximum Likelihood Estimation

The Problem - Finding Model Parameters

- We have data x_1, \dots, x_n
- Data is assumed following a distribution family
- **Problem:** Need to determine specific parameters **but** Infinite combinations
- **Example:** Height measurements follow normal distribution
- Which μ and σ best describe our data?

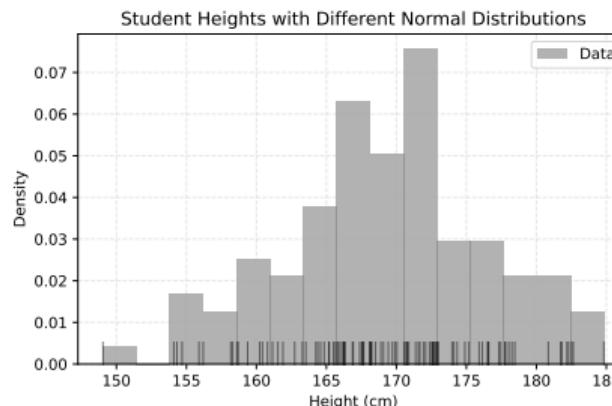
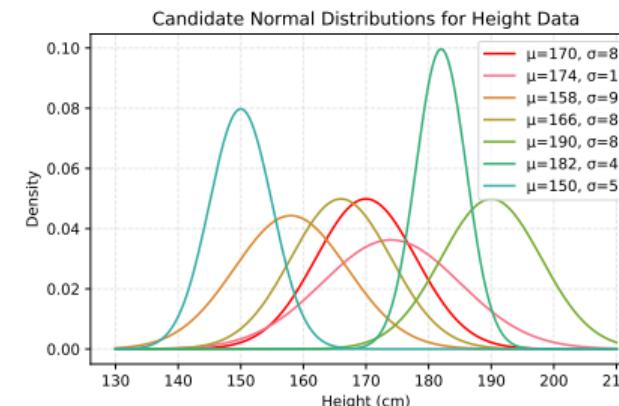
The Problem - Finding Model Parameters

- We have data x_1, \dots, x_n
- Data is assumed following a distribution family
- **Problem:** Need to determine specific parameters **but** Infinite combinations
- **Example:** Height measurements follow normal distribution
- Which μ and σ best describe our data?

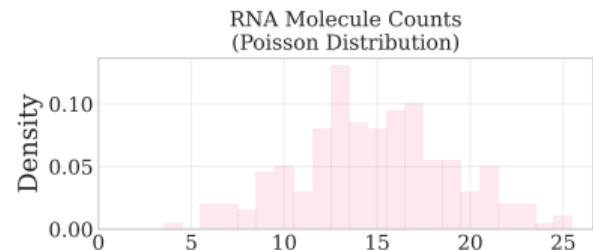
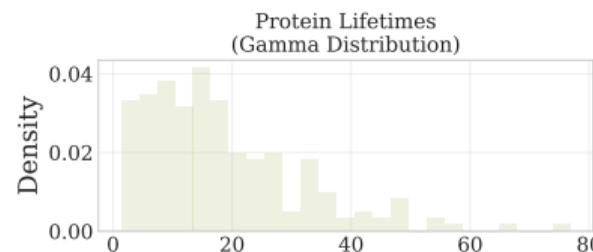
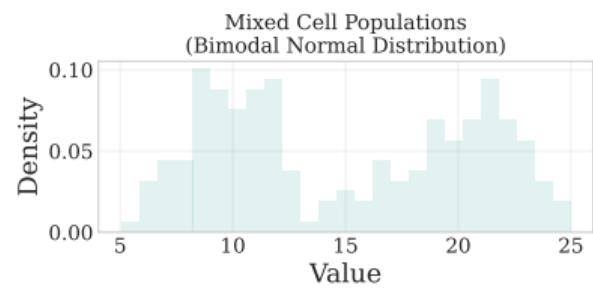
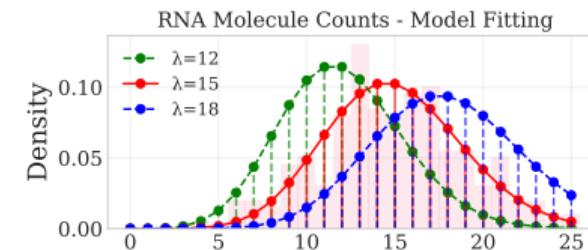
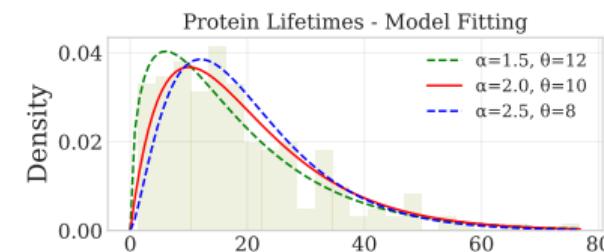
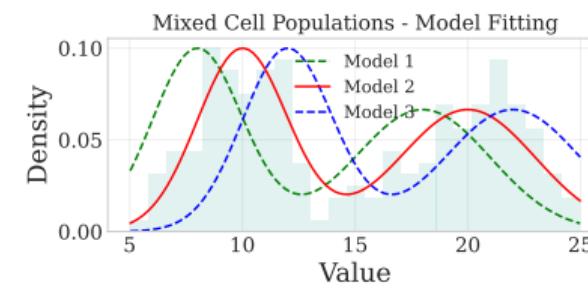


The Problem - Finding Model Parameters

- We have data x_1, \dots, x_n
- Data is assumed following a distribution family
- **Problem:** Need to determine specific parameters **but** Infinite combinations
- **Example:** Height measurements follow normal distribution
- Which μ and σ best describe our data?



A few examples



The Likelihood Function: A New Perspective

$$L(\boldsymbol{\theta} | x_1, \dots, x_n) = \prod_{i=1}^n p(x_i | \boldsymbol{\theta})$$

- **From:** $P(\text{data} | \text{parameters})$ **To:** $L(\text{parameters} | \text{data})$
- Treat observed data as fixed
- Parameters become variables
- "Which parameters make our data most probable?"

The Likelihood Function: A New Perspective

$$L(\boldsymbol{\theta} | x_1, \dots, x_n) = \prod_{i=1}^n p(x_i | \boldsymbol{\theta})$$

- **From:** $P(\text{data} | \text{parameters})$ **To:** $L(\text{parameters} | \text{data})$
- Treat observed data as fixed
- Parameters become variables
- "Which parameters make our data most probable?"

Independence in the Likelihood

$$L(\theta | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n p(\mathbf{x}_i | \theta)$$

- **Independence:** The product is allowed only between terms corresponding to different observations
- **Example:** Nuclear and cytoplasmic diameters of the same cell - not independent - a single vector observation - in bold

The Log-Likelihood: From Products to Sums

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta} | x_1, \dots, x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$$

- Why? Products become sums
- Preserves maximum (log is monotonic)
- Prevents numerical underflow
- Easier to optimize

The Log-Likelihood: From Products to Sums

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta} | x_1, \dots, x_n) = \sum_{i=1}^n \log p(x_i | \boldsymbol{\theta})$$

- **Why?** Products become sums
- Preserves maximum (log is monotonic)
- Prevents numerical underflow
- Easier to optimize

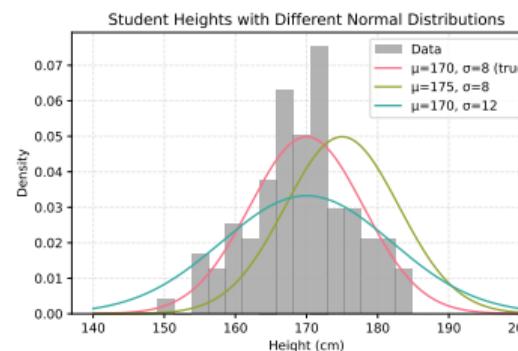
The Maximum Likelihood Principle

- **The Core Principle:**

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta | x_1, \dots, x_n) = \arg \max_{\theta} \ell(\theta)$$

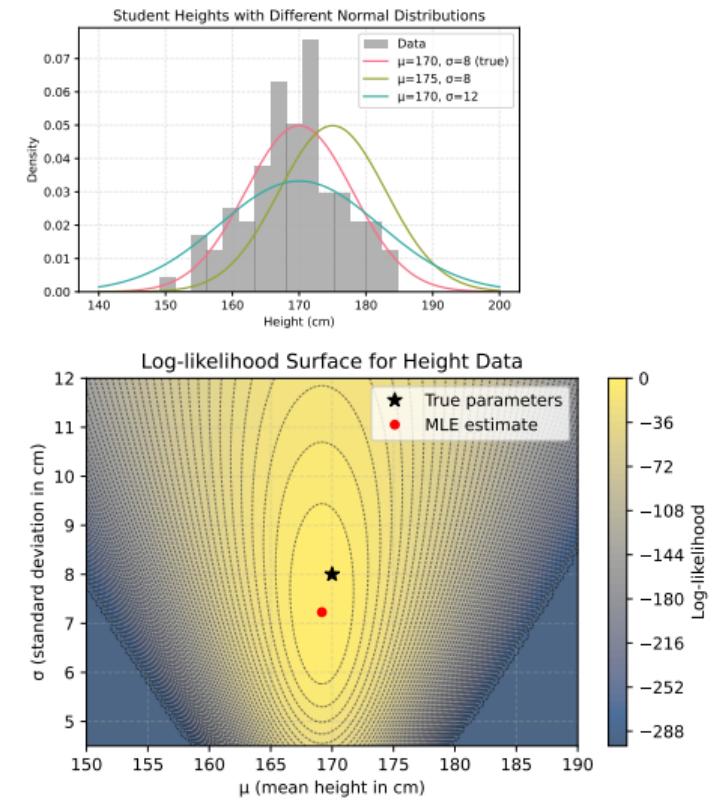
- **Intuitive Interpretation:**

- Choose parameters that make observed data most probable
- "Which distribution most likely generated our data?"



The Likelihood Surface

- **Bivariate Optimization:**
 - Must find optimal μ and σ simultaneously
 - Surface height indicates goodness of fit
 - Maximum corresponds to MLE solution
- **Visualization:**
 - Each point represents parameter combination
 - Brighter colors indicate higher likelihood

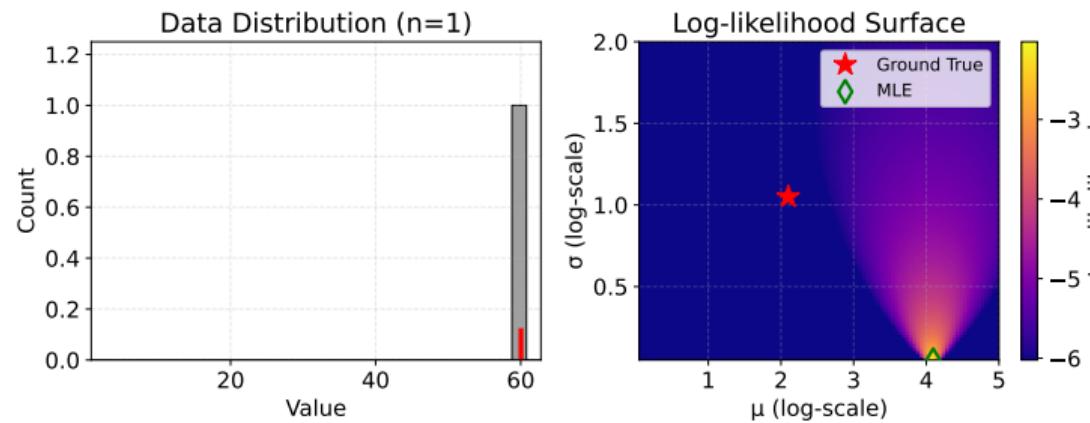


Reflecting on the Likelihood

$$L(\boldsymbol{\theta} | \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n p(\mathbf{x}_i | \boldsymbol{\theta})$$

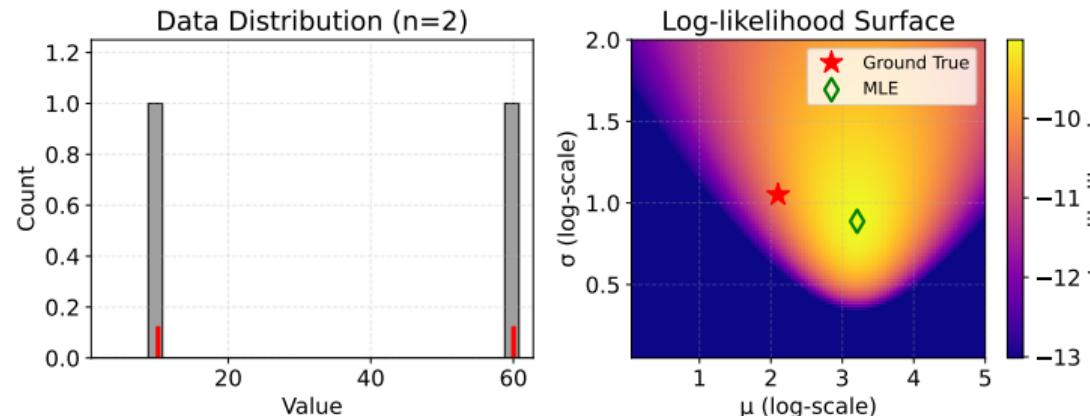
- The likelihood is primarily function of the parameters $\boldsymbol{\theta}$, because typically the data x_1, \dots, x_n was collected and can be considered fixed.
- Yet its expression depends on both the data and parameters, meaning that adding new observations changes the entire function.

Reflecting on the Likelihood (1)



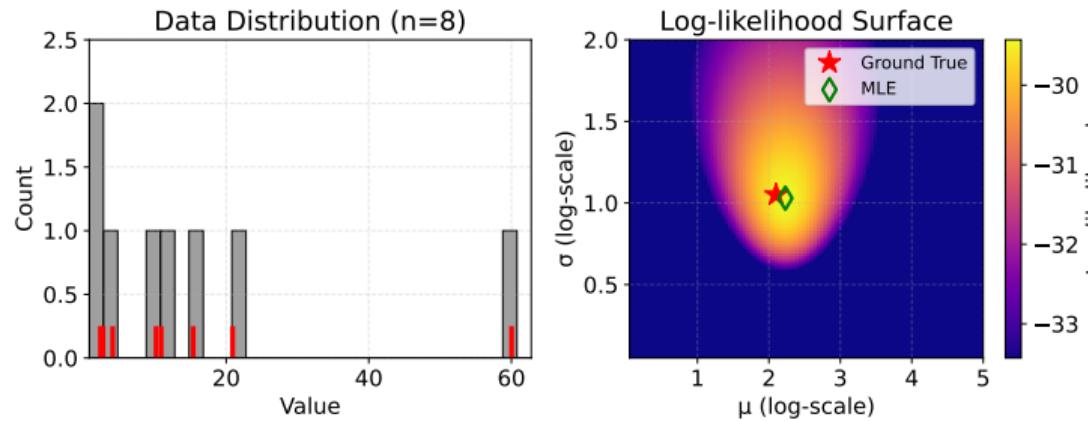
- With one observation: Very broad likelihood
- Many parameter combinations explain the data well
- High uncertainty in parameter estimates

Reflecting on the Likelihood (2)



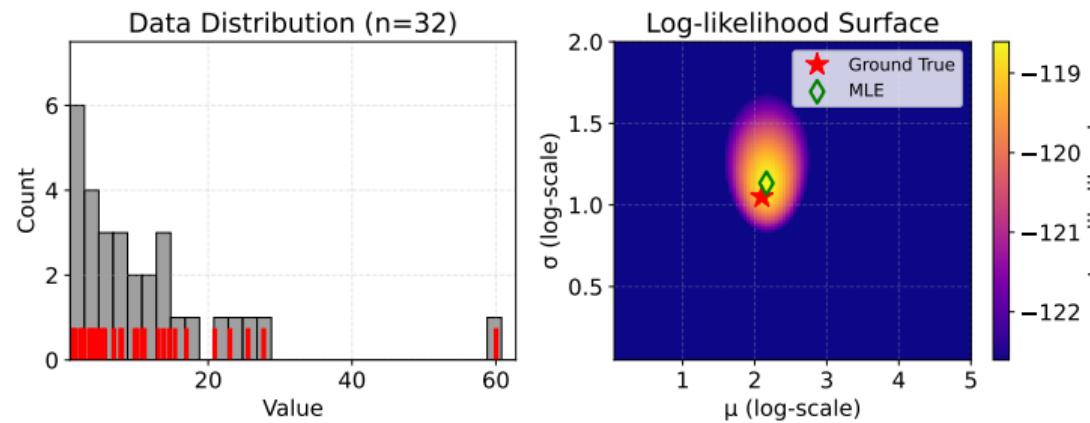
- With eight observations: Likelihood narrows
- Fewer parameter combinations are compatible
- Parameter estimates become more precise

Reflecting on the Likelihood (3)



- With thirty-two observations: Sharp likelihood
- Clear peak emerges
- Much more confident parameter estimates

Reflecting on the Likelihood (4)



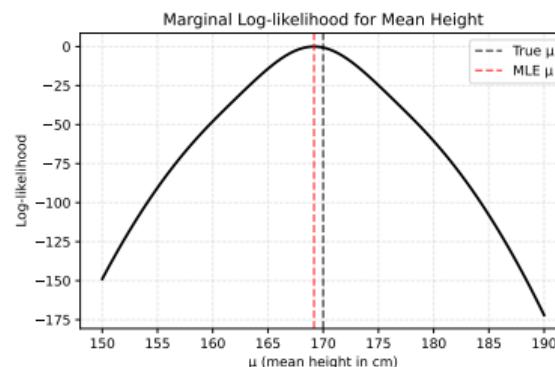
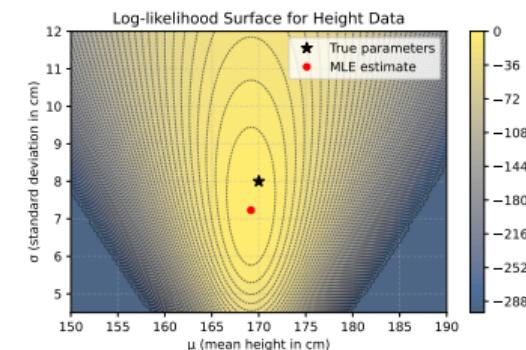
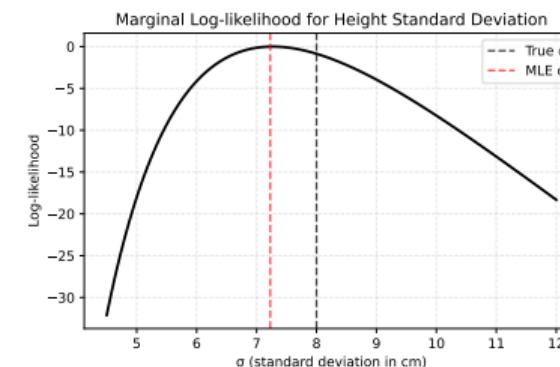
- With 100 observations: Likelihood narrows
- Fewer parameter combinations are compatible
- Parameter estimates become more precise

Marginal Likelihood Profiles

- Marginal Likelihood:

$$L_{\text{marginal}}(\mu) = \int_0^{\infty} L(\mu, \sigma) d\sigma$$

$$L_{\text{marginal}}(\sigma) = \int_{-\infty}^{\infty} L(\mu, \sigma) d\mu$$



Finding Maximum Likelihood Estimates: The Setup

- **The Problem:** Find μ and σ^2 that maximize likelihood
- **Starting point:** The likelihood function as product of the pdf evaluated per observation

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Log-likelihood function

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

- **Strategy:**
 - Take partial derivatives
 - Set each equal to zero
 - Solve resulting equations

Finding Maximum Likelihood Estimates: The Setup

- **The Problem:** Find μ and σ^2 that maximize likelihood
- **Starting point:** The likelihood function as product of the pdf evaluated per observation

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Log-likelihood function

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

- **Strategy:**
 - Take partial derivatives
 - Set each equal to zero
 - Solve resulting equations

Finding Maximum Likelihood Estimates: The Setup

- **The Problem:** Find μ and σ^2 that maximize likelihood
- **Starting point:** The likelihood function as product of the pdf evaluated per observation

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Log-likelihood function

$$\ell(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}$$

- **Strategy:**
 - Take partial derivatives
 - Set each equal to zero
 - Solve resulting equations

Finding Maximum Likelihood Estimates: Mean

- **Step 1:** Take derivative with respect to μ

$$\frac{\partial \ell}{\partial \mu} = \frac{\partial}{\partial \mu} \left[- \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

- **Step 2:** Simplify

$$= \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$

- **Step 3:** Set equal to zero and solve

$$\sum_{i=1}^n (x_i - \hat{\mu}) = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

- **Result:** MLE for μ is the sample mean

Finding Maximum Likelihood Estimates: Mean

- **Step 1:** Take derivative with respect to μ

$$\frac{\partial \ell}{\partial \mu} = \frac{\partial}{\partial \mu} \left[- \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

- **Step 2:** Simplify

$$= \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$

- **Step 3:** Set equal to zero and solve

$$\sum_{i=1}^n (x_i - \hat{\mu}) = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

- **Result:** MLE for μ is the sample mean

Finding Maximum Likelihood Estimates: Mean

- **Step 1:** Take derivative with respect to μ

$$\frac{\partial \ell}{\partial \mu} = \frac{\partial}{\partial \mu} \left[- \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

- **Step 2:** Simplify

$$= \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2}$$

- **Step 3:** Set equal to zero and solve

$$\sum_{i=1}^n (x_i - \hat{\mu}) = 0 \implies \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

- **Result:** MLE for μ is the sample mean

Finding Maximum Likelihood Estimates: Variance

- **Step 1:** Take derivative with respect to σ^2

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2}$$

- **Step 2:** Set equal to zero and solve

$$-\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2} = 0$$

- **Step 3:** Use plug-in estimation ($\hat{\mu}$ for μ)

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Finding Maximum Likelihood Estimates: Variance

- **Step 1:** Take derivative with respect to σ^2

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2}$$

- **Step 2:** Set equal to zero and solve

$$-\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2} = 0$$

- **Step 3:** Use plug-in estimation ($\hat{\mu}$ for μ)

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Finding Maximum Likelihood Estimates: Variance

- **Step 1:** Take derivative with respect to σ^2

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2}$$

- **Step 2:** Set equal to zero and solve

$$-\frac{n}{2\sigma^2} + \sum_{i=1}^n \frac{(x_i - \mu)^2}{2(\sigma^2)^2} = 0$$

- **Step 3:** Use plug-in estimation ($\hat{\mu}$ for μ)

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Finding Maximum Likelihood Estimates: Variance

- **Step 3:** Use plug-in estimation ($\hat{\mu}$ for μ)

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

- **Key Points:**
 - Sequential estimation works here
 - MLE uses n in denominator (not $n - 1$)

The Bias in MLE Variance Estimation

- Why n instead of $n - 1$ in MLE?

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

- **The Reason:**

- Using $\hat{\mu}$ forces data to be centered
- Systematic underestimation: deviations $(x_i - \hat{\mu})^2 \leq (x_i - \mu)^2$

- **The Bias:**

$$E[\hat{\sigma}_{MLE}^2] = \frac{n-1}{n} \sigma^2$$

- **The Solution:** Unbiased estimator

$$s^2 = \frac{n}{n-1} \hat{\sigma}_{MLE}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Key Point: MLEs can be biased despite their optimal properties!

The Bias in MLE Variance Estimation

- Why n instead of $n - 1$ in MLE?

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

- **The Reason:**

- Using $\hat{\mu}$ forces data to be centered
- Systematic underestimation: deviations $(x_i - \hat{\mu})^2 \leq (x_i - \mu)^2$

- **The Bias:**

$$E[\hat{\sigma}_{MLE}^2] = \frac{n-1}{n} \sigma^2$$

- **The Solution:** Unbiased estimator

$$s^2 = \frac{n}{n-1} \hat{\sigma}_{MLE}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Key Point: MLEs can be biased despite their optimal properties!

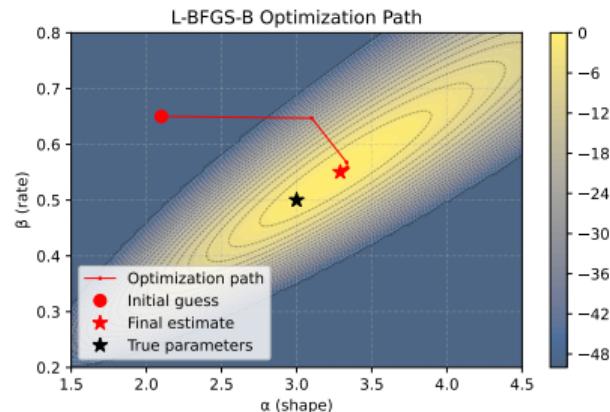
Beyond Analytical Solutions

- **The Challenge:**

- Some distributions and more complex models lack closed-form MLEs
- Or too complex to solve analytically

- **Solution:**

- Optimization algorithms (Iterative numerical methods)



Example: MLE for the Gamma Distribution

- **Problem:** Protein degradation times

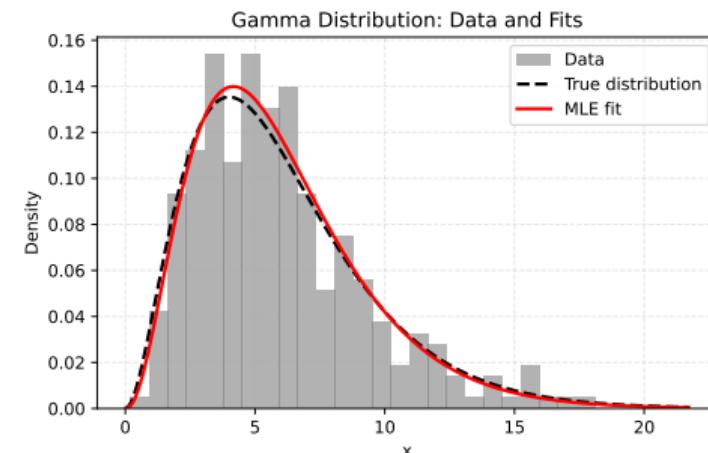
$$f(x|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

- **Log-likelihood:**

$$\ell(\alpha, \beta) = n\alpha \log \beta - n \log \Gamma(\alpha)$$

$$+ (\alpha - 1) \sum \log(x_i) - \beta \sum x_i$$

- **Challenge:** No closed-form solution!



Gradient Descent for Gamma MLE

- Compute Gradients:

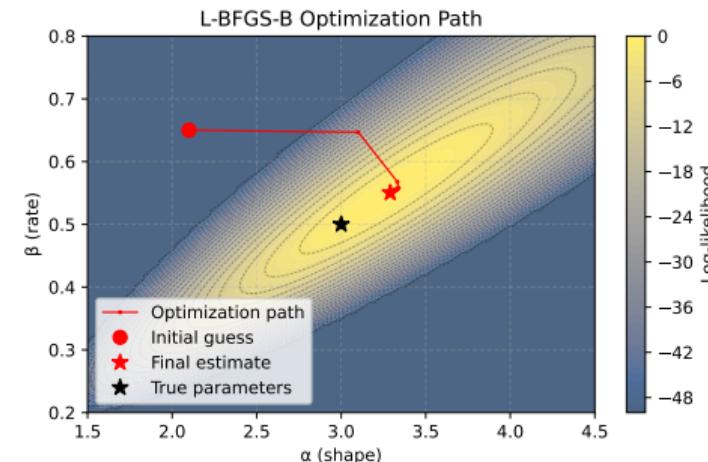
$$\frac{\partial \ell}{\partial \alpha} = n \log \beta - n\psi(\alpha) + \sum_{i=1}^n \log(x_i)$$

$$\frac{\partial \ell}{\partial \beta} = \frac{n\alpha}{\beta} - \sum_{i=1}^n x_i$$

- Update Rules:

$$\alpha^{(t+1)} = \alpha^{(t)} + \alpha_{rate} \frac{\partial \ell}{\partial \alpha}$$

$$\beta^{(t+1)} = \beta^{(t)} + \beta_{rate} \frac{\partial \ell}{\partial \beta}$$



Example of Exam Questions

Question 1: What is the fundamental idea behind Maximum Likelihood Estimation (MLE)?

- A. Finding parameters that minimize the probability of observed data
- B. Maximizing the probability of the observed data given the parameters
- C. Finding parameters that match the sample mean exactly
- D. Estimating parameters by averaging all possible values
- E. Choosing the parameters that yield the largest standard deviation

Example of Exam Questions

Question 2: Suppose a dataset consists of independent and identically distributed (i.i.d.) observations following a normal distribution with unknown mean μ and variance σ^2 . What is the likelihood function $L(\mu, \sigma^2)$ for this dataset?

- A. The sum of probability densities for all observations
- B. The product of probability densities for all observations
- C. The difference between the probability densities of the first and last observation
- D. The average of probability densities for all observations
- E. The cumulative distribution function evaluated at the mean

Example of Exam Questions

Question 3

Given a dataset with n independent observations x_1, x_2, \dots, x_n , following an exponential distribution with rate parameter λ , what is the Maximum Likelihood Estimator (MLE) for λ ?

- A. $\frac{1}{n} \sum_{i=1}^n x_i$
- B. $\frac{n}{\sum_{i=1}^n x_i}$
- C. $\frac{\sum_{i=1}^n x_i}{n}$
- D. $\frac{1}{\sum_{i=1}^n x_i}$
- E. $\sum_{i=1}^n x_i$

Measuring Association

Measuring Association in Biological Data

- **Why Study Associations?**

- Understanding relationships more insightful than isolated variables
- Reveals how biological elements influence each other
- Fundamental to understanding complex systems

- **The Challenge:**

- Different/Complex types of relationships
- Need quantitative measures

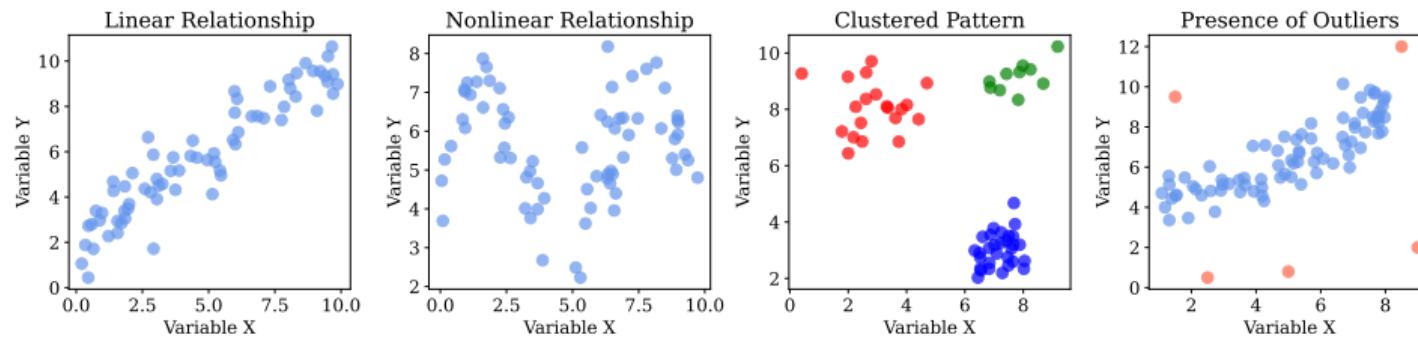
Measuring Association in Biological Data

- **Why Study Associations?**

- Understanding relationships more insightful than isolated variables
- Reveals how biological elements influence each other
- Fundamental to understanding complex systems

- **The Challenge:**

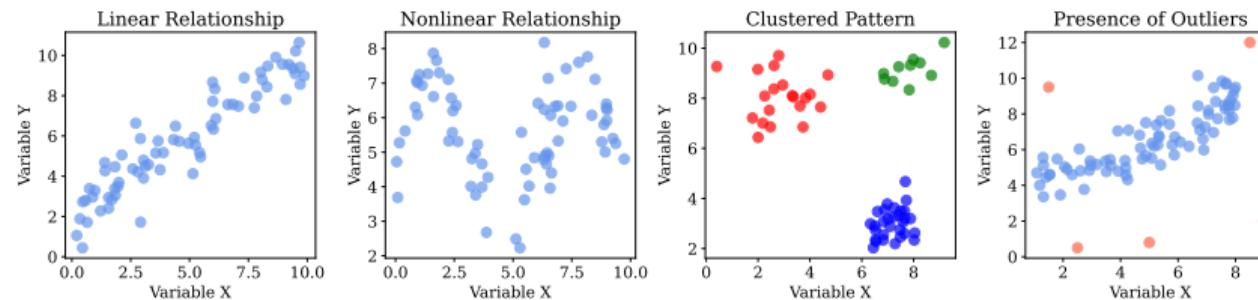
- Different/Complex types of relationships
- Need quantitative measures



Scatter Plots: Fundamental Tool for Visualization

- **What is a Scatter Plot?**

- Each point represents one observation
- Position determined by two variables



- **What can one see?**

- **Direction:** Increase together, decrease together, or move in opposite directions
- **Form:** Whether the relationship appears linear, curved, or follows some other pattern
- **Strength:** How closely the points adhere to a pattern
- **Outliers:** Points that deviate substantially from the overall pattern

Example - Proteomics Data

- **Data Structure:**

- Matrix format
- Rows: Proteins (thousands)
- Columns: Samples/Patients
- Values: Protein abundance

Protein	P1	P2	P3	P4
Protein A	10.2	15.3	8.7	12.1
Protein B	5.6	7.2	4.3	6.8
Protein C	0.3	0.2	3.5	0.4

- **Values Represent:**

- Mass spectrometry intensities
- Antibody-based measurements
- Normalized abundance values

Analysis Approaches in Proteomics

- **Two Key Perspectives:**

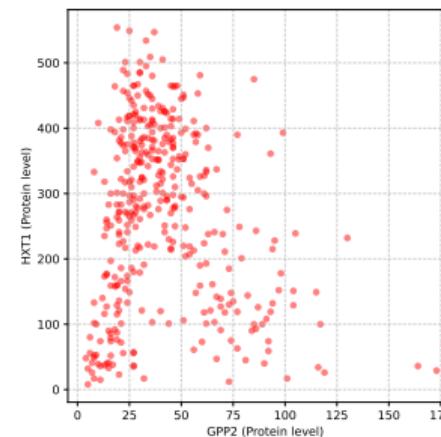
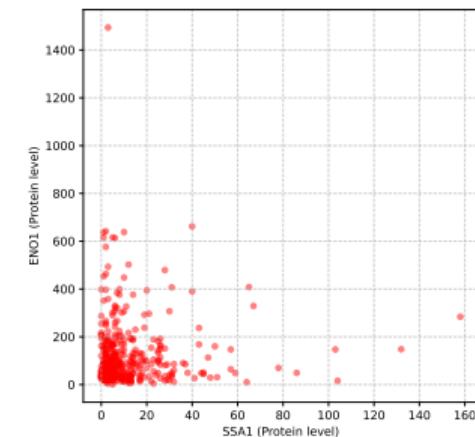
- Protein-Protein correlations
- Sample-Sample comparisons

- **Biological Questions:**

- Which proteins are co-regulated?
- Do protein complexes show coordinated expression?
- How do disease states differ?
- Are there distinct patient subgroups?

Scatter: Protein-Protein View

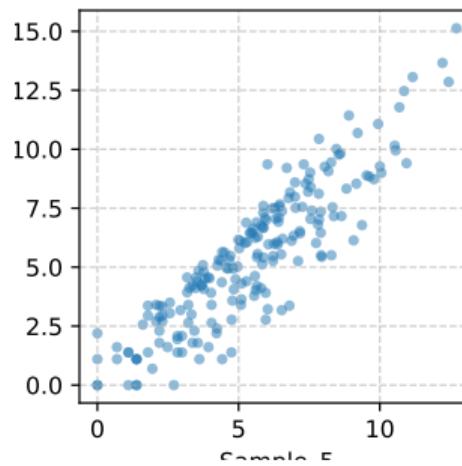
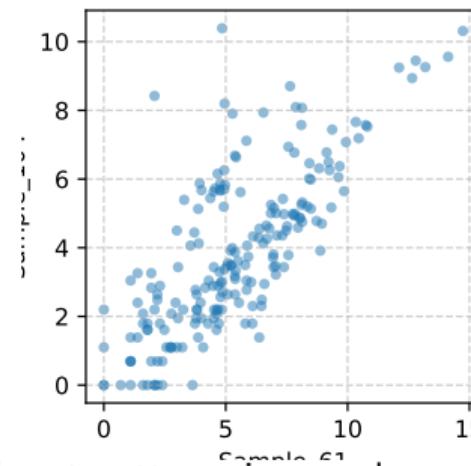
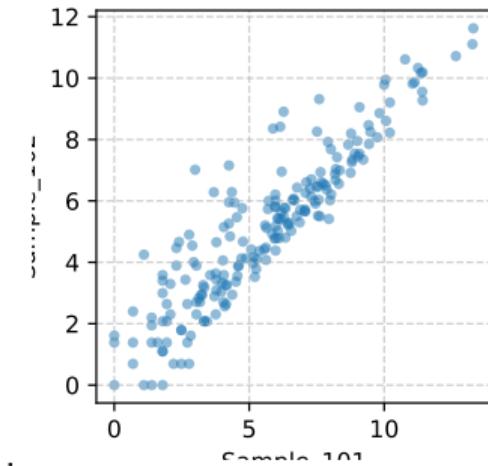
- **Points:** Each represents one sample



Different patterns of protein co-expression

Scatter Plots in Proteomics: Sample-Sample View

- **Points:** Each represents one protein



Different patterns in sample comparisons

Covariance: The Basic Measure

Definition (Covariance)

The covariance between random variables X and Y is:

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

- Sample estimate:

$$\text{Cov}(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

Correlation: A Normalized Measure

Definition (Pearson Correlation)

$$\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Key Properties of Correlation

- **Symmetry:**

$$\rho_{X,Y} = \rho_{Y,X}$$

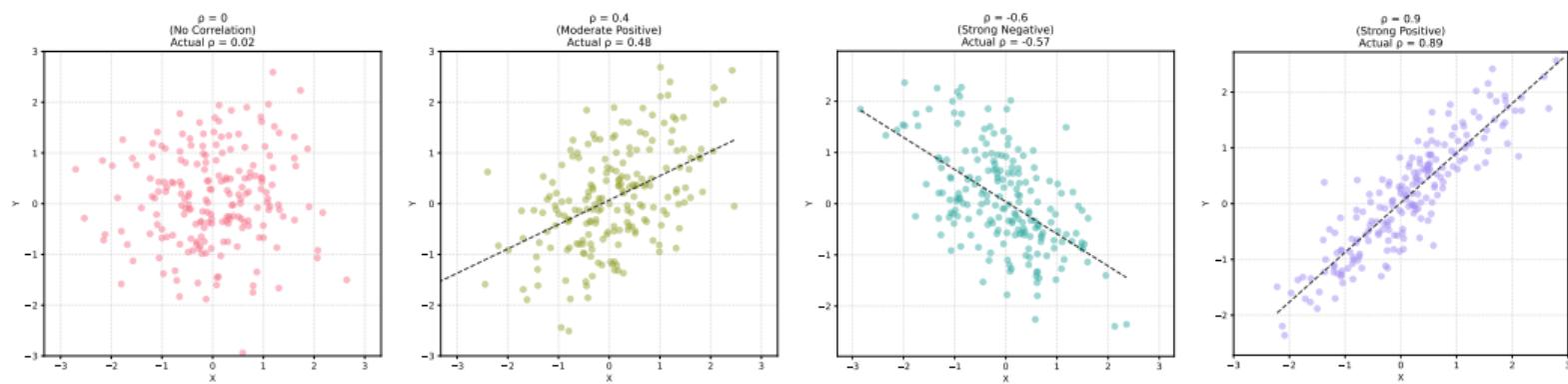
- **Range:**

$$-1 \leq \rho_{X,Y} \leq 1$$

- **Scale Invariance:** For $a, c \neq 0$

$$\rho_{aX+b, cY+d} = \text{sign}(ac) \cdot \rho_{X,Y}$$

Visual Guide to Correlation Values

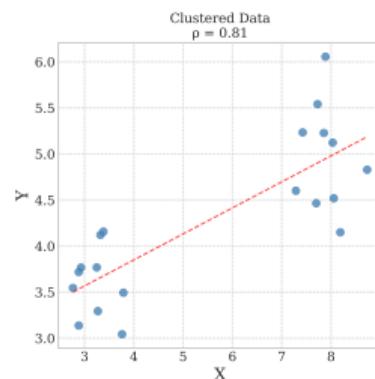
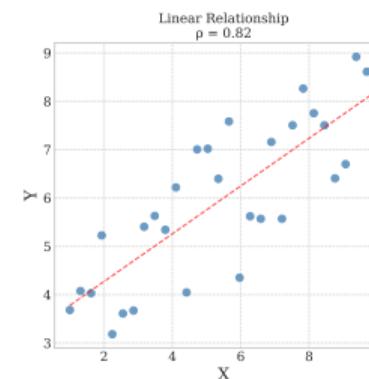
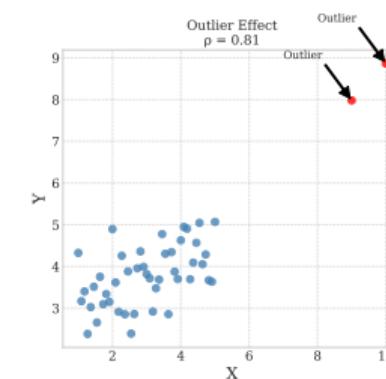
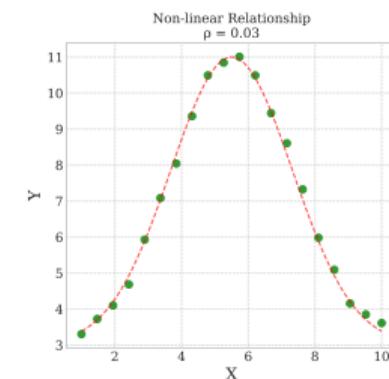


- Values near ± 1 : Strong linear relationship
- Values near 0: No linear relationship

Correlation - Avoiding Misconceptions

- **Correlation \neq Causation**
- **Linear Relationships Only**
- **Zero Correlation \neq Independence**
- **Outlier Sensitivity**

Why Visualize? Same Correlation, Different Stories



Clusters

$$\rho = 0.57$$

Linear

$$\rho = 0.57$$

Outliers

$$\rho = 0.57$$

Nonlinear

$$\rho \approx 0$$

- First three: Same correlation, radically different patterns
- Last one: Strong relationship, but correlation near zero

Geometric Interpretation of Correlation

- For centered vectors \mathbf{x}_c and \mathbf{y}_c :

$$\rho_{X,Y} = \cos(\theta) = \frac{\mathbf{x}_c \cdot \mathbf{y}_c}{\|\mathbf{x}_c\| \|\mathbf{y}_c\|}$$

- θ is angle between vectors in \mathbb{R}^n
- Correlation = cosine of angle

Geometric Properties of Correlation

- **Perfect positive:**

- $\rho = 1$
- $\theta = 0$
- Same direction

- **Perfect negative:**

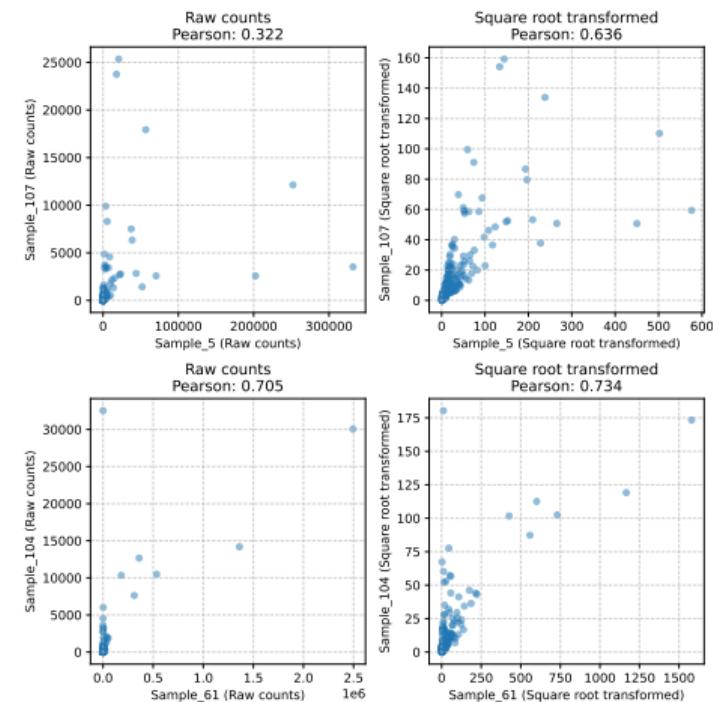
- $\rho = -1$
- $\theta = 180$
- Opposite directions

- **No correlation:**

- $\rho = 0$
- $\theta = 90$
- Perpendicular vectors

Data Transformations in Correlation Analysis

- **Common Challenges:**
 - Non-linear relationships
 - Skewed distributions
 - Multiple orders of magnitude
- **Transformations:**
 - **Square root**
 - Logarithm
 - Logit
- **Goals:**
 - Reduce skewness
 - Linearize relationships
- **Warning:**
 - Different transformations
 - → Different correlations



Data Transformations in Correlation Analysis

- **Common Challenges:**

- Non-linear relationships
- Skewed distributions
- Multiple orders of magnitude

- **Transformations:**

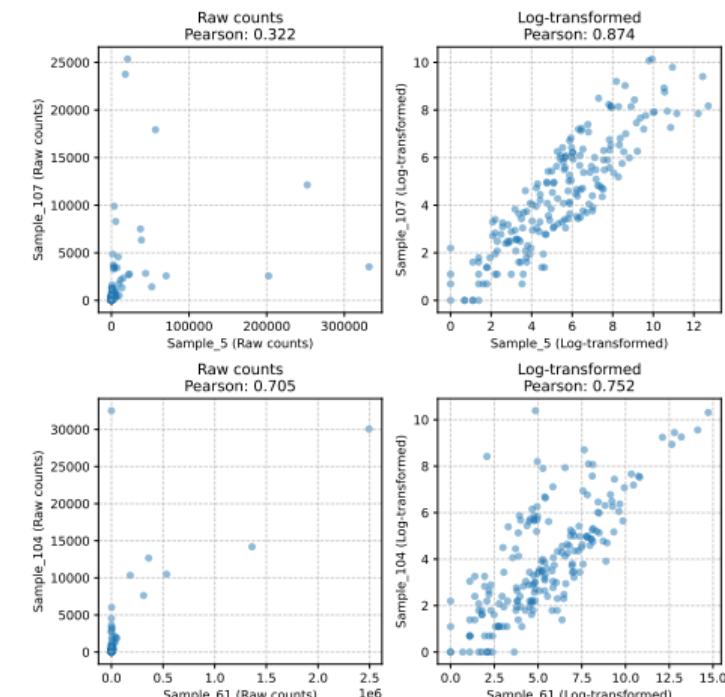
- Square root
- **Logarithm**
- Logit

- **Goals:**

- Reduce skewness
- Linearize relationships

- **Warning:**

- Different transformations
- → Different correlations



Spearman's Rank Correlation: Beyond Linear Relationships

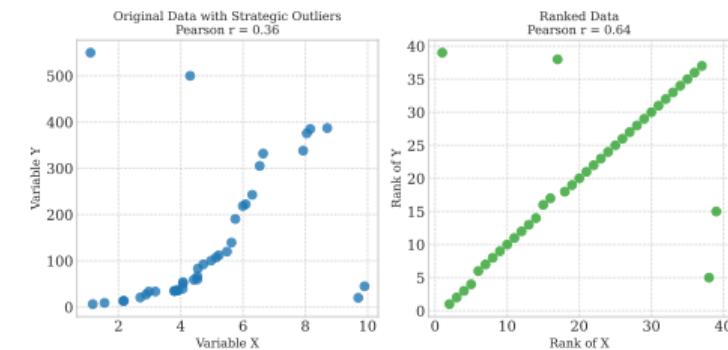
- **Formula:**

$$\rho_s = \rho(\text{rank}(X), \text{rank}(Y))$$

- **Key Idea:** Replace values with ranks

- **Features:**

- Detect non-linear relationships
- Less sensitive to outliers



Spearman's Rank Correlation: Beyond Linear Relationships

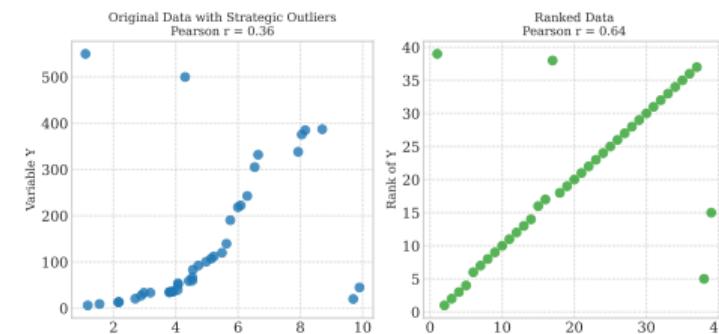
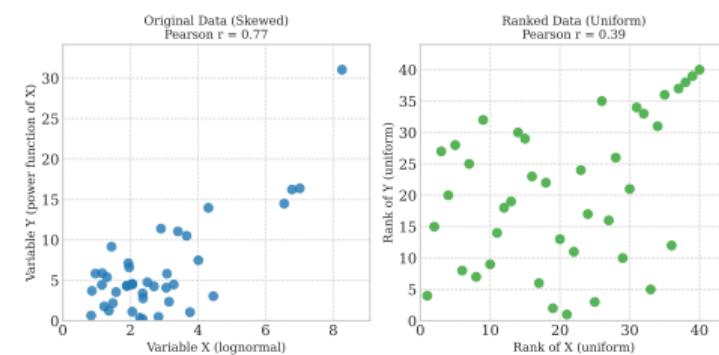
- **Formula:**

$$\rho_s = \rho(\text{rank}(X), \text{rank}(Y))$$

- **Key Idea:** Replace values with ranks

- **Features:**

- Detect non-linear relationships
- Less sensitive to outliers



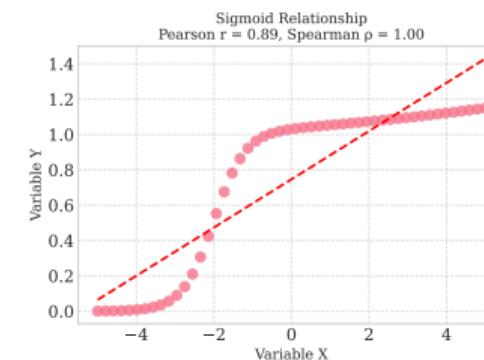
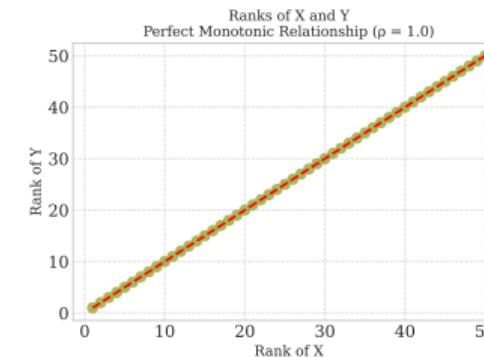
Transformation Invariance: A Key Advantage

- **Invariance Property:**

- If $Y = f(X)$ where f is monotonic:
 $\rho_s(X, Y) = \pm 1$
- Same value for raw or transformed data

- **Benefits:**

- No need to choose "correct" scale
- Platform-independent comparisons
- Reveals relationships automatically



When to Use Spearman Correlation in Biological Data Analysis

- **Use Spearman when:**

- Data contains influential outliers
- Comparing different measurement platforms
- Expecting monotonic but non-linear relationships
- Uncertain about measurement scale

- **Key Advantage:**

- Reveals biological relationships
- No subjective data transformation needed

Example of Exam Questions

Question 4: A researcher is testing whether two continuous variables X and Y are associated. She computes their Pearson correlation coefficient and finds $r = 0.85$. What does this indicate?

- A. X and Y have a strong negative linear relationship
- B. X and Y are independent
- C. X and Y have a strong positive linear relationship
- D. X is the cause of Y
- E. X and Y follow a nonlinear relationship

Example of Exam Questions

Question 5 Which of the following best describes the key difference between Pearson and Spearman correlation coefficients?

- A. Pearson measures linear relationships, while Spearman measures monotonic relationships.
- B. Pearson is only used for categorical data, while Spearman is for continuous data.
- C. Spearman considers the mean of the data, whereas Pearson does not.
- D. Spearman correlation requires normally distributed data, while Pearson does not.
- E. Pearson correlation can only be positive, while Spearman can be negative.

Example of Exam Questions

Question 6 Which is the mathematical expression of $\text{Cov}(X, Y)$ for two random variables X and Y?

- A. $E[XY] - E[X]E[Y]$
- B. $E[X]E[Y] - E[XY]$
- C. $E[X] - E[Y]$
- D. $E[X] + E[Y]$
- E. $E[X]E[Y]$