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1 Introduction to Maximum Likelihood Estimation

In the realm of statistical inference, one of our fundamental challenges is to bridge the gap between
our theoretical understanding of probability distributions and the practical reality of data analysis.
When we observe data that appears to follow a particular distribution family, how do we deter-
mine the specific parameters that best describe our observations? This question leads us to one of
statistics’ most powerful and elegant tools: Maximum Likelihood Estimation (MLE).

1.1 The Problem

Imagine you are a geneticist studying the dependency of adult heights and a set of genes involved
in skeletal development. After measuring a hundred of people, you notice that the heights seem to
follow a normal distribution - the familiar bell-shaped curve. You decide to model this data using
a normal distribution, which is characterized by two parameters: the mean µ and the standard
deviation σ. But which normal distribution? Which parameter do we set? There are infinitely
many possible normal distributions, each characterized by different values of µ (mean) and σ. The
challenge of parameter estimation is to determine which specific values of these parameters best
explain our observed data.
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Figure 1: Maximum likelihood estimation: choosing the best distribution

This scenario illustrates the core problem that Maximum Likelihood Estimation addresses: given
a set of observations and a family of probability distributions (or, more in general, a model), how
do we choose the distribution parameters that make our observed data most probable?

The Figure 2 below shows examples of different occurrences of this problem. Consider the
following examples illustrating different distribution fitting scenarios:

• Discrete count data (e.g., number of RNA molecules) modeled with a Poisson distribution

• Right-skewed continuous data (e.g., protein lifetimes) modeled with a gamma distribution

• Bimodal data (e.g., mixed cell populations) modeled with a mixture of two Gaussians

1.2 The Likelihood Function: A Bridge Between Data and Theory

At the heart of Maximum Likelihood Estimation lies a profound shift in perspective. Instead of
thinking about the probability of future observations given fixed parameters, we consider how likely
our observed data would be under different parameter values. This leads us to the concept of the
likelihood function.
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Figure 2: Maximum likelihood estimation: fitting different data distributions

Definition 1.1 (Likelihood Function). For independent observations x1, ..., xn and a probability
model with parameter(s) θ, the likelihood function is defined as:

L(θ|x1, ..., xn) =
n∏

i=1

p(xi|θ)

where p(xi|θ) is the probability density (or mass) function evaluated at observation xi.

The likelihood function reverses our usual probabilistic thinking. Rather than treating θ as fixed
and x as variable (as we do in probability calculations), we now treat our observed data x as fixed
and consider θ as variable. This subtle but crucial shift allows us to ask: ”Which parameter values
would make our observed data most likely?”

1.2.1 Independence of Observations

An important concept in likelihood functions is that observations x1, ..., xn are independent. The
interpretation of independence relates to the unit of observation. Consider two biological examples:

• When measuring both nuclear and cytoplasmic diameters of the same cell, these measurements
are not independent and should be treated as a single vector observation

• In a blood test the measurements of the same patient are not independent, but the measure-
ments of different patients are.

We can formalize this by writing the likelihood as:

L(θ|x1, ...,xn) =

n∏
i=1

p(xi|θ)

where xi is a vector containing related measurements that form a single observation.
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1.3 The Log-Likelihood: From Products to Sums

The expression of the likelihood contains a product of many (maybe small) terms. Computationally
working with products of probabilities can be challenging: numbers can become extremely small,
leading to numerical underflow. Moreover, products are generally more difficult to optimize than
sums (why this is important will be soon apparent). This leads us to work with the log-likelihood
function:

ℓ(θ) = logL(θ|x1, ..., xn) =
n∑

i=1

log p(xi|θ)

As it was anticipated, the logarithmic transformation provides several advantages:

• It converts products to sums, making calculations more manageable

• It maintains the same maximum point as the likelihood function (since log is monotonic)

• It often leads to simpler optimization problems

• It helps prevent numerical underflow in computations

1.3.1 Reflecting on the Likelihood and Log-Likelihood

Let us pause and consider what the likelihood function really represents. It is fundamentally different
from a probability density function in two critical ways:

• The likelihood is primarily function of the parameters θ, because typically the data x1, ..., xn
was collected and can be considered fixed.

• Yet its expression depends on both the data and parameters, meaning that adding new obser-
vations changes the entire function.
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Figure 3: Likelihood function estimation with increasing sample size

This inverted perspective—fixing the data and varying the parameters—is what makes the likeli-
hood a powerful tool for inference, but also requires careful consideration. For example the Likelihood
is not a probability density function, it does not integrate to 1 over the parameter space. In general,
it can have multiple peaks, corresponding to different parameter values that explain the data almost
equally well.
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1.4 The Maximum Likelihood Principle

The fundamental principle of maximum likelihood estimation is deceptively simple: choose the
parameter values that maximize the likelihood (or log-likelihood) function. Mathematically:

θ̂MLE = argmax
θ

L(θ|x1, ..., xn) = argmax
θ

ℓ(θ)

This principle has a compelling intuitive interpretation: we choose the parameter values that
would make our observed data most probable. it is like asking, ”If we had to bet on which probability
distribution generated our data, which one should we choose?”

To make this concrete, let’s examine a practical example involving height measurements. Suppose
we have collected height measurements from 100 students, and we observe that these measurements
appear to follow a normal distribution. The challenge lies in determining which specific normal
distribution - that is, which values of µ and σ - best describes our data.
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(b) Log-likelihood surface as a function of µ and σ

Figure 4: Maximum likelihood estimation: finding the distribution that best fits the data

The visualizations above illustrate two key aspects of our problem:

• The histogram shows our observed heights overlaid with several possible normal distributions

• The log-likelihood surface displays how well different combinations of parameters explain our
data

The log-likelihood surface provides a particularly illuminating view of our optimization problem.
Each point on this surface represents a possible combination of µ and σ values, with the height of the
surface indicating how well those parameter values explain our observed data. The MLE solution
corresponds to the peak of this surface.

It is crucial to understand that our maximum likelihood problem is inherently bivariate - we
must simultaneously determine both µ and σ. However, visualizing and understanding this joint
structure can be challenging. To gain additional insight, we can examine the marginal likelihoods.
The marginal likelihood for one parameter is obtained by integrating the joint likelihood over all
possible values of the other parameter:

Lmarginal(µ) =

∫ ∞

0

L(µ, σ)dσ

Lmarginal(σ) =

∫ ∞

−∞
L(µ, σ)dµ

This marginalization process is not merely ignoring the other parameter - it is accounting for
all its possible values. This gives us a way to visualize how each parameter individually affects the
likelihood while properly accounting for our uncertainty in the other parameter:
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Figure 5: Marginal likelihood profiles for each parameter

These marginal views help us understand how each parameter individually affects the likelihood,
showing clear peaks that correspond to our maximum likelihood estimates.

1.5 Finding the Maximum Likelihood Estimates

For the normal distribution, we can find the maximum likelihood estimates analytically. Let us work
through this step-by-step:

Starting with the log-likelihood function:

ℓ(µ, σ2) = −n
2
log(2πσ2)−

n∑
i=1

(xi − µ)2

2σ2

To find the maximum, we take partial derivatives with respect to both parameters and set them
equal to zero:

For µ:

∂ℓ

∂µ

∣∣∣
µ=µ̂

=

n∑
i=1

xi − µ̂

σ2
= 0

This leads to our first estimate:

µ̂ =
1

n

n∑
i=1

xi

For σ2:
∂ℓ

∂σ2

∣∣∣
σ2=σ̂2

= − n

2σ̂2
+

n∑
i=1

(xi − µ)2

2(σ̂2)2
= 0

This equation still contains µ, which we do not know. However, we can use our previously derived
estimate µ̂ - a technique known as plug-in estimation. Substituting µ̂ for µ and solving yields:

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

This sequential estimation process, where we first estimate µ and then plug this estimate into
our formula for σ2, is an example of how we can break down complex multiparameter estimation
problems into simpler steps.
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1.6 The Bias in MLE Variance Estimation

An interesting subtlety emerges in our variance estimation. Notice that our MLE for σ2 uses n in
the denominator rather than the more familiar n-1 that appears in the sample variance formula.
This isn’t a mistake - it reveals a fundamental property of maximum likelihood estimation.

The reason for this discrepancy lies in how we use the sample mean µ̂ in our variance calculation.
When we substitute µ̂ for the true (unknown) population mean µ, we’re forcing our data to be
centered around µ̂. This makes the squared deviations (xi − µ̂)2 slightly smaller than they would
be if we used the true mean (xi −µ)2. As a result, our MLE systematically underestimates the true
variance.

This bias can be quantified:

E[σ̂2
MLE ] =

n− 1

n
σ2

This relationship explains why we often prefer the unbiased estimator:

s2 =
n

n− 1
σ̂2
MLE =

1

n− 1

n∑
i=1

(xi − µ̂)2

Understanding this bias is crucial in practice. While MLEs have many desirable properties, they
aren’t always unbiased. This example serves as a reminder that we must always think carefully
about the properties of our estimators and choose them based on our specific needs.

1.7 Beyond Analytical Solutions: Numerical Methods for MLE

While the normal distribution provides an elegant case where we can find MLEs analytically, most
real-world problems require numerical optimization. The likelihood functions for many distributions
do not yield closed-form solutions when we set their derivatives to zero. In such cases, we must rely
on iterative numerical methods to find the maximum likelihood estimates.

1.7.1 Common Numerical Optimization Methods

Several approaches are available for finding the maximum of the likelihood function:
The Newton-Raphson method iteratively refines our parameter estimates using both first and

second derivatives:

θ(t+1) = θ(t) −
[
∂2ℓ

∂θ2

]−1
∂ℓ

∂θ

This method typically converges quickly when we’re close to the maximum, but it requires
computing second derivatives and can be sensitive to starting values.

Gradient descent offers a simpler alternative, using only first derivatives:

θ(t+1) = θ(t) + α
∂ℓ

∂θ

where α is a learning rate that controls step size. While this method converges more slowly, it’s
more robust and easier to implement.

1.7.2 Example: MLE for the Gamma Distribution

Let’s examine a practical example using protein degradation rates in cells. Protein degradation
times often follow a gamma distribution, which has two parameters: shape (α) and rate (β). The
probability density function is:

f(x|α, β) = βα

Γ(α)
xα−1e−βx
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For a sample x1, ..., xn, the log-likelihood is:

ℓ(α, β) = nα log β − n log Γ(α) + (α− 1)

n∑
i=1

log(xi)− β

n∑
i=1

xi
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(b) Optimization path using gradient descent

Figure 6: Numerical optimization of gamma distribution parameters

The left panel shows the log-likelihood surface, with brighter colors indicating higher likelihood
values. The right panel demonstrates how gradient descent navigates this surface, starting from an
initial guess and converging to the maximum likelihood estimates.

Let us examine how the gradient descent optimization proceeds:
1. Initialize parameters at reasonable values (often using method of moments estimates) 2.

Compute gradients:

∂ℓ

∂α
= n log β − nψ(α) +

n∑
i=1

log(xi)

∂ℓ

∂β
=
nα

β
−

n∑
i=1

xi

where ψ(α) is the digamma function
3. Update parameters using gradient descent:

α(t+1) = α(t) + αrate
∂ℓ

∂α

β(t+1) = β(t) + βrate
∂ℓ

∂β

4. Repeat until convergence (when parameter changes become sufficiently small)

1.7.3 Practical Considerations

Several challenges often arise in numerical optimization:

• Multiple local maxima may exist, requiring multiple starting points

• Parameters may have natural constraints (e.g., α, β > 0 for gamma)

• Step sizes must be chosen carefully to ensure convergence

• Numerical instabilities can occur, especially near parameter constraints

Modern statistical softwares handle many of these issues automatically, but understanding the
underlying process helps us diagnose problems and ensure reliable results. In the exercise section,
we will implement these methods ourselves and explore their behavior with real biological data.
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2 Measuring Association

In biological data science, understanding relationships between variables often provides deeper in-
sights than studying variables in isolation. When we observe gene expression patterns, protein
interactions, or cellular responses to stimuli, we’re fundamentally interested in how these elements
influence and relate to each other. The challenge lies in quantifying these relationships in meaningful
ways.

2.1 Types of Association

The relationships we observe in biological systems span a spectrum of complexity. The simplest
form is linear association, where changes in one variable are proportional to changes in another.
Consider a simple enzymatic reaction under ideal conditions: as we increase enzyme concentration,
we might see a proportional increase in the rate of product formation. Yet biology rarely confines
itself to such simplicity. More often, we encounter non-linear relationships, where variables might
increase together but not at a constant rate, or display even more intricate patterns of dependency
that change across different ranges of measurement.

2.2 Scatter Plots: Visualizing Relationships Between Variables

Before attempting to quantify associations, it is crucial to visualize the relationships between vari-
ables. The scatter plot is the most fundamental graphical tool for this purpose, revealing patterns
that summary statistics alone might miss.

Definition 2.1 (Scatter Plot). A scatter plot displays the values of two variables for a set of data
points, with each point positioned at the coordinates defined by its values on both variables.

Scatter plots provide immediate visual information about several aspects of the relationship
between variables:

• Direction: Whether the variables tend to increase together, decrease together, or move in
opposite directions

• Form: Whether the relationship appears linear, curved, or follows some other pattern

• Strength: How closely the points adhere to a pattern

• Outliers: Points that deviate substantially from the overall pattern

The examples below illustrate how scatter plots reveal different types of relationships that might
exist between variables.
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Figure 7: Common patterns in scatter plots
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In the first plot, we see a clear linear relationship that would be well-captured by correlation
coefficients. The second plot shows a nonlinear relationship that correlation coefficients might un-
derestimate. The third plot reveals clustered data that might indicate distinct subpopulations. The
fourth plot demonstrates how outliers can influence our perception of relationships.

2.3 Proteomics Data: A Biological Context for Association Analysis

To understand how scatter plots and association measures are applied in biological research, let’s
introduce proteomic data—a common data type in modern biology.

2.3.1 Structure of Proteomic Data

Proteomic data typically comes in a matrix format where:

• Rows represent proteins (often thousands)

• Columns represent samples (patients or conditions)

• Each cell value represents the abundance of a protein in that sample

Here’s a simplified example of what a proteomic matrix might look like:

Protein/Sample Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
Protein A 10.2 15.3 8.7 12.1 9.8
Protein B 5.6 7.2 4.3 6.8 5.1
Protein C 0.3 0.2 3.5 0.4 2.8
Protein D 8.7 9.3 2.1 8.9 3.2

These values typically represent normalized intensities from mass spectrometry measurements,
or relative abundance measures from antibody-based assays.

2.3.2 Scatter Plots for Proteomic Data

To examine the relationship between two proteins, we create a scatter plot where each point repre-
sents a patient, with coordinates determined by the abundance values of the two proteins in that
sample.
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Figure 8: Visualizing protein-protein relationships through scatter plots

In this scatter plot, each point represents one patient, positioned according to the abundance
levels of Protein A (x-axis) and Protein B (y-axis). Despite being different, all the displayed patterns
suggest a positive association—as Protein A’s abundance increases, Protein B’s abundance tends to
increase as well.

This visualization approach allows us to:
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• Identify proteins that appear to be co-regulated

• Detect potential protein complexes or pathways

• Discover complex patterns of protein interaction

• Identify outlier samples that may represent different disease states or technical issues

Note that this is not the only possible view of the data. We might want to look at the other axis
comparing two samples (patients) across all the proteins.
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Figure 9: Visualizing sample-sample relationships through scatter plots

Biological interpretation of scatter plots: In a cancer proteomics study, researchers created scat-
ter plots comparing the abundance of key signaling proteins. Samples with high EGFR levels
consistently showed high abundance of downstream effectors like ERK and AKT (positive correla-
tion), suggesting active signaling pathways. Meanwhile, tumor suppressors like p53 showed opposite
patterns (negative correlation), consistent with dysregulation of normal cellular control mechanisms.

Once we’ve visualized the relationship using scatter plots, we can then quantify the strength and
direction of the association using correlation measures. The choice between Pearson correlation (for
linear relationships) and Spearman correlation (for monotonic relationships) often depends on the
patterns observed in the scatter plot and our knowledge of the biological context.

2.4 Covariance and Correlation: Measuring Linear Relationships

When variables are not independent, we often want to quantify the strength of their relationship.
The most basic measures of association are covariance and correlation.

Definition 2.2 (Covariance). The covariance between random variables X and Y is:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Note that this is expressed in terms of operator on random variables, but in practice, we estimate
it from data using the sample covariance formula:

Cov(x,y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

While covariance measures the direction and magnitude of linear relationships, its scale depen-
dence makes it difficult to interpret. This leads us to correlation:
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Definition 2.3 (Pearson Correlation Coefficient). The Pearson correlation coefficient between X
and Y is:

ρX,Y =
Cov(X,Y )√
Var(X)Var(Y )

Also here it is much more useful to estimate it from data using the sample correlation formula:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

The correlation coefficient has several important properties:

• Values near 1 indicate strong positive linear relationship

• Values near -1 indicate strong negative linear relationship
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Figure 10: Scatter plots with different correlation coefficients

2.5 Properties and Limitations of Correlation Coefficients

Correlation coefficients have specific mathematical properties that determine their behavior and
interpretation. Understanding these properties—and their limitations—is essential for correct ap-
plication in biological data analysis.

2.5.1 Key Mathematical Properties

• Symmetry: ρX,Y = ρY,X (the order of variables doesn’t matter)

• Range: −1 ≤ ρX,Y ≤ 1 (bounded between perfect negative and perfect positive correlation)

• Scale Invariance: For constants a, b, c, d where a, c ̸= 0:

ρaX+b,cY+d = sign(ac) · ρX,Y

This means linear transformations of variables (like changing units) preserve correlation mag-
nitude

• Standard Normal Transformation: For variables ZX = X−µX

σX
and ZY = Y−µY

σY
:

ρX,Y = ρZX ,ZY
= E[ZXZY ]
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2.5.2 Common Misconceptions and Limitations

Despite their utility, correlation coefficients are frequently misinterpreted:

• Correlation ̸= Causation: Strong correlation between variables does not imply that one
causes the other

• Linear Relationships Only: Pearson correlation measures only linear relationships, poten-
tially missing important non-linear patterns

• Zero Correlation ̸= Independence: Uncorrelated variables may still have strong non-linear
dependencies

• Outlier Sensitivity: Pearson correlation can be strongly distorted by a small number of
extreme values
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Figure 11: Correlation limitations - it remains important to look at the data
The figure illustrates a critical limitation: four different datasets with identical correlation co-

efficients but fundamentally different relationships. This highlights why visual examination of data
through scatter plots should always accompany correlation analysis. Depending solely on the corre-
lation coefficient can mask important patterns in the data.

2.6 Geometric Interpretation of Correlation

Consider our data vectors x = (x1, ..., xn) and y = (y1, ..., yn), where n is the number of observations.
When we center these vectors by subtracting their means (xc = x− x̄ and yc = y − ȳ), the sample
correlation coefficient equals:

ρX,Y = cos(θ) =
xc · yc

||xc||||yc||
where θ is the angle between the centered vectors in Rn space.
This geometric interpretation explains key properties of correlation:

• Perfect positive correlation (ρ = 1): The vectors point in the same direction (θ = 0)

• Perfect negative correlation (ρ = −1): The vectors point in opposite directions (θ = 180)

• No correlation (ρ = 0): The vectors are perpendicular (θ = 90)

When variables are standardized (centered and scaled to unit variance), they become unit vec-
tors on a hypersphere. The correlation then directly represents how similarly these standardized
vectors are oriented in space, explaining why correlation is invariant to linear transformations of the
variables.
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2.7 Data Transformations and Correlation Measures

When analyzing biological data, we often encounter relationships that deviate from linearity or
datasets with skewed distributions. These characteristics can significantly impact correlation analysis
and require careful consideration of data transformations.

2.7.1 The Challenge of Finding Appropriate Transformations

When relationships are non-linear or data distributions are skewed, we often need to transform the
natural space of the data to better capture underlying patterns. Common transformations include:

• Log transformations: Commonly used for gene expression, protein abundances, and other
biological measurements that span multiple orders of magnitude

• Square root transformations: Often applied to count data with variance proportional to
the mean

Finding the ”right” transformation is often challenging and subjective. An appropriate transfor-
mation should:

• Reduce skewness in marginal distributions

• Linearize the relationship between variables

• Stabilize variance across the range of measurements

• Have biological interpretability
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(a) Effect of log transformations on correlation
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Figure 12: Effect of transformations on Pearson correlation

The figure illustrates how different transformations can dramatically affect Pearson correlation
values for the same underlying relationship. This transformation-dependence is a fundamental lim-
itation when analyzing biological data, where the ”true” scale of measurement is often unknown.

2.8 Spearman’s Rank Correlation: Beyond Linear Relationships

Spearman’s rank correlation provides an elegant solution to the transformation challenge by focusing
on monotonicity rather than linearity. By replacing values with their ranks, Spearman correlation
becomes invariant to any strictly increasing transformation.
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2.8.1 From Values to Ranks

Spearman’s rank correlation coefficient (ρs) is calculated by applying Pearson’s formula to the ranks
of the data rather than the actual values:

ρs = ρ(rank(X), rank(Y )) =

∑n
i=1(R(xi)−R(x))(R(yi)−R(y))√∑n

i=1(R(xi)−R(x))2
∑n

i=1(R(yi)−R(y))2

where R(xi) and R(yi) are the ranks of observations xi and yi and R(x) and R(y) are the mean
of the ranks.
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Figure 13: Spearman correlation as Pearson correlation of ranks

2.8.2 Transformation Invariance: A Key Advantage

Spearman correlation has several key advantages over Pearson correlation:

• If Y = f(X) where f is any strictly increasing function, then ρs(X,Y ) = 1 if decreasing,
ρs(X,Y ) = −1

• The same Spearman correlation value is obtained regardless of whether you analyze raw data,
log-transformed data, or any other monotonic transformation

• This invariance is especially valuable when the ”natural” scale of biological measurements is
unknown or when comparing measurements across different experimental platforms

The most significant advantage of Spearman correlation is its invariance to monotonic transfor-
mations. This property eliminates the need to identify the ”correct” scale of measurement

In the figure above, a sigmoid relationship appears non-linear on the original scale.
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While Pearson correlation underestimates the strength of this relationship (ρ ≈ 0.89), Spear-
man correctly identifies it as perfectly correlated (ρs = 1.0) because the ranks perfectly align. No
transformation is needed to reveal this strong monotonic relationship.

2.8.3 When to Use Spearman Correlation in Biological Data Analysis

Spearman correlation is particularly valuable when:

• Data contains outliers that might disproportionately influence Pearson correlation

• Different measurement techniques or platforms are being compared

• The biological mechanism suggests a monotonic but potentially non-linear relationship

• You want to avoid making assumptions about the ”correct” scale of measurement

By focusing on the ranks rather than the values themselves, Spearman correlation often reveals
biological relationships without requiring subjective decisions about data transformation.
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