

Probability Theory Recap

Gioele La Manno

École Polytechnique Fédérale de Lausanne (EPFL)

School of Life Science (SV)

February 2025

EPFL - BMI - UPLAMANNO

Contents

1 Random Variables

2 Functions associated to a Random Variable

3 Expectation of a Random Variable

4 Moments of a Random Variable

5 Parametrization of Distributions

6 Common Distributions in Biodata

- Normal and Log-Normal Distributions
- Gamma, Beta, and Dirichlet Distributions
- Bernoulli and Binomial Distributions
- Poisson and Negative Binomial Distributions

7 Operations on Random Variables

- Convolution of Random Variables
- Mixture Distributions
- Transformation of Random Variables

Random Variables

A New Type of Variable: Random Variables

- **"Regular" Variables:**

- Deterministic: $y = f(x)$
- One input → One output
- Example: $y = 2x + 1$

- **Random Variables:**

- Not a value, but a generator
- Same input → Different outputs
- Described by probability functions

- **Fundamental Shift:**

- From "*What is the value?*"
- To "*What is the probability?*"

- **Full Description Needs:**

- 1 Support (possible values)
- 2 pdf/pmf (likelihood)
- 3 cdf (cumulative probability)
- 4 inverse cdf (quantiles)

A New Type of Variable: Random Variables

- **"Regular" Variables:**

- Deterministic: $y = f(x)$
- One input → One output
- Example: $y = 2x + 1$

- **Random Variables:**

- Not a value, but a generator
- Same input → Different outputs
- Described by probability functions

- **Fundamental Shift:**

- From "*What is the value?*"
- To "*What is the probability?*"

- **Full Description Needs:**

- 1 Support (possible values)
- 2 pdf/pmf (likelihood)
- 3 cdf (cumulative probability)
- 4 inverse cdf (quantiles)

A New Type of Variable: Random Variables

- **"Regular" Variables:**

- Deterministic: $y = f(x)$
- One input → One output
- Example: $y = 2x + 1$

- **Random Variables:**

- Not a value, but a generator
- Same input → Different outputs
- Described by probability functions

- **Fundamental Shift:**

- From "*What is the value?*"
- To "*What is the probability?*"

- **Full Description Needs:**

- 1 Support (possible values)
- 2 pdf/pmf (likelihood)
- 3 cdf (cumulative probability)
- 4 inverse cdf (quantiles)

A New Type of Variable: Random Variables

- **"Regular" Variables:**

- Deterministic: $y = f(x)$
- One input → One output
- Example: $y = 2x + 1$

- **Random Variables:**

- Not a value, but a generator
- Same input → Different outputs
- Described by probability functions

- **Fundamental Shift:**

- From "*What is the value?*"
- To "*What is the probability?*"

- **Full Description Needs:**

- 1 Support (possible values)
- 2 pdf/pmf (likelihood)
- 3 cdf (cumulative probability)
- 4 inverse cdf (quantiles)

Support

- **Support of a Random Variable:**

- **Definition:** The set of all possible values that a random variable X can take.
- **Notation:** $\text{Supp}(X) = \{x \in \mathbb{R} : P(X = x) > 0\}$ for discrete, or $\text{Supp}(X) = x \in [a, b]$ for continuous.
- **Purpose:** Defines the "range" or domain where the random variable is valid.

Types of Random Variables

Types of Random Variables

■ Discrete Random Variable:

- Takes on a countable set of values (e.g., integers).
- Defined by a probability mass function (PMF): $P(X = x_i)$.
- *Example:* Number of heads in a series of coin flips.

■ Continuous Random Variable:

- Takes on an uncountable set of values, typically an interval.
- Defined by a probability density function (PDF): $p(x)$ where $P(a \leq X \leq b) = \int_a^b p(x) dx$.
- *Example:* Height of individuals in a population.

Types of Random Variables

Types of Random Variables

■ Discrete Random Variable:

- Takes on a countable set of values (e.g., integers).
- Defined by a probability mass function (PMF): $P(X = x_i)$.
- *Example:* Number of heads in a series of coin flips.

■ Continuous Random Variable:

- Takes on an uncountable set of values, typically an interval.
- Defined by a probability density function (PDF): $p(x)$ where $P(a \leq X \leq b) = \int_a^b p(x) dx$.
- *Example:* Height of individuals in a population.

Functions associated to a Random Variable

Probability Density Function (PDF)

- **Probability Density Function (PDF):**

- Represents probability density at a point (continuous RVs)

- **Properties:**

- $p(x) \geq 0 \forall x$ (*non-negative*)
 - $\int_{-\infty}^{\infty} p(x) dx = 1$ (*normalized*)

- **Practical use:** Finding probability in an interval (e.g., $P(a \leq X \leq b)$)

$$P(a \leq X \leq b) = \int_a^b p(x) dx$$

Probability Density Function (PDF)

- **Probability Density Function (PDF):**

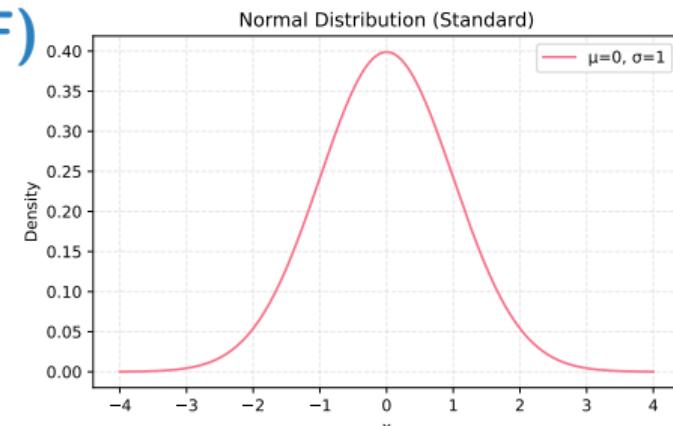
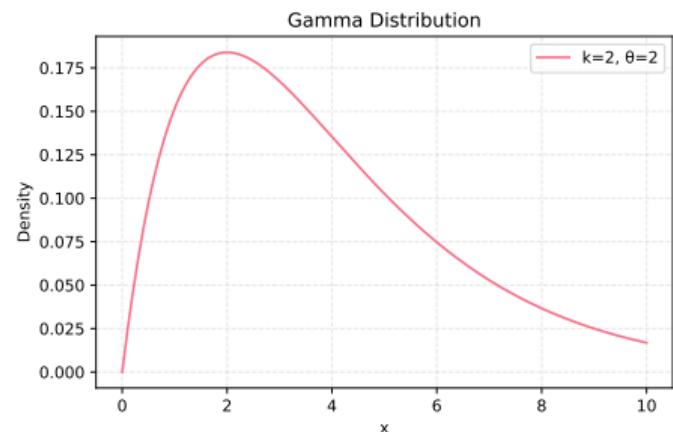
- Represents probability density at a point (continuous RVs)

- **Properties:**

- $p(x) \geq 0 \ \forall x$ (*non-negative*)
- $\int_{-\infty}^{\infty} p(x) dx = 1$ (*normalized*)

- **Practical use:** Finding probability in an interval (e.g., $P(a \leq X \leq b)$)

$$P(a \leq X \leq b) = \int_a^b p(x) dx$$



Cumulative Distribution Function (CDF)

- **Cumulative Distribution Function (CDF):**

- $F(x) = P(X \leq x) = \int_{-\infty}^x p(t) dt$

- **Properties:**

- $0 \leq F(x) \leq 1$ (*probability bounds*)
 - $F(-\infty) = 0, F(\infty) = 1$
 - $F(x)$ is monotonically increasing
 - $F(x)$ is right-continuous

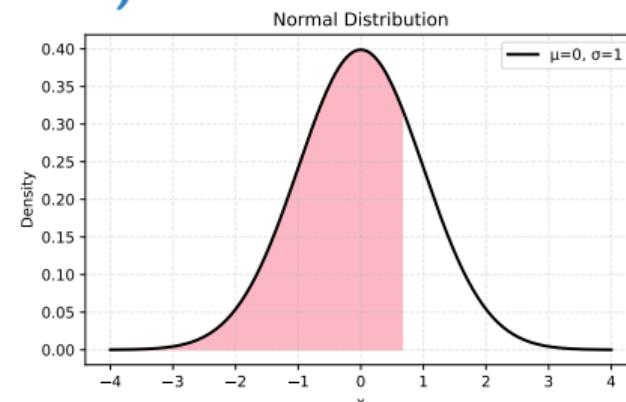
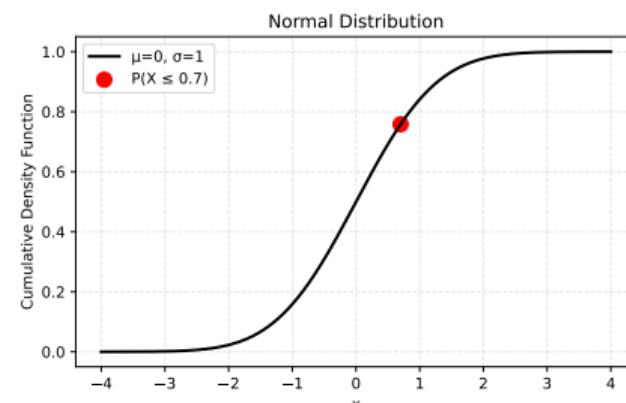
Cumulative Distribution Function (CDF)

- **Cumulative Distribution Function (CDF):**

- $F(x) = P(X \leq x) = \int_{-\infty}^x p(t) dt$

- **Properties:**

- $0 \leq F(x) \leq 1$ (*probability bounds*)
- $F(-\infty) = 0, F(\infty) = 1$
- $F(x)$ is monotonically increasing
- $F(x)$ is right-continuous



Cumulative Distribution Function (CDF)

- **Practical Use:**

- **Quantile Determination:** Identifies values at specified probabilities (e.g., median or percentiles).
- **Statistical Testing:** CDFs are central in calculating p-values and test statistics in hypothesis testing.
- **Distribution Transformations:** Allows mapping from one distribution to another, used in simulation and resampling methods.

Other Useful Functions for Random Variables

■ Inverse CDF (Quantile Function)

Provides the value x for a given probability p .

$$F^{-1}(p) = x \text{ such that } F(x) = p$$

Use: Finding quantiles, and for setting probability thresholds.

■ Survival Function:

Definition: Probability that X exceeds x

$$S(x) = P(X \geq x) = 1 - F(x)$$

Use: Commonly used to compute p-values.

Other Useful Functions for Random Variables

■ Inverse CDF (Quantile Function)

Provides the value x for a given probability p .

$$F^{-1}(p) = x \text{ such that } F(x) = p$$

Use: Finding quantiles, and for setting probability thresholds.

■ Survival Function:

Definition: Probability that X exceeds x

$$S(x) = P(X \geq x) = 1 - F(x)$$

Use: Commonly used to compute p-values.

Other Useful Functions for Random Variables

■ Moment Generating Function (MGF)

Encodes the moments (mean, variance, etc.) of X .

$$M_X(t) = \mathbb{E}[e^{tX}]$$

Use: Useful for calculating moments and deriving properties of distributions.

■ Characteristic Function (CF):

Complex-valued function that provides an alternative to the MGF for characterizing the distribution.

$$\phi_X(t) = \mathbb{E}[e^{itX}]$$

Use: Particularly useful in Fourier transforms and convolution operations on distributions.

Other Useful Functions for Random Variables

- **Moment Generating Function (MGF)**

Encodes the moments (mean, variance, etc.) of X .

$$M_X(t) = \mathbb{E}[e^{tX}]$$

Use: Useful for calculating moments and deriving properties of distributions.

- **Characteristic Function (CF):**

Complex-valued function that provides an alternative to the MGF for characterizing the distribution.

$$\phi_X(t) = \mathbb{E}[e^{itX}]$$

Use: Particularly useful in Fourier transforms and convolution operations on distributions.

Related Functions for Discrete Random Variables

Probability Mass Function (PMF):

Definition: Function that gives the probability of each possible value of a discrete random variable X .

$$P(X = x_i) = p(x_i)$$

Properties:

- $p(x_i) \geq 0 \forall i$
- $\sum p(x_i) = 1$ (normalization)

Examples:

- PMF: Probability of rolling each side of a die.

Related Functions for Discrete Random Variables

Cumulative Mass Function (CMF):

Definition: Function that gives the cumulative probability up to a certain value.

$$F(x) = P(X \leq x) = \sum_{x_i \leq x} p(x_i)$$

Properties:

- $F(x)$ is non-decreasing
- $0 \leq F(x) \leq 1$

Examples:

- Probability of rolling a number less than or equal to a certain value.

Where to find them?

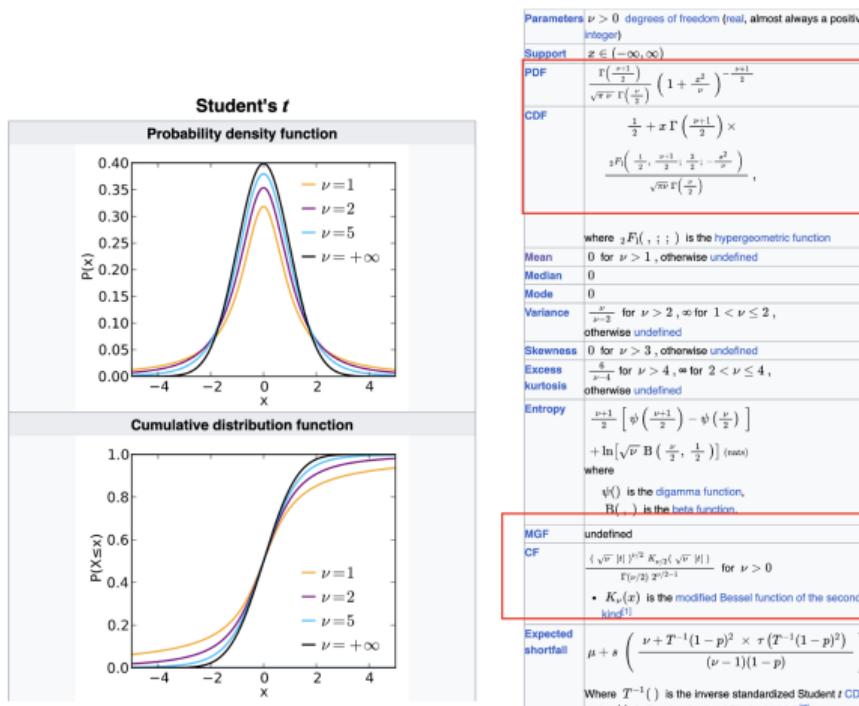


Figure: Summary of Probability Density Functions (Source: Wikipedia)

Expectation of a Random Variable

Expectation of a Random Variable

The **expectation** of a random variable X , denoted $E[X]$, is an operator defined as:

- **(Discrete)**

$$E[X] = \sum_x x p(x)$$

- **(Continuous)**

$$E[X] = \int_{-\infty}^{\infty} x p(x) dx$$

Intuition

- It is an operation that can be thought of as a weighted average of all possible values of X , with weights given by the probabilities.
- It provides the theoretical center or long-run average of the random variable.
- Repeting the experiment infinitely, the average outcome would converge to $E[X]$.

Expectation of a Random Variable

The **expectation** of a random variable X , denoted $E[X]$, is an operator defined as:

- **(Discrete)**

$$E[X] = \sum_x x p(x)$$

- **(Continuous)**

$$E[X] = \int_{-\infty}^{\infty} x p(x) dx$$

Intuition

- It is an operation that can be thought of as a weighted average of all possible values of X , with weights given by the probabilities.
- It provides the theoretical center or long-run average of the random variable.
- Repeting the experiment infinitely, the average outcome would converge to $E[X]$.

Properties of Expectation

- **Linearity:** $E[aX + bY] = aE[X] + bE[Y]$
- **Expectation of a Function:** $E[g(X)] = \sum_x g(x) p(x)$ or $\int g(x) p(x) dx$
- **Additivity for 2 RVs:** $E[X + Y] = E[X] + E[Y]$
- It can be defined with respect to marginal distribution (often implicit):

$$E_{p(x)}[X + Y] = E_{p(x)}[X] + Y$$

- **Expectation of a Product:** $E[XY] = E[X]E[Y]$ if X and Y are independent
- Avoid common naïve misconception:

$$E[X^2] = E[X \cdot X] \neq E[X]^2$$

Properties of Expectation

- **Linearity:** $E[aX + bY] = aE[X] + bE[Y]$
- **Expectation of a Function:** $E[g(X)] = \sum_x g(x) p(x)$ or $\int g(x) p(x) dx$
- Additivity for 2 RVs: $E[X + Y] = E[X] + E[Y]$
- It can be defined with respect to marginal distribution (often implicit):

$$E_{p(x)}[X + Y] = E_{p(x)}[X] + Y$$

- **Expectation of a Product:** $E[XY] = E[X]E[Y]$ if X and Y are independent
- Avoid common naïve misconception:

$$E[X^2] = E[X \cdot X] \neq E[X]^2$$

Properties of Expectation

- **Linearity:** $E[aX + bY] = aE[X] + bE[Y]$
- **Expectation of a Function:** $E[g(X)] = \sum_x g(x) p(x)$ or $\int g(x) p(x) dx$
- **Additivity for 2 RVs:** $E[X + Y] = E[X] + E[Y]$
- It can be defined with respect to marginal distribution (often implicit):

$$E_{p(x)}[X + Y] = E_{p(x)}[X] + Y$$

- **Expectation of a Product:** $E[XY] = E[X]E[Y]$ if X and Y are independent
- Avoid common naïve misconception:

$$E[X^2] = E[X \cdot X] \neq E[X]^2$$

Properties of Expectation

- **Linearity:** $E[aX + bY] = aE[X] + bE[Y]$
- **Expectation of a Function:** $E[g(X)] = \sum_x g(x) p(x)$ or $\int g(x) p(x) dx$
- **Additivity for 2 RVs:** $E[X + Y] = E[X] + E[Y]$
 - It can be defined with respect to marginal distribution (often implicit):

$$E_{p(x)}[X + Y] = E_{p(x)}[X] + Y$$

- **Expectation of a Product:** $E[XY] = E[X]E[Y]$ if X and Y are independent
 - Avoid common naïve misconception:

$$E[X^2] = E[X \cdot X] \neq E[X]^2$$

Moments of a Random Variable

Moments of a Random Variable

Moments provide information about the shape and spread of the distribution of X . The k -th moment of a random variable X is defined as the expectation of X^k , denoted $E[X^k]$:

$$E[X^k] = \int_{-\infty}^{\infty} x^k p(x) dx$$

Moments:

- **First Moment (Mean):** $E[X]$
- **Second Moment:** $E[X^2]$. (captures both the mean and the spread of X around the mean, related to variance).

Do not confuse with Variance: Defined as $\text{Var}(X) = E[X^2] - (E[X])^2$

- **Higher-Order Moments:**
 - Third Moment (related to Skewness): relates to the asymmetry of the distribution around the mean.
 - Fourth Moment (related to Kurtosis): relates to the "tailedness" of the distribution.

Moments of a Random Variable

Moments provide information about the shape and spread of the distribution of X . The k -th moment of a random variable X is defined as the expectation of X^k , denoted $E[X^k]$:

$$E[X^k] = \int_{-\infty}^{\infty} x^k p(x) dx$$

Moments:

- **First Moment (Mean):** $E[X]$
- **Second Moment:** $E[X^2]$. (captures both the mean and the spread of X around the mean, related to variance).

Do not confuse with Variance: Defined as $\text{Var}(X) = E[X^2] - (E[X])^2$

- **Higher-Order Moments:**

- Third Moment (related to Skewness): relates to the asymmetry of the distribution around the mean.
- Fourth Moment (related to Kurtosis): relates to the "tailedness" of the distribution.

Moments of a Random Variable

Moments provide information about the shape and spread of the distribution of X . The k -th moment of a random variable X is defined as the expectation of X^k , denoted $E[X^k]$:

$$E[X^k] = \int_{-\infty}^{\infty} x^k p(x) dx$$

Moments:

- **First Moment (Mean):** $E[X]$
- **Second Moment:** $E[X^2]$. (captures both the mean and the spread of X around the mean, related to variance).

Do not confuse with Variance: Defined as $\text{Var}(X) = E[X^2] - (E[X])^2$

- **Higher-Order Moments:**
 - Third Moment (related to Skewness): relates to the asymmetry of the distribution around the mean.
 - Fourth Moment (related to Kurtosis): relates to the "tailedness" of the distribution.

Central Moments

Central Moments:

- Moments taken about the mean (rather than about zero) are called central moments. For example, the second central moment is variance:

$$E[(X - E[X])^2] = \text{Var}(X)$$

- Central moments provide insight into the variability and shape of the distribution relative to its mean (Typically more useful).
- Connection to Empirical Estimators.

Variance of a Random Variable

The **Variance** is the second central moment of a random variable. It is an operator denoted $\text{Var}(X)$ defined as:

$$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Interpretation:

- The Variance quantifies the spread or variability of a random variable X around its mean.
- A higher variance indicates greater spread; a variance of zero implies X is a constant.

Key Properties:

- **Non-negativity:** $\text{Var}(X) \geq 0$; variance cannot be negative.
- **Scaling:** For a constant a

$$\text{Var}(aX) = a^2 \text{Var}(X)$$

- **Additivity for Independent Variables:** For independent random variables X and Y :

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Variance of a Random Variable

The **Variance** is the second central moment of a random variable. It is an operator denoted $\text{Var}(X)$ defined as:

$$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Interpretation:

- The Variance quantifies the spread or variability of a random variable X around its mean.
- A higher variance indicates greater spread; a variance of zero implies X is a constant.

Key Properties:

- **Non-negativity:** $\text{Var}(X) \geq 0$; variance cannot be negative.
- **Scaling:** For a constant a

$$\text{Var}(aX) = a^2 \text{Var}(X)$$

- **Additivity for Independent Variables:** For independent random variables X and Y :

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Variance of a Random Variable

The **Variance** is the second central moment of a random variable. It is an operator denoted $\text{Var}(X)$ defined as:

$$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Interpretation:

- The Variance quantifies the spread or variability of a random variable X around its mean.
- A higher variance indicates greater spread; a variance of zero implies X is a constant.

Key Properties:

- **Non-negativity:** $\text{Var}(X) \geq 0$; variance cannot be negative.
- **Scaling:** For a constant a

$$\text{Var}(aX) = a^2 \text{Var}(X)$$

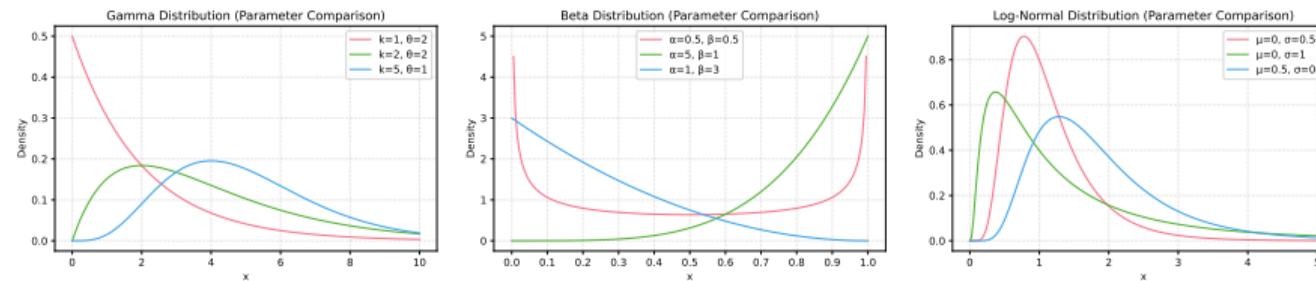
- **Additivity for Independent Variables:** For independent random variables X and Y :

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Parametrization of Distributions

Analytical Parametrization of Probability Distributions

- Many probability distributions can be expressed analytically as a function of specific parameters, often denoted as θ .
- These parameters θ control the form of the PDF (they are sometimes chosen to intuitively link them with location, shape, spread of the distribution, but **they do not have to be!**)
- In general, we will indicate a pdf with $p_\theta(X)$ to emphasize that it is a function of the form $f(x, \theta)$.



Common Distributions in Biodata

Normal Distribution

- **PDF:**

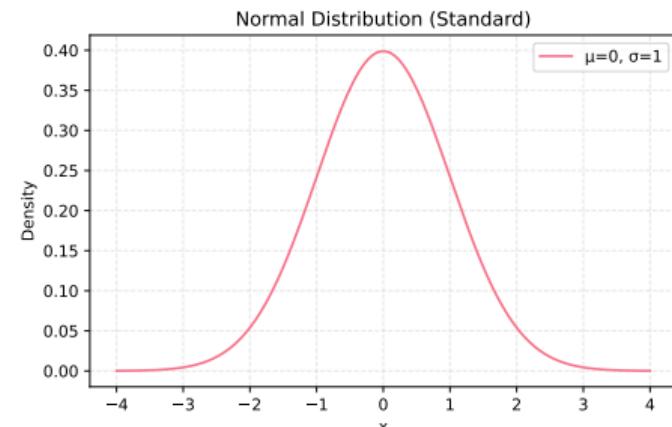
$$p_{\mu, \sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

- **Key Properties:**

- Symmetric around mean μ
- 68% of data within 1σ
- 95% within 2σ
- Sum of normal RVs is normal

- **Biological Examples:**

- Height distributions in populations
- Measurement errors in experiments
- Gene expression in large populations



Normal Distribution

- **PDF:**

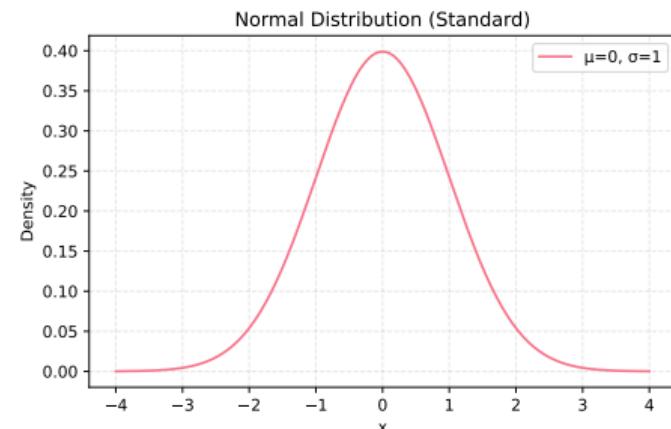
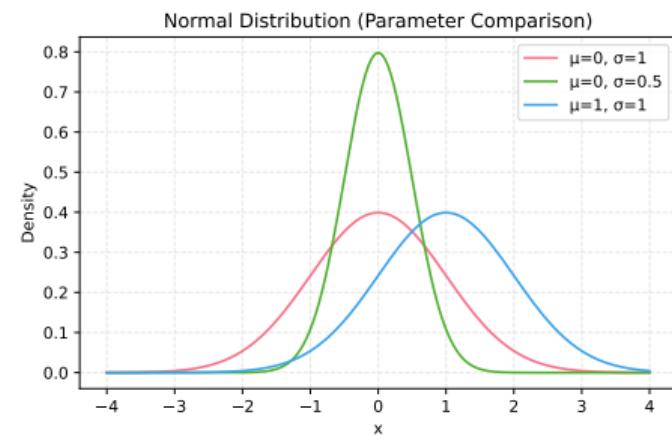
$$p_{\mu, \sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

- **Key Properties:**

- Symmetric around mean μ
- 68% of data within 1σ
- 95% within 2σ
- Sum of normal RVs is normal

- **Biological Examples:**

- Height distributions in populations
- Measurement errors in experiments
- Gene expression in large populations

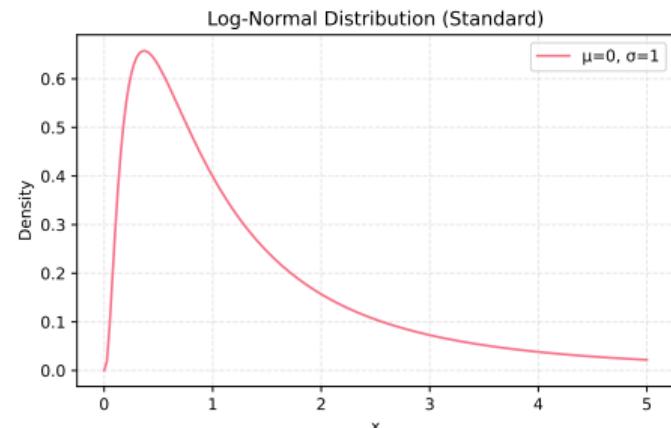


Log-Normal Distribution

- If $Y = \ln(X)$ is normal, then X is log-normal
- PDF:

$$p_{\mu, \sigma^2}(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- Properties:
 - Right-skewed
 - Only positive values
 - Multiplicative effects become additive on log scale
- Biological Applications:
 - RNA expression levels (normalized)
 - Protein concentrations
 - Species abundance distributions

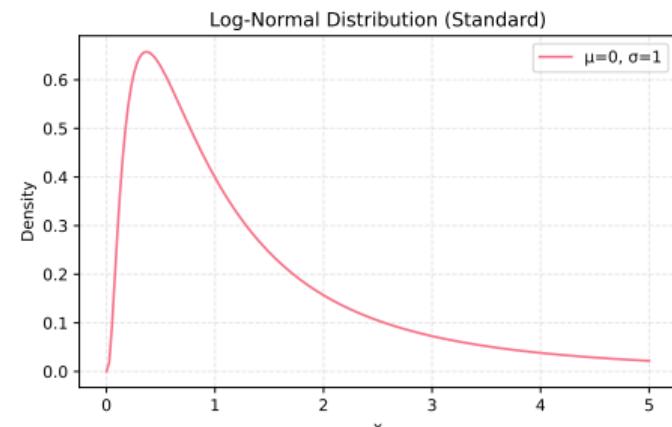
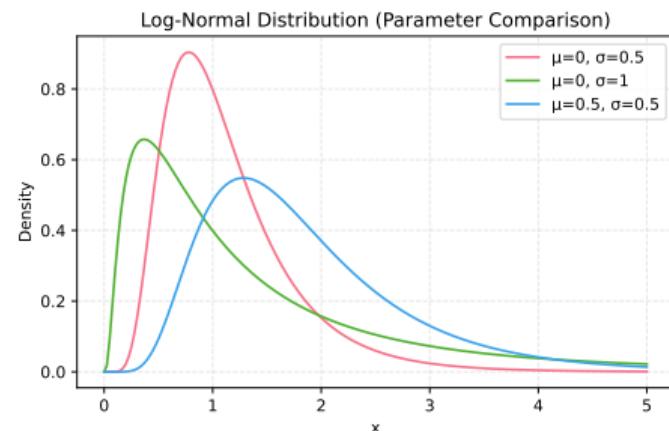


Log-Normal Distribution

- If $Y = \ln(X)$ is normal, then X is log-normal
- PDF:

$$p_{\mu, \sigma^2}(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- Properties:
 - Right-skewed
 - Only positive values
 - Multiplicative effects become additive on log scale
- Biological Applications:
 - RNA expression levels (normalized)
 - Protein concentrations
 - Species abundance distributions



Gamma Distribution

- **PDF:**

$$p_{k,\theta}(x) = \frac{x^{k-1} e^{-x/\theta}}{\theta^k \Gamma(k)}$$

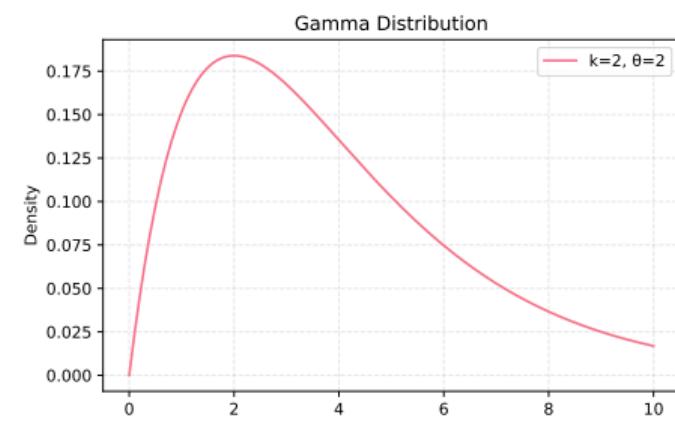
where k is shape, θ is scale, and $\Gamma(k)$ is the gamma function

- **Properties:**

- Always positive
- Flexible shape (can be exponential when $k = 1$)
- Sum of exponential RVs follows gamma

- **Biological Applications:**

- Waiting times between cellular events
- Duration of biological processes
- Gene expression burst sizes



Gamma Distribution

- **PDF:**

$$p_{k,\theta}(x) = \frac{x^{k-1} e^{-x/\theta}}{\theta^k \Gamma(k)}$$

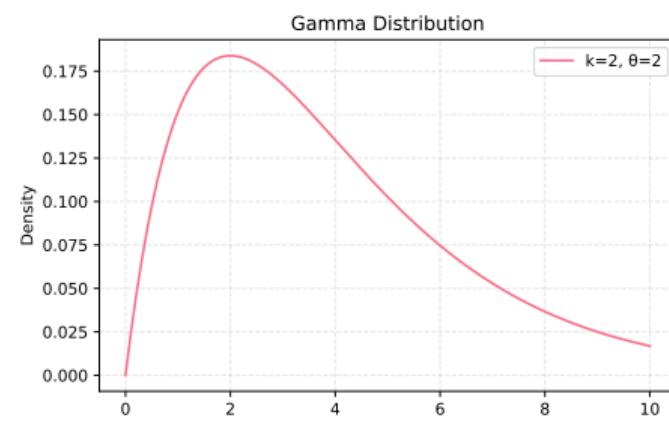
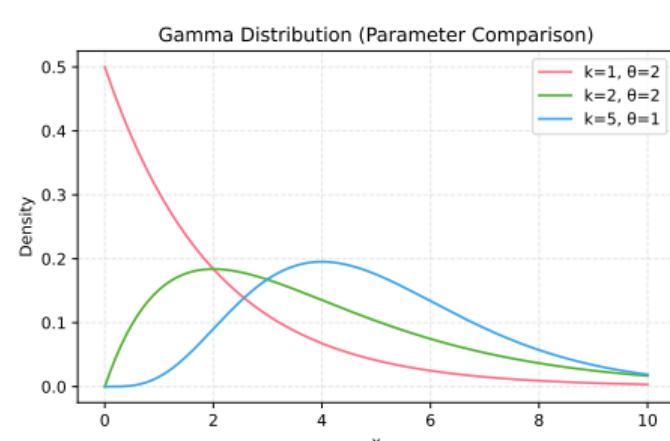
where k is shape, θ is scale, and $\Gamma(k)$ is the gamma function

- **Properties:**

- Always positive
- Flexible shape (can be exponential when $k = 1$)
- Sum of exponential RVs follows gamma

- **Biological Applications:**

- Waiting times between cellular events
- Duration of biological processes
- Gene expression burst sizes



Beta Distribution

- **PDF:**

$$p_{\alpha, \beta}(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$

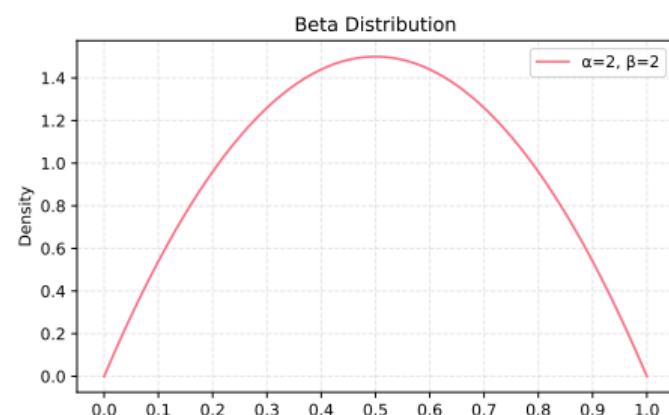
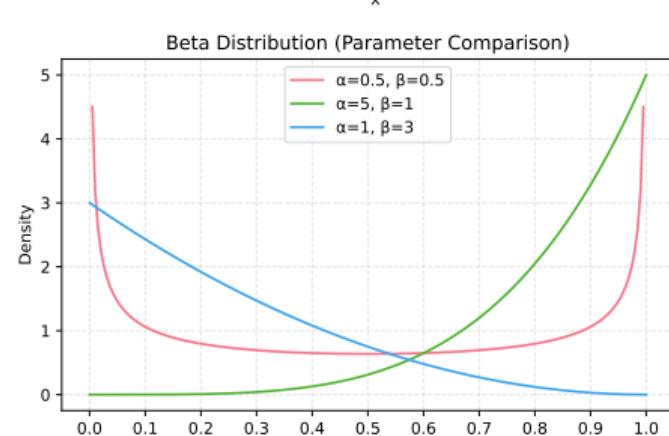
where $B(\alpha, \beta)$ is the beta function

- **Properties:**

- Defined on $[0,1]$
- Conjugate prior to Bernoulli
- Flexible shapes based on α, β

- **Biological Applications:**

- Allele frequencies
- Gene expression proportions
- Success probabilities in experiments



Dirichlet Distribution

- **PDF:**

$$p_{\alpha}(x) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i-1}$$

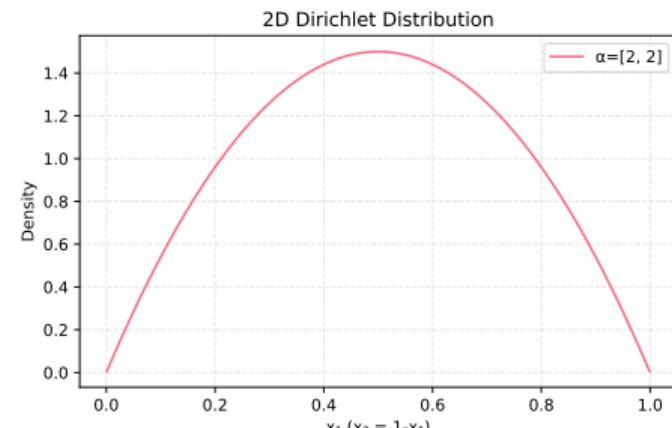
where $\sum x_i = 1$ and $B(\alpha)$ is the multivariate beta function

- **Properties:**

- Multivariate generalization of Beta
- Each component in $(0,1)$
- Components sum to 1

- **Biological Applications:**

- Cell type proportions
- Species composition in microbiome
- Multi-allele frequencies



Dirichlet Distribution

- **PDF:**

$$p_{\alpha}(x) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i-1}$$

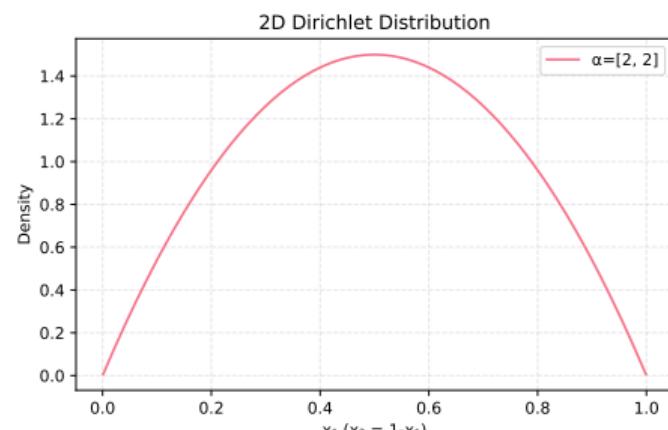
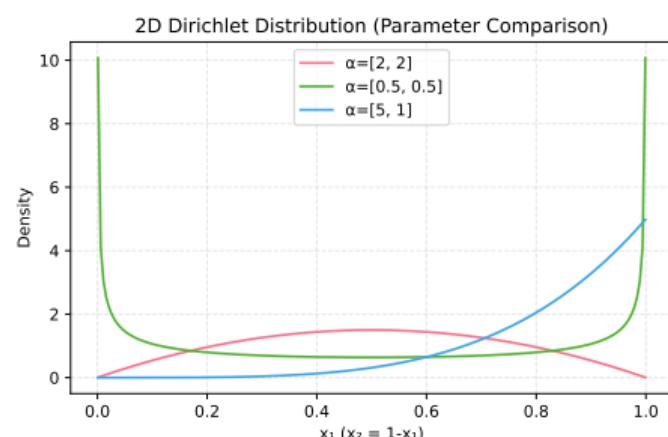
where $\sum x_i = 1$ and $B(\alpha)$ is the multivariate beta function

- **Properties:**

- Multivariate generalization of Beta
- Each component in $(0,1)$
- Components sum to 1

- **Biological Applications:**

- Cell type proportions
- Species composition in microbiome
- Multi-allele frequencies



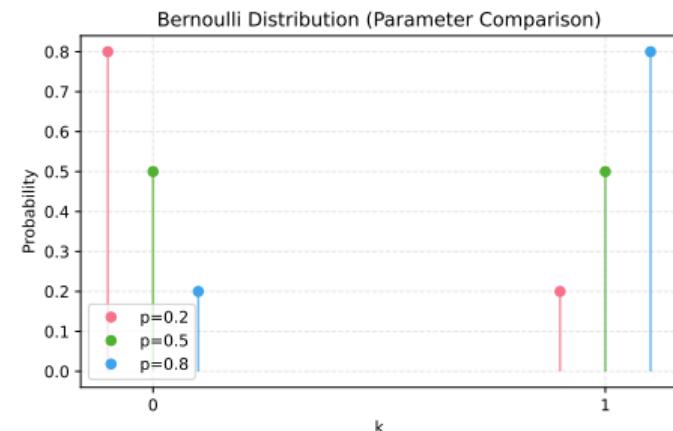
Bernoulli and Binomial Distributions

- **Bernoulli** (single trial):

- PMF: $P(X = k) = p^k(1 - p)^{1-k}$, $k \in \{0, 1\}$
- Mean: p , Variance: $p(1 - p)$
- *Example:* Single mutation event

- **Binomial** (n independent trials):

- PMF: $P(X = k) = \binom{n}{k} p^k(1 - p)^{n-k}$
- Mean: np , Variance: $np(1 - p)$
- *Examples:*
 - Number of mutated cells in a population
 - Success count in n identical experiments



Bernoulli and Binomial Distributions

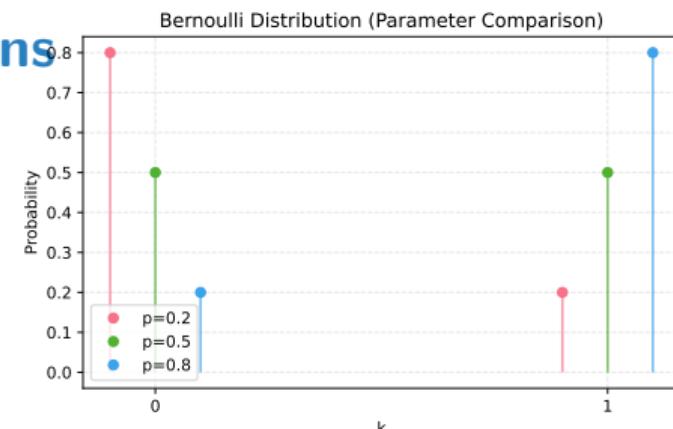
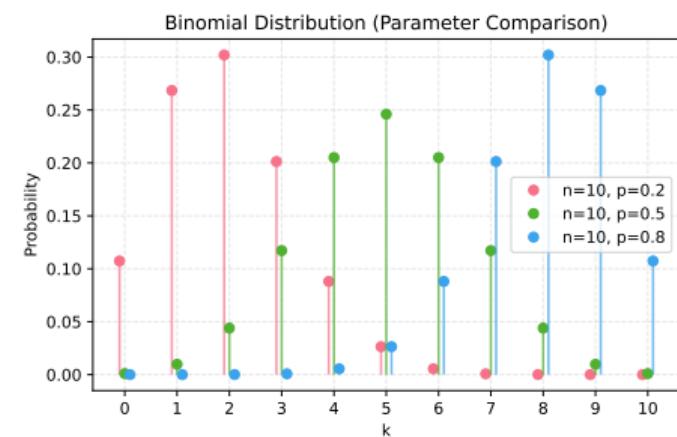
- **Bernoulli** (single trial):

- PMF: $P(X = k) = p^k(1 - p)^{1-k}$, $k \in \{0, 1\}$
- Mean: p , Variance: $p(1 - p)$
- *Example*: Single mutation event

- **Binomial** (n independent trials):

- PMF: $P(X = k) = \binom{n}{k} p^k(1 - p)^{n-k}$
- Mean: np , Variance: $np(1 - p)$
- *Examples*:

- Number of mutated cells in a population
- Success count in n identical experiments



Poisson Distribution

- **PMF:**

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

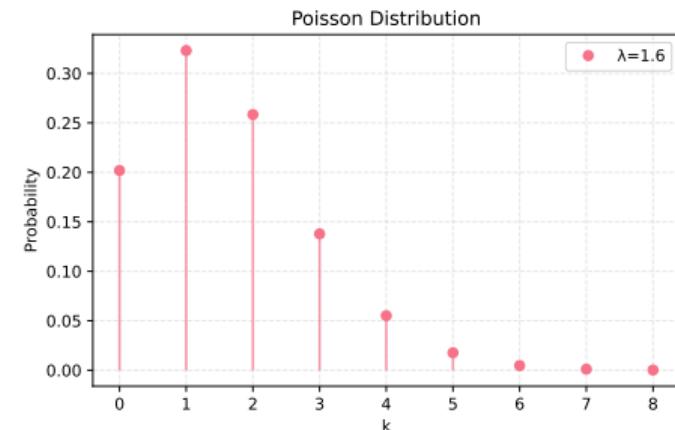
where λ is both mean and variance

- **Properties:**

- Models rare events
- Sum of Poisson RVs is Poisson
- Limit of Binomial as $n \rightarrow \infty, p \rightarrow 0$

- **Biological Applications:**

- Mutations in DNA sequences
- Number of cells in a small sample
- RNA-seq read counts



Poisson Distribution

- PMF:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

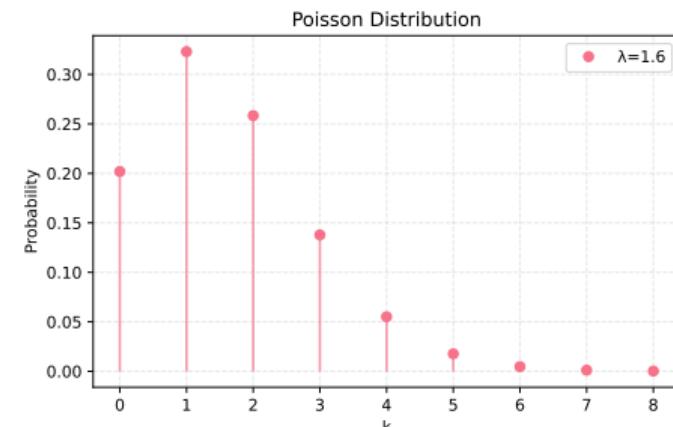
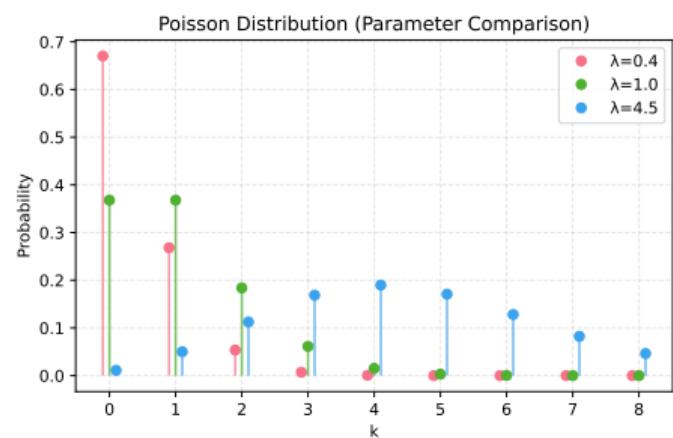
where λ is both mean and variance

- Properties:

- Models rare events
- Sum of Poisson RVs is Poisson
- Limit of Binomial as $n \rightarrow \infty, p \rightarrow 0$

- Biological Applications:

- Mutations in DNA sequences
- Number of cells in a small sample
- RNA-seq read counts



Negative Binomial Distribution

- **PMF:**

$$P(X = k) = \binom{k + r - 1}{k} p^r (1 - p)^k$$

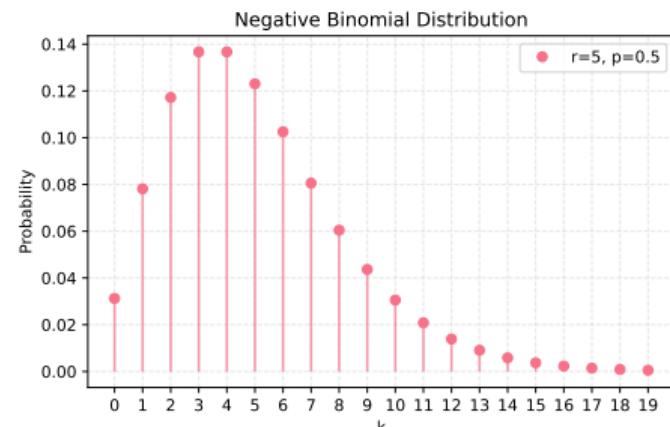
where r is number of successes, p is probability

- **Properties:**

- More dispersed than Poisson
- Mean: $\frac{pr}{1-p}$, Variance: $\frac{pr}{(1-p)^2}$
- Handles overdispersion in count data

- **Biological Applications:**

- RNA-seq differential expression
- Microbial abundance counts
- Cellular heterogeneity modeling



Negative Binomial Distribution

- PMF:

$$P(X = k) = \binom{k + r - 1}{k} p^r (1 - p)^k$$

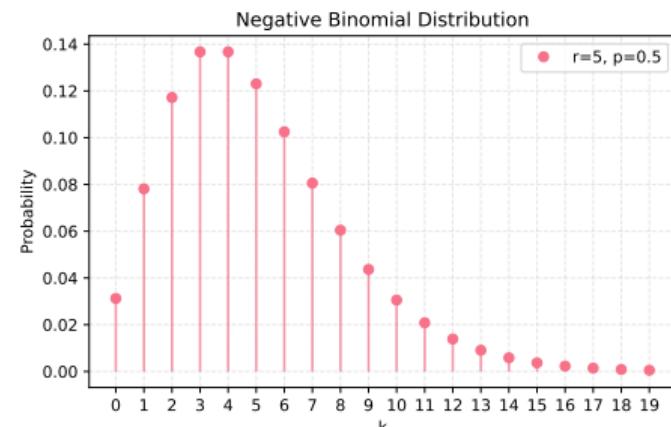
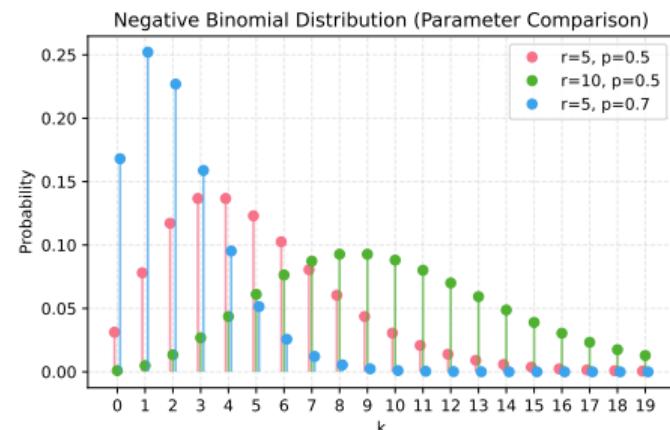
where r is number of successes, p is probability

- Properties:

- More dispersed than Poisson
- Mean: $\frac{pr}{1-p}$, Variance: $\frac{pr}{(1-p)^2}$
- Handles overdispersion in count data

- Biological Applications:

- RNA-seq differential expression
- Microbial abundance counts
- Cellular heterogeneity modeling



NegBinom - Alternative Param.

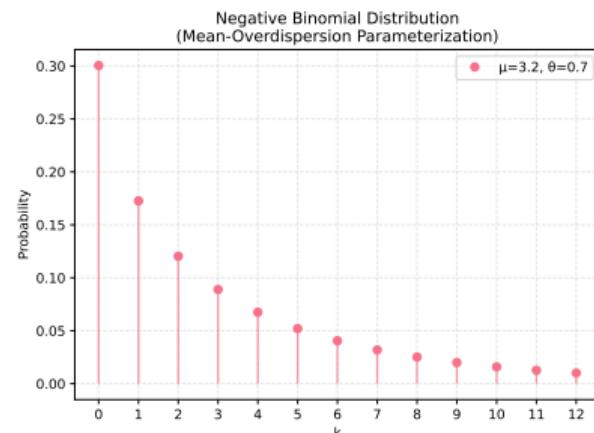
- The NB distribution can be alternatively parameterized in terms of a mean μ and the parameter θ .

$$P(X = k) = \binom{k + \theta - 1}{k} \left(\frac{\theta}{\theta + \mu}\right)^\theta \left(\frac{\mu}{\theta + \mu}\right)^k$$

$$E[X] = \mu, \quad \text{Var}(X) = \mu + \frac{\mu^2}{\theta}$$

- The Poisson distribution is a special case when $(\theta \rightarrow \infty)$. So one can think about $r = \frac{1}{\theta}$ as an overdispersion parameter

Example: RNA-seq read counts



NegBinom - Alternative Param.

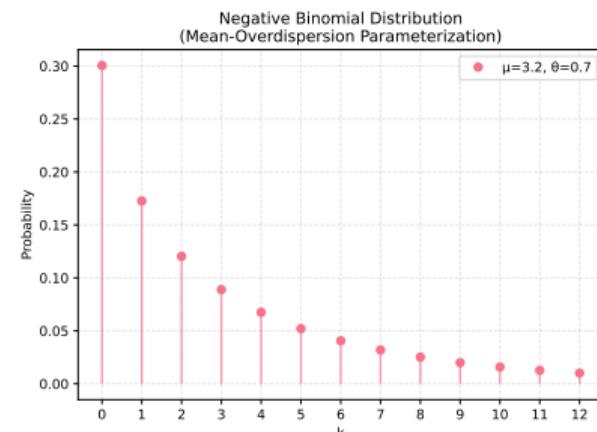
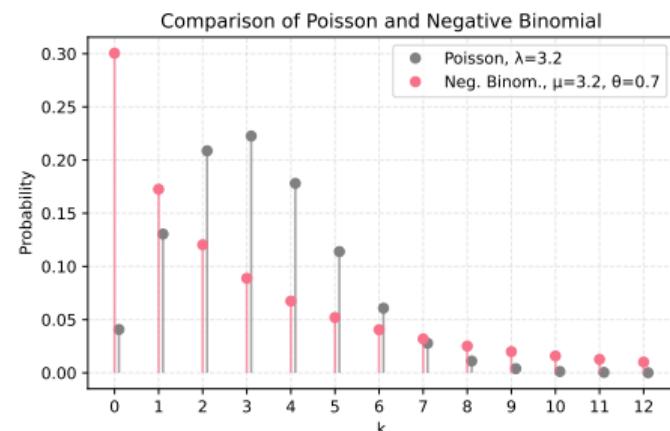
- The NB distribution can be alternatively parameterized in terms of a mean μ and the parameter θ .

$$P(X = k) = \binom{k + \theta - 1}{k} \left(\frac{\theta}{\theta + \mu}\right)^\theta \left(\frac{\mu}{\theta + \mu}\right)^k$$

$$E[X] = \mu, \quad \text{Var}(X) = \mu + \frac{\mu^2}{\theta}$$

- The Poisson distribution is a special case when $(\theta \rightarrow \infty)$. So one can think about $r = \frac{1}{\theta}$ as an the overdispersion parameter

Example: RNA-seq read counts



Operations on Random Variables

Operations on Random Variables: Introduction

- **Fundamental Operations:**

- **Convolution:** Summing independent random variables
- **Mixture Distributions:** Random selection from multiple distributions
- **Transformations:** Applying functions to random variables

- **Why It Matters:**

- Essential for modeling combined effects
- Critical in statistical inference and data analysis

- **Applications:**

- Signal processing
- Financial risk assessment
- Biological systems modeling

Convolution of Random Variables

- **Definition:**

- The convolution of two independent random variables X and Y results in a new random variable $Z = X + Y$.
- The PDF of Z is given by:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x) dx$$

- **Interpretation:**

- This integral accounts for all combinations of x and y that sum to z , weighted by their probabilities.

- **Properties:**

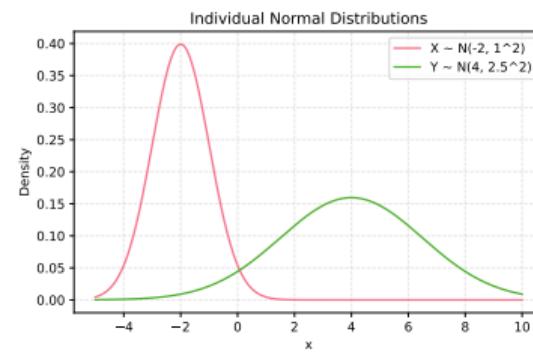
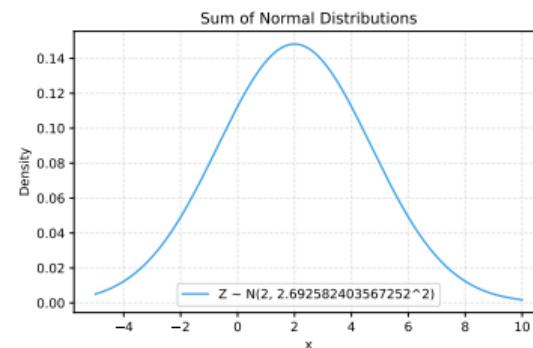
- **Mean:** $E[Z] = E[X] + E[Y]$
- **Variance:** $\text{Var}(Z) = \text{Var}(X) + \text{Var}(Y)$ (if X and Y are independent)
- **Distribution Shape:** The shape of $f_Z(z)$ may be smoother and differ from $f_X(x)$ and $f_Y(y)$

Convolution of Normals

- **Examples:**

- **Normal Variables:** $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ imply $Z \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

- **Key Point:** Convolution models the *aggregate effect* of independent random variables
- **Common Mistake:** Assuming the convolution of two distributions is the same type as the original distributions



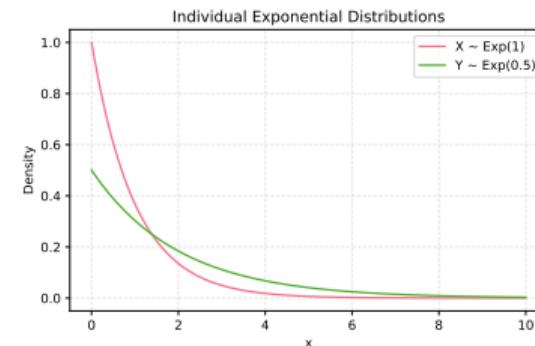
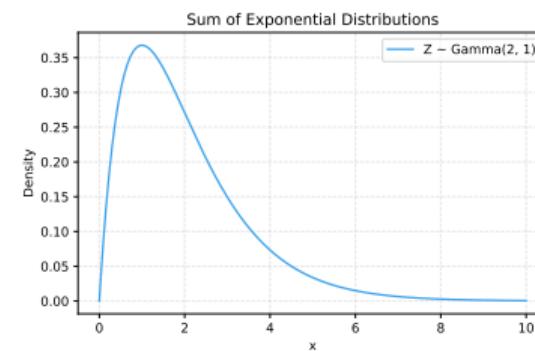
Convolution of Exponential Variables

- **Examples:**

- **Exponential Variables:** $X_i \sim \text{Exp}(\lambda)$,
the sum $Z = \sum_{i=1}^k X_i$ follows a
Gamma distribution with shape k and
rate λ :

$$Z \sim \text{Gamma}(k, \lambda)$$

- **Key Point:** Convolution of exponential variables models the total waiting time for k events in a Poisson process



Mixture Distributions

- **Definition:** A mixture distribution arises when a random variable X is drawn from one of several distributions $f_i(x)$ with probabilities w_i (where $\sum_i w_i = 1$):

$$f_X(x) = \sum_i w_i f_i(x)$$

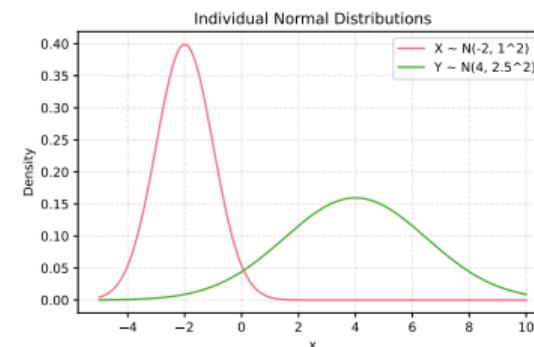
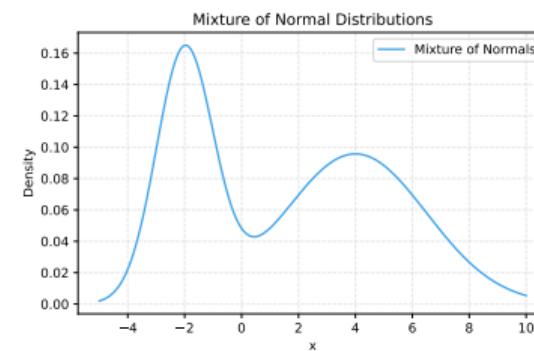
- **Properties:**
 - **Mean:** $E[X] = \sum_i w_i E[X_i]$
 - **Variance:** $\text{Var}(X) = \sum_i w_i (\text{Var}(X_i) + [E[X_i] - E[X]]^2)$
 - **Distribution Shape:** Can be multimodal
- **Contrast with Convolution:**
 - **Mixture:** Randomly selects one distribution to sample from
 - **Convolution:** Sums values from all distributions
- **Common Mistake:** Confusing mixtures with convolutions

Mixture Distributions: Examples

- **Examples:**

- Consider a mixture of two normal distributions: $N(-2, 1^2)$ and $N(4, 2.5^2)$ with weights $w = 0.4$ and $1 - w = 0.6$
- **Step 1:** Draw a Bernoulli random variable $B \sim \text{Bernoulli}(0.4)$
- **Step 2:** If $B = 0$, draw from $N(-2, 1^2)$; if $B = 1$, draw from $N(4, 2.5^2)$
- **Notation:**

$$X \sim \begin{cases} N(-2, 1^2) & \text{if } B = 0 \\ N(4, 2.5^2) & \text{if } B = 1 \end{cases}$$



Transformation of Random Variables

- **Definition:** If X is a random variable with PDF $f_X(x)$ and $Y = g(X)$ is a function of X , then the PDF of Y is:

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

where $g^{-1}(y)$ is the inverse function of $g(x)$.

- **Properties:**
 - **Change of Variables:** Requires Jacobian adjustment
 - **Moments:** Moments of Y depend on $g(x)$ and moments of X
- **Examples:**
 - **Log Transformation:** $Y = \ln(X)$, useful for skewed data
 - **Exponential Transformation:** $Y = e^X$, converts normal to log-normal
- **Key Difference:**
 - Transformation modifies a single variable's distribution
 - Unlike convolution and mixtures, no combining of variables

Summary and Key Differences

- **Convolution:**
 - Sum of independent variables
 - Models cumulative effects
 - Requires convolution integral
- **Mixture Distributions:**
 - Random selection among distributions
 - Models heterogeneous populations
 - PDF is a weighted sum
- **Transformations:**
 - Function applied to a variable
 - Alters the shape of the distribution
 - Requires change of variables formula
- **Final Thought:** Understanding these differences is crucial for accurate statistical modeling