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Random Variables

A New Type of Variable: Random Variables

• ”Regular” Variables:
Deterministic: y = f (x)
One input → One output
Example: y = 2x + 1

• Random Variables:
Not a value, but a generator
Same input → Different outputs
Described by probability functions

• Fundamental Shift:
From ”What is the value?”
To ”What is the probability?”

• Full Description Needs:
1 Support (possible values)
2 pdf/pmf (likelihood)
3 cdf (cumulative probability)
4 inverse cdf (quantiles)
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Random Variables

Support

• Support of a Random Variable:
Definition: The set of all possible values that a random variable X can take.

Notation: Supp(X ) = {x ∈ R : P(X = x) > 0} for discrete, or
Supp(X ) = x ∈ [a, b] for continuous.

Purpose: Defines the ”range” or domain where the random variable is valid.
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Random Variables

Types of Random Variables

Types of Random Variables

Discrete Random Variable:
• Takes on a countable set of values (e.g., integers).
• Defined by a probability mass function (PMF): P(X = xi ).

Example: Number of heads in a series of coin flips.

Continuous Random Variable:
• Takes on an uncountable set of values, typically an interval.
• Defined by a probability density function (PDF): p(x) where

P(a ≤ X ≤ b) =
∫ b

a
p(x) dx .

Example: Height of individuals in a population.
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Functions associated to a Random Variable

Probability Density Function (PDF)

• Probability Density Function (PDF):
Represents probability density at a
point (continuous RVs)

• Properties:
p(x) ≥ 0 ∀x (non-negative)∫∞
−∞ p(x) dx = 1 (normalized)

Practical use: Finding probability in an
interval (e.g., P(a ≤ X ≤ b))

P(a ≤ X ≤ b) =

∫ b

a
p(x) dx
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Functions associated to a Random Variable

Cumulative Distribution Function (CDF)

• Cumulative Distribution Function
(CDF):

F (x) = P(X ≤ x) =
∫ x

−∞ p(t) dt

• Properties:
0 ≤ F (x) ≤ 1 (probability bounds)
F (−∞) = 0, F (∞) = 1
F (x) is monotonically increasing
F (x) is right-continuous
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Functions associated to a Random Variable

Cumulative Distribution Function (CDF)

• Practical Use:
Quantile Determination: Identifies values at specified probabilities (e.g., median or
percentiles).

Statistical Testing: CDFs are central in calculating p-values and test statistics in
hypothesis testing.

Distribution Transformations: Allows mapping from one distribution to another,
used in simulation and resampling methods.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

Inverse CDF (Quantile Function)
Provides the value x for a given probability p.

F−1(p) = x such that F (x) = p

Use: Finding quantiles, and for setting probability thresholds.

Survival Function:
Definition: Probability that X exceeds x

S(x) = P(X ≥ x) = 1− F (x)

Use: Commonly used to compute p-values.
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Functions associated to a Random Variable

Other Useful Functions for Random Variables

Moment Generating Function (MGF)
Encodes the moments (mean, variance, etc.) of X .

MX (t) = E[etX ]

Use: Useful for calculating moments and deriving properties of distributions.

Characteristic Function (CF):
Complex-valued function that provides an alternative to the MGF for
characterizing the distribution.

ϕX (t) = E[e itX ]

Use: Particularly useful in Fourier transforms and convolution operations on
distributions.
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Functions associated to a Random Variable

Related Functions for Discrete Random Variables

Probability Mass Function (PMF):
Definition: Function that gives the probability of each possible value of a discrete
random variable X .

P(X = xi ) = p(xi )

Properties:

p(xi ) ≥ 0 ∀ i∑
p(xi ) = 1 (normalization)

Examples:

PMF: Probability of rolling each side of a die.
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Functions associated to a Random Variable

Related Functions for Discrete Random Variables

Cumulative Mass Function (CMF):
Definition: Function that gives the cumulative probability up to a certain value.

F (x) = P(X ≤ x) =
∑
xi≤x

p(xi )

Properties:

F (x) is non-decreasing

0 ≤ F (x) ≤ 1

Examples:

Probability of rolling a number less than or equal to a certain value.
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Functions associated to a Random Variable

Where to find them?

Figure: Summary of Probability Density Functions (Source: Wikipedia)
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Expectation of a Random Variable

Expectation of a Random Variable

The expectation of a random variable X , denoted E [X ], is an operator defined as:

(Discrete)

E [X ] =
∑
x

x p(x)

(Continuous)

E [X ] =

∫ ∞

−∞
x p(x) dx

Intuition

It is an operation that can be thought of as a weighted average of all possible values of
X , with weights given by the probabilities.

It provides the theoretical center or long-run average of the random variable.

Repeting the experiment infinitely, the average outcome would converge to E [X ].
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Expectation of a Random Variable

Properties of Expectation

Linearity: E [aX + bY ] = aE [X ] + bE [Y ]

Expectation of a Function: E [g(X )] =
∑

x g(x) p(x) or
∫
g(x) p(x) dx

Additivity for 2 RVs: E [X + Y ] = E [X ] + E [Y ]

• It can be defined with respect to marginal distribution (often implicit):

Ep(x)[X + Y ] = Ep(x)[X ] + Y

Expectation of a Product: E [XY ] = E [X ]E [Y ] if X and Y are independent

• Avoid common näıve misconception:

E [X 2] = E [X · X ] ̸= E [X ]2
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Moments of a Random Variable

Moments of a Random Variable
Moments provide information about the shape and spread of the distribution of X . The k-th
moment of a random variable X is defined as the expectation of X k , denoted E [X k ]:

E [X k ] =

∫ ∞

−∞
xk p(x) dx

Moments:

• First Moment (Mean): E [X ]

• Second Moment: E [X 2]. (captures both the mean and the spread of X around the
mean, related to variance).

Do not confuse with Variance: Defined as Var(X ) = E [X 2]− (E [X ])2

• Higher-Order Moments:

Third Moment (related to Skewness): relates to the asymmetry of the distribution
around the mean.
Fourth Moment (related to Kurtosis): relates to the ”tailedness” of the distribution.
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Moments of a Random Variable

Central Moments

Central Moments:

• Moments taken about the mean (rather than about zero) are called central
moments. For example, the second central moment is variance:

E [(X − E [X ])2] = Var(X )

• Central moments provide insight into the variability and shape of the distribution
relative to its mean (Typically more useful).

• Connection to Empirical Estimators.
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Moments of a Random Variable

Variance of a Random Variable
The Variance is the second central moment of a random variable. It is an operator denoted
Var(X ) defined as:

Var(X ) = E [(X − E [X ])2] = E [X 2]− (E [X ])2

Interpretation:

• The Variance quantifies the spread or variability of a random variable X around its mean.

• A higher variance indicates greater spread; a variance of zero implies X is a constant.

Key Properties:

• Non-negativity: Var(X ) ≥ 0; variance cannot be negative.

• Scaling: For a constant a
Var(aX ) = a2Var(X )

• Additivity for Independent Variables: For independent random variables X and Y :

Var(X + Y ) = Var(X ) + Var(Y )
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Parametrization of Distributions

Analytical Parametrization of Probability Distributions

• Many probability distributions can be expressed analytically as a function of
specific parameters, often denoted as θ.

• These parameters θ control the form of the PDF (they are sometimes chosen to
intuitively link them with location, shape, spread of the distribution, but they do
not have to be!)

• In general, we will indicate a pdf with pθ(X ) to emphasize that it is a function of
the form f (x , θ).
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Common Distributions in Biodata • § Normal and Log-Normal Distributions

Normal Distribution

• PDF:

pµ,σ2(x) =
1√
2πσ2

exp

(
− (x − µ)2

2σ2

)
• Key Properties:

Symmetric around mean µ
68% of data within 1σ
95% within 2σ
Sum of normal RVs is normal

• Biological Examples:

Height distributions in populations
Measurement errors in experiments
Gene expression in large populations
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Common Distributions in Biodata • § Normal and Log-Normal Distributions

Log-Normal Distribution
• If Y = ln(X ) is normal, then X is log-normal

• PDF:

pµ,σ2(x) =
1

xσ
√
2π

exp

(
− (ln x − µ)2

2σ2

)
• Properties:

Right-skewed
Only positive values
Multiplicative effects become additive
on log scale

• Biological Applications:

RNA expression levels (normalized)
Protein concentrations
Species abundance distributions
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Common Distributions in Biodata • § Gamma, Beta, and Dirichlet Distributions

Gamma Distribution
• PDF:

pk,θ(x) =
xk−1e−x/θ

θkΓ(k)

where k is shape, θ is scale, and Γ(k) is the
gamma function

• Properties:

Always positive
Flexible shape (can be exponential
when k = 1)
Sum of exponential RVs follows
gamma

• Biological Applications:

Waiting times between cellular events
Duration of biological processes
Gene expression burst sizes
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Gamma Distribution
• PDF:

pk,θ(x) =
xk−1e−x/θ

θkΓ(k)

where k is shape, θ is scale, and Γ(k) is the
gamma function

• Properties:

Always positive
Flexible shape (can be exponential
when k = 1)
Sum of exponential RVs follows
gamma

• Biological Applications:

Waiting times between cellular events
Duration of biological processes
Gene expression burst sizes
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Common Distributions in Biodata • § Gamma, Beta, and Dirichlet Distributions

Beta Distribution

• PDF:

pα,β(x) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) is the beta function

• Properties:

Defined on [0,1]
Conjugate prior to Bernoulli
Flexible shapes based on α, β

• Biological Applications:

Allele frequencies
Gene expression proportions
Success probabilities in experiments
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Common Distributions in Biodata • § Gamma, Beta, and Dirichlet Distributions

Dirichlet Distribution

• PDF:

pα(x) =
1

B(α)

K∏
i=1

xαi−1
i

where
∑

xi = 1 and B(α) is the
multivariate beta function

• Properties:

Multivariate generalization of Beta
Each component in (0,1)
Components sum to 1

• Biological Applications:

Cell type proportions
Species composition in microbiome
Multi-allele frequencies
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Common Distributions in Biodata • § Gamma, Beta, and Dirichlet Distributions

Dirichlet Distribution

• PDF:

pα(x) =
1

B(α)

K∏
i=1

xαi−1
i

where
∑

xi = 1 and B(α) is the
multivariate beta function

• Properties:

Multivariate generalization of Beta
Each component in (0,1)
Components sum to 1

• Biological Applications:
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Common Distributions in Biodata • § Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions

• Bernoulli (single trial):

PMF: P(X = k) = pk(1− p)1−k ,
k ∈ {0, 1}
Mean: p, Variance: p(1− p)
Example: Single mutation event

• Binomial (n independent trials):

PMF: P(X = k) =
(
n
k

)
pk(1− p)n−k

Mean: np, Variance: np(1− p)
Examples:

Number of mutated cells in a population
Success count in n identical experiments
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Bernoulli and Binomial Distributions
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Common Distributions in Biodata • § Poisson and Negative Binomial Distributions

Poisson Distribution

• PMF:

P(X = k) =
λke−λ

k!

where λ is both mean and variance

• Properties:

Models rare events
Sum of Poisson RVs is Poisson
Limit of Binomial as n → ∞, p → 0

• Biological Applications:

Mutations in DNA sequences
Number of cells in a small sample
RNA-seq read counts
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Common Distributions in Biodata • § Poisson and Negative Binomial Distributions

Poisson Distribution

• PMF:

P(X = k) =
λke−λ

k!

where λ is both mean and variance

• Properties:

Models rare events
Sum of Poisson RVs is Poisson
Limit of Binomial as n → ∞, p → 0

• Biological Applications:

Mutations in DNA sequences
Number of cells in a small sample
RNA-seq read counts
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Common Distributions in Biodata • § Poisson and Negative Binomial Distributions

Negative Binomial Distribution

• PMF:

P(X = k) =

(
k + r − 1

k

)
pr (1− p)k

where r is number of successes, p is
probability

• Properties:

More dispersed than Poisson
Mean: pr

1−p , Variance:
pr

(1−p)2

Handles overdispersion in count data

• Biological Applications:

RNA-seq differential expression
Microbial abundance counts
Cellular heterogeneity modeling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

Negative Binomial Distribution
r=5, p=0.5

Gioele La Manno BIOENG-210 / LECTURE 1 February 2025 26 / 35



Common Distributions in Biodata • § Poisson and Negative Binomial Distributions

Negative Binomial Distribution

• PMF:

P(X = k) =
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where r is number of successes, p is
probability

• Properties:
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Common Distributions in Biodata • § Poisson and Negative Binomial Distributions

NegBinom - Alternative Param.

• The NB distribution can be alternatively
parameterized in terms of a mean µ and the
parameter θ.

P(X = k) =

(
k + θ − 1

k

)(
θ

θ + µ

)θ (
µ

θ + µ

)k

E [X ] = µ, Var(X ) = µ+
µ2

θ

• The Poisson distribution is a special case
when (θ → ∞). So one can think about
r = 1

θ as an the overdispersion parameter

Example: RNA-seq read counts
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Operations on Random Variables

Operations on Random Variables: Introduction

• Fundamental Operations:
Convolution: Summing independent random variables
Mixture Distributions: Random selection from multiple distributions
Transformations: Applying functions to random variables

• Why It Matters:
Essential for modeling combined effects
Critical in statistical inference and data analysis

• Applications:
Signal processing
Financial risk assessment
Biological systems modeling
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Operations on Random Variables • § Convolution of Random Variables

Convolution of Random Variables
• Definition:

The convolution of two independent random variables X and Y results in a new
random variable Z = X + Y .
The PDF of Z is given by:

fZ (z) =

∫ ∞

−∞
fX (x)fY (z − x) dx

• Interpretation:
This integral accounts for all combinations of x and y that sum to z , weighted by
their probabilities.

• Properties:
Mean: E [Z ] = E [X ] + E [Y ]
Variance: Var(Z ) = Var(X ) + Var(Y ) (if X and Y are independent)
Distribution Shape: The shape of fZ (z) may be smoother and differ from fX (x)
and fY (y)
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Operations on Random Variables • § Convolution of Random Variables

Convolution of Normals

• Examples:
Normal Variables: X ∼ N(µX , σ

2
X )

and Y ∼ N(µY , σ
2
Y ) imply

Z ∼ N(µX + µY , σ
2
X + σ2

Y )

• Key Point: Convolution models the
aggregate effect of independent random
variables

• Common Mistake: Assuming the
convolution of two distributions is the
same type as the original distributions
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Operations on Random Variables • § Convolution of Random Variables

Convolution of Exponential Variables

• Examples:
Exponential Variables: Xi ∼ Exp(λ),

the sum Z =
∑k

i=1 Xi follows a
Gamma distribution with shape k and
rate λ:

Z ∼ Gamma(k , λ)

• Key Point: Convolution of exponential
variables models the total waiting time
for k events in a Poisson process
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Operations on Random Variables • § Mixture Distributions

Mixture Distributions
• Definition: A mixture distribution arises when a random variable X is drawn from

one of several distributions fi (x) with probabilities wi (where
∑

i wi = 1):

fX (x) =
∑
i

wi fi (x)

• Properties:
Mean: E [X ] =

∑
i wiE [Xi ]

Variance: Var(X ) =
∑

i wi

(
Var(Xi ) + [E [Xi ]− E [X ]]2

)
Distribution Shape: Can be multimodal

• Contrast with Convolution:
Mixture: Randomly selects one distribution to sample from
Convolution: Sums values from all distributions

• Common Mistake: Confusing mixtures with convolutions
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Operations on Random Variables • § Mixture Distributions

Mixture Distributions: Examples

• Examples:
Consider a mixture of two normal
distributions: N(−2, 12) and
N(4, 2.52) with weights w = 0.4 and
1− w = 0.6
Step 1: Draw a Bernoulli random
variable B ∼ Bernoulli(0.4)
Step 2: If B = 0, draw from
N(−2, 12); if B = 1, draw from
N(4, 2.52)
Notation:

X ∼

{
N(−2, 12) if B = 0

N(4, 2.52) if B = 1
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Operations on Random Variables • § Transformation of Random Variables

Transformation of Random Variables
• Definition: If X is a random variable with PDF fX (x) and Y = g(X ) is a

function of X , then the PDF of Y is:

fY (y) = fX (g
−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣
where g−1(y) is the inverse function of g(x).

• Properties:
Change of Variables: Requires Jacobian adjustment
Moments: Moments of Y depend on g(x) and moments of X

• Examples:
Log Transformation: Y = ln(X ), useful for skewed data
Exponential Transformation: Y = eX , converts normal to log-normal

• Key Difference:
Transformation modifies a single variable’s distribution
Unlike convolution and mixtures, no combining of variables

• Common Mistake: Ignoring the derivative in the change of variables formulaGioele La Manno BIOENG-210 / LECTURE 1 February 2025 34 / 35



Operations on Random Variables • § Transformation of Random Variables

Summary and Key Differences

• Convolution:
Sum of independent variables
Models cumulative effects
Requires convolution integral

• Mixture Distributions:
Random selection among distributions
Models heterogeneous populations
PDF is a weighted sum

• Transformations:
Function applied to a variable
Alters the shape of the distribution
Requires change of variables formula

• Final Thought: Understanding these differences is crucial for accurate statistical
modeling
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