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Random Variables

Random Variables



A New Type of Variable: Random Variables

e "Regular” Variables:
m Deterministic: y = f(x)
m One input — One output
m Example: y =2x+1
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A New Type of Variable: Random Variables

e "Regular” Variables: e Fundamental Shift:
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m Example: y =2x+1
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A New Type of Variable: Random Variables

e "Regular” Variables: e Fundamental Shift:
m Deterministic: y = f(x) m From "What is the value?”
m One input — One output m To "What is the probability?”

m Example: y =2x+1
e Full Description Needs:

e Random Variables: Support (possible values)
m Not a value, but a generator pdf/pmf (likelihood)
m Same input — Different outputs cdf (cumulative probability)
m Described by probability functions inverse cdf (quantiles)
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Support

e Support of a Random Variable:
m Definition: The set of all possible values that a random variable X can take.

m Notation: Supp(X) = {x € R: P(X = x) > 0} for discrete, or
Supp(X) = x € [a, b] for continuous.

m Purpose: Defines the "range” or domain where the random variable is valid.
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Random Variables

Types of Random Variables
Types of Random Variables

m Discrete Random Variable:

e Takes on a countable set of values (e.g., integers).
e Defined by a probability mass function (PMF): P(X = x;).
m Example: Number of heads in a series of coin flips.
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Random Variables

Types of Random Variables
Types of Random Variables

m Discrete Random Variable:
e Takes on a countable set of values (e.g., integers).
e Defined by a probability mass function (PMF): P(X = x;).
m Example: Number of heads in a series of coin flips.

m Continuous Random Variable:
e Takes on an uncountable set of values, typically an interval.
e Defined by a probability density function (PDF): p(x) where
P(a< X < b)= [7p(x) dx.
m Example: Height of individuals in a population.
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Functions associated to
a Random Variable



Probability Density Function (PDF)

e Probability Density Function (PDF):

m Represents probability density at a
point (continuous RVs)

e Properties:

L] p(x) > 0 Vx (non-negative)
m [ p(x)dx =1 (normalized)

m Practical use: Finding probability in an
interval (e.g., P(a < X < b))

P(angb):/bp(x)dx
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Probability Density Function (PDF)MO’ Normal Distribution (Standard)

u=0, o=1
¢ Probability Density Function (PDF): o3
0.25
m Represents probability density at a fgo_m,
point (continuous RVs) “o1s |
e Properties: 0.05
0.00

= p( ) > 0 Vx (non-negative) e S
= [%_p(x)dx =1 (normalized)

Gamma Distribution

m Practical use: Finding probability in an 0175 k=2, 0=2
interval (e.g., P(a < X < b)) 0150
0.1251

‘go.wo—

I‘.‘3)0,075*

b
P(a< X < b)= / p(x) dx
a

0.025 +

0.000 -

0 2 4 6 8 10

Gioele La Manno February 2025 5/35



Functions associated to a Random Variable

Cumulative Distribution Function (CDF)

e Cumulative Distribution Function
(CDF):
m F(x)=P(X <x)=["_ p(t)dt

e Properties:

0 < F(x) <1 (probability bounds)
F(—c0) =0, F(oo) =1

F(x) is monotonically increasing
F(x) is right-continuous
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Cumulative Distribution Function (CDF)

Normal Distribution

0.40
e Cumulative Distribution Function 035
(CDF):
>~025
| | F( ) X<X f_ p(t éozo
e Properties: 005
m 0 < F(x) <1 (probability bounds) N
m F(—o0)=0, F(co) =1 )
. . . . Normal Distribution
m F(x) is monotonically increasing ==
m F(x) is right-continuous .| @ Px=on
IA§‘D‘5
204
,_éOZ
0.0

-4 -3 -2 -1 0 1 2 3 4
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Cumulative Distribution Function (CDF)

e Practical Use:

= Quantile Determination: Identifies values at specified probabilities (e.g., median or
percentiles).

m Statistical Testing: CDFs are central in calculating p-values and test statistics in
hypothesis testing.

m Distribution Transformations: Allows mapping from one distribution to another,
used in simulation and resampling methods.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

m Inverse CDF (Quantile Function)
Provides the value x for a given probability p.

F~1(p) = x such that F(x) = p

Use: Finding quantiles, and for setting probability thresholds.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

m Inverse CDF (Quantile Function)
Provides the value x for a given probability p.

F~1(p) = x such that F(x) = p
Use: Finding quantiles, and for setting probability thresholds.

m Survival Function:
Definition: Probability that X exceeds x

S(x)=P(X>x)=1-F(x)

Use: Commonly used to compute p-values.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

= Moment Generating Function (MGF)
Encodes the moments (mean, variance, etc.) of X.

Mx(t) = E[e¥]

Use: Useful for calculating moments and deriving properties of distributions.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

= Moment Generating Function (MGF)
Encodes the moments (mean, variance, etc.) of X.

Mx(t) = E[e™]
Use: Useful for calculating moments and deriving properties of distributions.

m Characteristic Function (CF):
Complex-valued function that provides an alternative to the MGF for
characterizing the distribution.

¢x(t) = E["]

Use: Particularly useful in Fourier transforms and convolution operations on
distributions.
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Functions associated to a Random Variable

Related Functions for Discrete Random Variables

Probability Mass Function (PMF):
Definition: Function that gives the probability of each possible value of a discrete
random variable X.

P(X = x;) = p(x)

Properties:
mp(x) >0V
® > p(x;) =1 (normalization)

Examples:
m PMF: Probability of rolling each side of a die.
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Functions associated to a Random Variable

Related Functions for Discrete Random Variables

Cumulative Mass Function (CMF):
Definition: Function that gives the cumulative probability up to a certain value.

F(x)=P(X <x)= ) p(x)

X <x
Properties:
m F(x) is non-decreasing
m0<F(x)<1
Examples:

m Probability of rolling a number less than or equal to a certain value.
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Functions associated to a Random Variable

Where to find them?

Parameters > 0 dogrees of freedom (real, aimost always a positive

intoger)
Support
=3
Student's ¢ =
Probability density function
0.
035
0.30|
025 Where 3 F(, ; ; ) is the hypergeometric function
% Mean 0 for v > 1, otherwise undefined
£020 Median |0
015 Mode [0
010 Variance | 2 for v > 2, wfor 1< v <2,
-1 ‘otherwise undefined
0.05 Skewness |0 for v > 3 , otherwiso undsfined
Excess | S _for v > d,mlor2<v <4,
0 kurtosis .

otherwise undafined

Entropy vt ol
Cumulative distribution function [s(5)-¢()]
[T B (4, £ )] e
where
() s the digamma funclon,
n()
WGF  undefined
o I

= for >0
T

+ K, () is the moified Bessel function of the second
kingll

Expected T 1 -p) < (T -p)
nordan ,,u(%)

Whers T 1( ) is the inverse standardized Student f CDF,
and 7( ) i the standardized Sucent {PDF)

Figure: Summary of Probability Density Functions (Source: Wikipedia)
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Expectation of a
Random Variable



Expectation of a Random Variable

Expectation of a Random Variable

The expectation of a random variable X, denoted E[X], is an operator defined as:

m (Discrete)

EIX] = xp(x)

= (Continuous)

E[X] = /pr(x)dx

Gioele La Manno February 2025 13 / 35



Expectation of a Random Variable

Expectation of a Random Variable

The expectation of a random variable X, denoted E[X], is an operator defined as:

m (Discrete)

EIX] = xp(x)

= (Continuous)

E[X] = /00 x p(x) dx

— 00
Intuition

m It is an operation that can be thought of as a weighted average of all possible values of
X, with weights given by the probabilities.

m |t provides the theoretical center or long-run average of the random variable.

m Repeting the experiment infinitely, the average outcome would converge to E[X].
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Properties of Expectation

m Linearity: E[aX + bY]| = aE[X] + bE[Y]
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Properties of Expectation

m Linearity: E[aX + bY]| = aE[X] + bE[Y]
m Expectation of a Function: E[g(X)] =, g(x) p(x) or [ g(x) p(x) dx
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_Expectation of a Random Variable .
Properties of Expectation

m Linearity: E[aX + bY]| = aE[X] + bE[Y]

m Expectation of a Function: E[g(X)] =, g(x) p(x) or [ g(x) p(x) dx
m Additivity for 2 RVs: E[X + Y] = E[X] + E[Y]

e It can be defined with respect to marginal distribution (often implicit):

Ep X + Y] = B [X1 + Y
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Properties of Expectation

m Linearity: E[aX + bY]| = aE[X] + bE[Y]
m Expectation of a Function: E[g(X)] =, g(x) p(x) or [ g(x) p(x) dx

= Additivity for 2 RVs: E[X + Y] = E[X] + E[Y]

It can be defined with respect to marginal distribution (often implicit):

Ep X + Y] = B [X1 + Y

m Expectation of a Product: E[XY] = E[X]E[Y] if X and Y are independent

e Avoid common naive misconception:

E[X?] = E[X - X] # E[X]?
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Moments of a Random Variable

Moments of a Random
Variable



Moments of a Random Variable

Moments of a Random Variable
Moments provide information about the shape and spread of the distribution of X. The k-th
moment of a random variable X is defined as the expectation of X*, denoted E[X*]:

E[X ] = / x* p(x) dx
Moments:
e First Moment (Mean): E[X]

15/ 35
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Moments of a Random Variable

Moments of a Random Variable

Moments provide information about the shape and spread of the distribution of X. The k-th
moment of a random variable X is defined as the expectation of X*, denoted E[X*]:

E[X ] = /OO x* p(x) dx

Moments:
e First Moment (Mean): E[X]

e Second Moment: E[X?]. (captures both the mean and the spread of X around the
mean, related to variance).
Do not confuse with Variance: Defined as Var(X) = E[X?] — (E[X])?
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Moments of a Random Variable

Moments of a Random Variable

Moments provide information about the shape and spread of the distribution of X. The k-th
moment of a random variable X is defined as the expectation of X*, denoted E[X*]:

E[X ] = /OO x* p(x) dx

Moments:
e First Moment (Mean): E[X]
e Second Moment: E[X?]. (captures both the mean and the spread of X around the
mean, related to variance).
Do not confuse with Variance: Defined as Var(X) = E[X?] — (E[X])?

e Higher-Order Moments:

m Third Moment (related to Skewness): relates to the asymmetry of the distribution

around the mean.
m Fourth Moment (related to Kurtosis): relates to the "tailedness” of the distribution.
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Moments of a Random Variable

Central Moments

Central Moments:

e Moments taken about the mean (rather than about zero) are called central
moments. For example, the second central moment is variance:

EI(X — E[X])] = Var(X)

e Central moments provide insight into the variability and shape of the distribution
relative to its mean (Typically more useful).

e Connection to Empirical Estimators.
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Moments of a Random Variable

Variance of a Random Variable

The Variance is the second central moment of a random variable. It is an operator denoted
Var(X) defined as:
Var(X) = E[(X — E[X])*] = E[X?] - (E[X])?
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Moments of a Random Variable

Variance of a Random Variable

The Variance is the second central moment of a random variable. It is an operator denoted
Var(X) defined as:

Var(X) = E[(X — E[X])?] = E[X?] - (E[X])?

Interpretation:

e The Variance quantifies the spread or variability of a random variable X around its mean.

e A higher variance indicates greater spread; a variance of zero implies X is a constant.
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Moments of a Random Variable

Variance of a Random Variable

The Variance is the second central moment of a random variable. It is an operator denoted
Var(X) defined as:
Var(X) = E[(X — E[X])*] = E[X?] - (E[X])?

Interpretation:

e The Variance quantifies the spread or variability of a random variable X around its mean.

e A higher variance indicates greater spread; a variance of zero implies X is a constant.
Key Properties:

e Non-negativity: Var(X) > 0; variance cannot be negative.

e Scaling: For a constant a

Var(aX) = a*Var(X)
e Additivity for Independent Variables: For independent random variables X and Y:
Var(X + Y) = Var(X) + Var(Y)
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Parametrization of Distributions

Analytical Parametrization of Probability Distributions

e Many probability distributions can be expressed analytically as a function of
specific parameters, often denoted as 6.

e These parameters ) control the form of the PDF (they are sometimes chosen to
intuitively link them with location, shape, spread of the distribution, but they do

not have to be!)
e In general, we will indicate a pdf with py(X) to emphasize that it is a function of
the form f(x, 0).

Log-Normal Distribution (Parameter Comparison)

Gamma Distribution (Parameter Comparison) Beta Distribution (Parameter Comparison)
05 k=1, 6=2 s =05, B=0.5 / H=0,0=05
—= —a o e
o4 =5, 0= . — am1p- =05, 0=
|
503 23 > [ N
H | AN
S42 8, 804 | N\
A < ||/ N
7 ~ |
/ — ~ w
01 / e 1 ~ 021 | / N\ .
/ / = I/ >~
0o - o — L 00 —_
3 B T : 3 o o 01 oz 03 o4 05 065 07 o8 05 10 S T 3 3 : 3
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Common Distributions in Biodata e § Normal and Log-Normal Distributions

Normal Distribution

e PDF:

Pu,o2(X) = \/% exp (_(><2;5)2>

o Key Properties:

m Symmetric around mean g

m 68% of data within 1o

m 95% within 20

m Sum of normal RVs is normal
e Biological Examples:

m Height distributions in populations
m Measurement errors in experiments
m Gene expression in large populations

Gioele La Manno

Normal Distribution (Standard)

u=0, 0=1
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Common Distributions in Biodata e § Normal and Log-Normal Distributions

Normal Distribution

e PDF:

o Key Properties:

m Symmetric around mean p

m 68% of data within 1o

m 95% within 20

m Sum of normal RVs is normal

e Biological Examples:

m Height distributions in populations
m Measurement errors in experiments
m Gene expression in large populations

Gioele La Manno

Normal Distribution (Standard)
0.404 p=0, 0=1

-4 -3 -2 -1 0 1 2 3 4
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Common Distributions in Biodata e § Normal and Log-Normal Distributions

Log_ N Ormal D istribution Log-Normal Distribution (Standard) —
e If Y =In(X) is normal, then X is log-normal Z:
e PDF: 041

1 (Inx — p)?
pu,O'Z(X) - XO'\/277T exp ( 20_2

Properties: 0 1 B 3 ) 3

m Right-skewed

m Only positive values

m Multiplicative effects become additive
on log scale

Biological Applications:

m RNA expression levels (normalized)
m Protein concentrations
m Species abundance distributions

Gioele La Manno February 2025 20 / 35



Common Distributions in Biodata e § Normal and Log-Normal Distributions

Log-Normal Distribution

e If Y =In(X) is normal, then X is log-normal

e PDF:

1 (Inx — p)?
pu,O'Z(X) - XO'\/277T exp ( 20_2

e Properties:

m Right-skewed
m Only positive values
m Multiplicative effects become additive

on log scale
e Biological Applications:

m RNA expression levels (normalized)
m Protein concentrations
m Species abundance distributions

Gioele La Manno

0.8

0.0

Log-Normal Distribution (Standard)

=0, 0=1

X

Log-Normal Distribution (Parameter Comparison)

u=0, 0=0.5
—— pu=0, o=1
—— u=0.5,0=0.5

February 2025
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Common Distributions in Biodata e § Gamma, Beta, and Dirichlet Distributions

Gamma Distribution

Gamma Distribution

pDF 0.175 4 k=2, 6=2
o :
Xk_le_x/a 0.150 1
Pko\X) = —F =7 0.1251
)= ")
) ) . 2 vors]
where k is shape, § is scale, and (k) is the oors
. 0.050 1
gamma function .
° Properties: 0.000 ‘
0 2 4 6 8 10

m Always positive
m Flexible shape (can be exponential

when k = 1)
m Sum of exponential RVs follows
gamma

¢ Biological Applications:

m Waiting times between cellular events
m Duration of biological processes
m Gene expression burst sizes
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Common Distributions in Biodata e § Gamma, Beta, and Dirichlet Distributions

Gamma Distribution

Gamma Distribution
e PDF:
Xk—le—X/9 0.150 1
/(’0 X) = 0.125
N )
where k is shape, § is scale, and (k) is the =005
. 0.050 4
gamma function
0.025 1
e Properties: o000 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10
m Always positive )
. . Gamma Distribution (Parameter Comparison)
m Flexible shape (can be exponential 05 —
when k =1) ot
. 0.4
m Sum of exponential RVs follows
gamma g03—
e Biological Applications: "oz
m Waiting times between cellular events "
m Duration of biological processes 0.0
. . 0 2 4 6 8 10
m Gene expression burst sizes .
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Common Distributions in Biodata e § Gamma, Beta, and Dirichlet Distributions

Beta Distribution

Beta Distribution e

e PDF: 1.0

x~1(1 — x)B-1
Pa.p(x) = B((aﬂ)) ol

where B(a, ) is the beta function 00/  ——

00 01 02 03 04 05 06 07 08 09 10

e Properties:

m Defined on [0,1] 51
m Conjugate prior to Bernoulli ol
m Flexible shapes based on «, 3
531
¢ Biological Applications: §27
m Allele frequencies N
m Gene expression proportions
u Success prObabIIItIes In experlments o 0.0 0.1 0.2 0.3 04 05 0.6 0.7 08 09 1.0
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Common Distributions in Biodata e § Gamma, Beta, and Dirichlet Distributions

2D Dirichlet Distribution

Dirichlet Distribution P
o PDF:
i
pa(x) = H 04]
1 0.24
where fo =1 and B(Oé) is the o 00 02 04 06 08 10
X1 (x2 = 1-xa)

multivariate beta function

e Properties:

m Multivariate generalization of Beta
m Each component in (0,1)
m Components sum to 1

e Biological Applications:

m Cell type proportions
m Species composition in microbiome

Gioele La Manno
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Common Distributions in Biodata e § Gamma, Beta, and Dirichlet Distributions

2D Dirichlet Distribution

Dirichlet Distribution P
« PDF:
i
pa(x) = H 00
1 0.21

where Y x; =1 and B(a) is the Ry o o o o 0

X1 (X2 = 1-x1)

multivariate beta function

2D Dirichlet Distribution (Parameter Comparison)

10 4 a=[2, 2]

e Properties: — a=105,05)

— a=[5,1]

m Multivariate generalization of Beta
m Each component in (0,1)

m Components sum to 1 g,
e Biological Applications: 2
m Cell type proportions o
m Species composition in microbiome o0 o b= 1m0 ° "

February 2025 23 /35
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Common Distributions in Biodata e § Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions

Bernoulli Distribution (Parameter Comparison)

0.8 *
e Bernoulli (single trial): )Z: i i
= PMF: P(X = k) = p*(1 — p)t=k,
k € {0,1} - .
m Mean: p, Variance: p(1 — p) o] o ez
m Example: Single mutation event 0 fLBorERS
0 1
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Common Distributions in Biodata e § Bernoulli and Binomial Distributions

Bernoulli Distribution (Parameter Comparison)

Bernoulli and Binomial Distributions:] '

0.71

e Bernoulli (single trial):

m PMF: P(X = k) = p*(1 — p)t~k,
k € {0,1} 02] ’

Probability
°
Y

m Mean: p, Variance: p(1 — p) o] 3 702
m Example: Single mutation event 00 © P08
0 1

e Binomial (n independent trials): «

Binomial Distribution (Parameter Comparison)

. _ __ (M Kk n—k ]
m PMF: P(X = k) = (k)p (1-p) 030 . .
m Mean: np, Variance: np(1 — p) 025 .
m Examples: 020 . o .
B Number of mutated cells in a population ‘E
B Success count in n identical experiments § 0.154 .
g ] L | °
0.104
| »
0.05 4 b o
d
0o0] » % o o o d ! o
o 1 2 3 4 5 6 7 8 9 10
K
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Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

Poisson Distribution

e PMF: PN
Ae™

where ) is both mean and variance

e Properties:

m Models rare events
m Sum of Poisson RVs is Poisson
m Limit of Binomial as n — o0, p — 0

e Biological Applications:

m Mutations in DNA sequences
m Number of cells in a small sample
m RNA-seq read counts

Gioele La Manno

Poisson Distribution

Probability

0.10 1

February 2025 25 /35



Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

Poisson Distribution

e PMF: PN
Ae™

where ) is both mean and variance

e Properties:

m Models rare events
m Sum of Poisson RVs is Poisson
m Limit of Binomial as n — o0, p — 0

e Biological Applications:

m Mutations in DNA sequences
m Number of cells in a small sample
m RNA-seq read counts

Gioele La Manno

Poisson Distribution

0.301

0.254

o o
[N
[T

Probability

0.101

0.051

0.00 1

A=1.6

Poisson Distribution (Parameter Comparison)

Probability
o o o
[ VI

°
o

o
o

A=0.4
® A=10
® A=45

February 2025
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Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

Negative Binomial Distribution

e PMF:

P(X = k) =

k+r—1
k

)p’(l - p)*

where r is number of successes, p is
probability

e Properties:

m More dispersed than Poisson
. _pr : . pr
m Mean: ip Variance: ooy

m Handles overdispersion in count data
e Biological Applications:

m RNA-seq differential expression
m Microbial abundance counts
m Cellular heterogeneity modeling

Gioele La Manno

Probability

Negative Binomial Distribution

r=5, p=0.5

6 i Z‘ 3‘ 4‘15‘ ‘6 ‘7 é é1‘01‘11‘21‘31‘41‘51‘61‘71‘81‘9
k
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Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

Negative Binomial Distribution

e PMF:

P =1 = (“" e pr

where r is number of successes, p is
probability

e Properties:

m More dispersed than Poisson
. _pr : . pr
m Mean: ip Variance: ooy

m Handles overdispersion in count data
e Biological Applications:

m RNA-seq differential expression
m Microbial abundance counts
m Cellular heterogeneity modeling

Gioele La Manno

Negative Binomial Distribution

0.14

0.124

0.101

o o
o o
& ®

Probability

0.04 1

0.02 4

0.001

r=5, p=0.5

012 3 456 78 é1‘01‘11‘21‘31‘41‘51‘61‘71‘81‘9
k

Negative Binomial Distribution (Parameter Comparison)

0.25 4

0.20 1

Probability
°
-
G

o
o
5

0.05 1

0.00 1

"
»
PoebobStee
23456 7 8 910111213141516171819
k
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Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

NegBinom - Alternative Param. Negative Binomial Distribution

(Mean-Overdispersion Parameterization)

0.30 u=3.2,8=0.7

0.25

e The NB distribution can be alternatively
parameterized in terms of a mean p and the
parameter 6.

k+6—1 0 \'/ u >k
P(X =k)= — —
c=0=("" ) ) () -
12
EXl=p, Var(X)=u+ "5
e The Poisson distribution is a special case
when (0 — 00). So one can think about

r= % as an the overdispersion parameter
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Common Distributions in Biodata e § Poisson and Negative Binomial Distributions

NegBinom - Alternative Param.
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e The NB distribution can be alternatively
parameterized in terms of a mean p and the
parameter 6.
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Negative Binomial Distribution
(Mean-Overdispersion Parameterization)

u=32,6=0.7

Comparison of Poisson and Negative Binomial

Var(X) = p+ %
e The Poisson distribution is a special case
when (8 — o0). So one can think about

r= % as an the overdispersion parameter

E[X] = p,

Example: RNA-seq read counts
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® Poisson, A=3.2
Neg. Binom., p=3.2, 6=0.7
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Operations on Random Variables

Operations on Random Variables: Introduction

e Fundamental Operations:

m Convolution: Summing independent random variables
m Mixture Distributions: Random selection from multiple distributions
m Transformations: Applying functions to random variables

e Why It Matters:

m Essential for modeling combined effects
m Critical in statistical inference and data analysis

e Applications:

m Signal processing
m Financial risk assessment
m Biological systems modeling
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Operations on Random Variables o § Convolution of Random Variables

Convolution of Random Variables

e Definition:
m The convolution of two independent random variables X and Y results in a new
random variable Z =X+ Y.
m The PDF of Z is given by:

fz(z) = /OO fx(x)fy(z — x) dx

— 00

e Interpretation:
m This integral accounts for all combinations of x and y that sum to z, weighted by
their probabilities.

e Properties:
m Mean: E[Z] = E[X] + E[Y]
m Variance: Var(Z) = Var(X) + Var(Y) (if X and Y are independent)
m Distribution Shape: The shape of fz(z) may be smoother and differ from fx(x)
and fy(y)
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Operations on Random Variables o § Convolution of Random Variables

Convolution of Normals

e Examples:

Individual Normal Distributions

m Normal Variables: X ~ N(ux,0%) e —x-wars
and Y ~ N(py,0%) imply o
Z ~ N(ux + py,ox +0%)
e Key Point: Convolution models the e /\
aggregate effect of independent random
variables ST Rt

Sum of Normal Distributions

e Common Mistake: Assuming the
convolution of two distributions is the
same type as the original distributions

—— Z~ N(2, 2.692582403567252"2)

-4 -2 0 2 4 6 8 10
x
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Operations on Random Variables o § Convolution of Random Variables

Convolution of Exponential Variables

e Examples:

Individual Exponential Distributions

m Exponential Variables: X; ~ Exp(}), . .

k 0.8
the sum Z =3, X; follows a
Gamma distribution with shape k and o
rate A: Sos
Z ~ Gamma(k, \) 00
Sum of Exponential Distributions

e Key Point: Convolution of exponential =z semmaiz
variables models the total waiting time e
for k events in a Poisson process

o o 2 4 6 8 10
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Operations on Random Variables @ § Mixture Distributions

Mixture Distributions

e Definition: A mixture distribution arises when a random variable X is drawn from
one of several distributions f;(x) with probabilities w; (where . w; = 1):

fx(x) = Z w; fi(x)

e Properties:
® Mean: E[X] =3, wiE[X]]
m Variance: Var(X) = Y, w; (Var(X;) + [E[Xi] — E[X]]?)
m Distribution Shape: Can be multimodal

e Contrast with Convolution:
m Mixture: Randomly selects one distribution to sample from
m Convolution: Sums values from all distributions

e Common Mistake: Confusing mixtures with convolutions
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Operations on Random Variables @ § Mixture Distributions

Mixture Distributions: Examples

e Examples:

Individual Normal Distributions

m Consider a mixture of two normal o bl
distributions: N(—2,12) and -
N(4,2.5%) with weights w = 0.4 and o

1 — W = 0.6 0.15
m Step 1: Draw a Bernoulli random o /\
variable B ~ Bernoulli(0.4) 000

m Step 2: If B =0, draw from

/\/(_27 12); if B = 1' draw from Mixture of Normal Distritino;;ummwmls
N(4,2.52)
= Notation: o
o [N2.12) ifB=0
N(4,2.52) ifB=1

0.00
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Operations on Random Variables o § Transformation of Random Variables

Transformation of Random Variables

e Definition: If X is a random variable with PDF fx(x) and Y = g(X) is a
function of X, then the PDF of Y is:

() = (e '()) \jyg—l(y)'

where g~1(y) is the inverse function of g(x).

e Properties:
m Change of Variables: Requires Jacobian adjustment
= Moments: Moments of Y depend on g(x) and moments of X

e Examples:
m Log Transformation: Y = In(X), useful for skewed data
m Exponential Transformation: Y = eX, converts normal to log-normal

e Key Difference:
m Transformation modifies a single variable's distribution
m Unlike convolution and mixtures, no combining of variables
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Operations on Random Variables o § Transformation of Random Variables

Summary and Key Differences

e Convolution:
m Sum of independent variables
m Models cumulative effects
m Requires convolution integral

e Mixture Distributions:
m Random selection among distributions
m Models heterogeneous populations
m PDF is a weighted sum

e Transformations:
m Function applied to a variable
m Alters the shape of the distribution
m Requires change of variables formula
e Final Thought: Understanding these differences is crucial for accurate statistical
modeling
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