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Computational Statistics

The Computational Revolution in Statistics

Statistics has undergone a profound transformation, driven by exponential increases in
computational power.

Traditional statistical methods were constrained by:

Need for mathematical tractability

Simplifying assumptions about distributions

Reliance on analytical formulas

Today, we’re in ”the computer age of statistics” where:

We can tackle problems through simulation and algorithms

We can handle violations of standard assumptions

We can work with complex data structures
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Computational Statistics

Computational Approaches to Statistical Inference

Computational approaches are especially valuable when:

Standard parametric assumptions are violated

Deriving analytical solutions is mathematically intractable

Working with complex data structures (nested measurements)

Using complex algorithms without available analytical solutions

Dealing with small sample sizes where asymptotic approximations fail

Analyzing censored or irregularly sampled data

Today we’ll explore three fundamental approaches:

Permutation tests

The jackknife

The bootstrap
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Permutation Testing

The Logic of Permutation Testing

Permutation tests offer a distribution-free approach to hypothesis testing.

Core insight (Fisher, 1930s): If the null hypothesis is true, then group labels are
essentially arbitrary.

Definition (Permutation Test)

A permutation test involves:

1 Calculate test statistic T for the original data

2 Generate permutations of the data consistent with the null hypothesis

3 Calculate test statistic Tm for each permutation

4 The p-value is the proportion of permutations where Tm is as or more extreme
than T
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Permutation Testing

Permutation Testing Illustrated
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Permutation Testing

Permutation Test Results
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Permutation Test Results
Original difference: 1.55
p-value: 0.007

The p-value is the proportion of permutations with test statistics as or more extreme
than the observed value.
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Permutation Testing

Use case of Permutation test

This approach is particularly valuable when:

Sample sizes are small

Data exhibit skewness or outliers

Variances differ between groups

Gioele La Manno BIOENG-210 / LECTURE 12 May 2025 7 / 36



Permutation Testing

Permutation Testing for Simple Comparisons

Permutation testing allows us to relax the assumptions required by traditional tests.

Group A Group B
6

8

10

12

14

Va
lu

e

Original Data
Mean Difference (B-A): 1.55
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Permutation Testing

Permutation of Group Labels
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Permutation 1: Difference = -0.99
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Each permutation randomly reassigns observations to groups while maintaining the
original group sizes.
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Permutation Testing

Permutation Testing for Correlation

Permutation tests can also assess the significance of correlation coefficients:

1 Calculate observed correlation coefficient rXY between variables

2 Randomly permute values of one variable while keeping the other fixed

3 Calculate the correlation coefficient for each permutation

4 Determine how extreme the observed correlation is relative to this distribution

This approach is particularly valuable when:

The marginal distributions are non-normal

The sample size is small

We suspect a non-linear relationship
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Permutation Testing

Permutation Test for Correlation - Example 1
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Permuted Data Example (r = -0.076)
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Permutation Distribution
Observed r: 0.506
One-sided p-value: 0.010

Example with N=15 points showing a correlation of 0.5, which is statistically
significant.
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Permutation Testing

Permutation Test for Correlation - Example 2
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Permuted Poisson Data (r = -0.121)
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Permutation Distribution (Poisson Data)
Observed r: 0.209
One-sided p-value: 0.141

Example with Poisson-distributed variables with low means. Note how the null
distribution is not normal and not centered at zero.
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Permutation Testing

Complex Permutation Tests - Variance Comparison

Permutation tests can handle scenarios where traditional approaches struggle, like
testing for differences in variance between groups.
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Comparison of Variances
Group A var: 2.57, Group B var: 0.79, Ratio: -1.18

When testing for variance differences, we need to center the data before permutation
to maintain the null hypothesis.Gioele La Manno BIOENG-210 / LECTURE 12 May 2025 13 / 36



Permutation Testing

Permutation Test for Variance - Results
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Permutation Test for Variance Difference (Two-sided)
Original log variance ratio: -1.18
Two-sided p-value: 0.064

The histogram shows the distribution of variance differences under the null hypothesis,
with the observed value and resulting p-value.
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Permutation Testing

Standard Errors: From Formulas to General Approaches

In previous lectures, we derived formulas for standard errors of specific statistics:

For the mean:

ŝe(X̄ ) =
s√
n

where s2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2 (1)

For regression coefficients:

ŝe(β̂) =

√
σ̂2∑n

i=1(Xi − X̄ )2
(2)

But how do we estimate the standard error of a statistic that is not a simple function
of the data?
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Permutation Testing

The Delta Method

The delta method uses Taylor series expansion to approximate the standard error of a
function of a statistic.

If our statistic t(X) can be written as g(θ̂), where θ̂ has known standard error:

ŝe(g(θ̂)) ≈
√

∇g(θ̂)T · Σ · ∇g(θ̂) (3)

For the univariate case, this simplifies to:

ŝe(g(θ̂)) ≈ |g ′(θ̂)| · ŝe(θ̂) (4)
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Permutation Testing

Delta Method Example: Log of the Mean

For the logarithm of the sample mean:

t(x) = log(x̄) (5)

The delta method gives us:

ŝe(log(x̄)) ≈ 1

x̄
· ŝe(x̄) = s

x̄
√
n

(6)

This approximation works well for large samples but may be less accurate for small
samples or highly skewed distributions.
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Permutation Testing

Delta Method Performance (N=200)
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Sample mean: 2.4967
Delta method ±1.96SE

With a large sample size (N=200), the delta method approximation closely matches
the true sampling distribution of log(x̄).
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Permutation Testing

Delta Method Performance (N=20)
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With a smaller sample size (N=20), the approximation is less accurate, especially in
capturing the asymmetry of the sampling distribution.
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The Jackknife

The Jackknife: Origins and Basic Concept

The jackknife, introduced by Quenouille (1949) and developed by Tukey (1958),
represents an early computational approach to statistics.

Core idea: To understand the stability of a statistic, systematically leave out each
observation one at a time and recalculate.

Definition (Jackknife Estimate)

Given a dataset X = {X1,X2, . . . ,Xn} and a statistic θ̂ = t(X), the jackknife estimates
are:

θ̂(i) = t(X(i))

where X(i) represents the dataset with the i-th observation removed.

Gioele La Manno BIOENG-210 / LECTURE 12 May 2025 20 / 36



The Jackknife

The Jackknife Method - Algorithm

Algorithm Jackknife Method

1: Compute full-sample estimate θ̂ = t(X)
2: for i = 1 to n do
3: Create leave-one-out sample X(i) = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn}
4: Compute jackknife replicate θ̂(i) = t(X(i))
5: end for
6: Compute average of jackknife estimates: θ̂(·) =

1
n

∑n
i=1 θ̂(i)

7: Compute jackknife standard error: ŝe jack =
√

n−1
n

∑n
i=1(θ̂(i) − θ̂(·))2

8: Compute jackknife bias estimate: ˆbias jack = (n − 1)(θ̂(·) − θ̂)
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The Jackknife

Estimating Standard Errors with the Jackknife

The jackknife estimate of standard error is:

ŝe jack(θ̂) =

√√√√n − 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2

Where θ̂(·) =
1
n

∑n
i=1 θ̂(i) is the average of the jackknife estimates.

This measures how much the statistic fluctuates when individual observations are
removed, scaled to reflect the appropriate sampling variation.

The factor n−1
n ensures that ŝe jack exactly equals the analytical formula for the

standard error of the mean when applied to that statistic.
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The Jackknife

The Jackknife for Bias Estimation

Beyond standard errors, the jackknife can also estimate the bias of a statistic:

ˆbias jack(θ̂) = (n − 1)(θ̂(·) − θ̂)

This allows us to construct bias-corrected estimates:

θ̂corrected = θ̂ − ˆbias jack(θ̂) = nθ̂ − (n − 1)θ̂(·)

Bias correction is particularly valuable for ratio estimators, variance components, and
other statistics that exhibit systematic bias in finite samples.
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The Jackknife

Theoretical Foundations of the Jackknife
The jackknife can be viewed as an automatic numerical way to compute the Taylor
approximation in the delta method.

Rewriting the jackknife standard error:

ŝe jack(θ̂) =

√√√√n − 1

n

n∑
i=1

(θ̂(i) − θ̂(·))2

=
1

n

√√√√ n∑
i=1

D2
i

Where Di are approximate directional derivatives, measuring how fast the statistic
changes as we decrease the weight on data point Xi .

This connects directly to the delta method formula:

ŝe(g(θ̂)) ≈
√
∇g(θ̂)T · Σ · ∇g(θ̂) (7)
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The Jackknife

Limitations of the Jackknife

The jackknife has important limitations:

Non-smooth statistics: For statistics like the median, removing a single
observation might not change the estimate at all if it’s not near the median,
leading to artificially small variance estimates.

Insufficient exploration: The jackknife creates only n resamples, all with exactly
n − 1 observations. This limited exploration might not adequately capture the full
sampling distribution.

Edge effects: For statistics sensitive to extreme values, the jackknife can either
overestimate variance (if removing an extreme value drastically changes the
estimate) or underestimate it (if the statistic is robust to such removal).

These limitations motivated the development of more comprehensive resampling
approaches.
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The Bootstrap

The Bootstrap: Resampling with Replacement

The bootstrap, introduced by Bradley Efron in 1979, marked a paradigm shift in
computational statistics.

Core insight: We can simulate the sampling process by resampling with replacement
from the original data, treating our observed sample as a stand-in for the unknown
population.

Definition (Bootstrap Sample)

Given a dataset X = {X1,X2, . . . ,Xn}, a bootstrap sample X∗ = {X ∗
1 ,X

∗
2 , . . . ,X

∗
n } is

created by sampling n observations with replacement from X.

By resampling with replacement, some original observations appear multiple times in a
bootstrap sample while others are omitted, mimicking natural sampling variation.
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The Bootstrap

Bootstrap Sampling Illustrated

0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Population

0 1 2 3 4 5 6 7 8
Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Fr
eq

ue
nc

y

Data

The measurement process samples from a
population

0 1 2 3 4 5 6 7 8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Fr
eq

ue
nc

y

Data

0 1 2 3 4 5 6 7 8
Value

0

5

10

15

20

Fr
eq

ue
nc

y

Bootstrap Sample

In bootstrap, we resample the data with
replacement to simulate a population.
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The Bootstrap

Bootstrap Sampling Illustrated
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Bootstrap Sample

In bootstrap, we resample the data with
replacement to simulate a population.
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The Bootstrap

The Bootstrap Algorithm

The general bootstrap procedure for estimating the sampling distribution of a statistic
θ̂ = t(X):

1 Generate B bootstrap samples X∗1,X∗2, . . . ,X∗B by sampling n observations with
replacement from the original dataset X.

2 Calculate the statistic of interest for each bootstrap sample: θ̂∗b = t(X∗b) for
b = 1, 2, . . . ,B.

3 Use the empirical distribution of θ̂∗1, θ̂∗2, . . . , θ̂∗B to approximate the sampling
distribution of θ̂.

From this distribution, we can estimate:

Standard errors

Confidence intervals

Bias
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The Bootstrap

Bootstrap vs. Analytical - Sample Mean
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For the sample mean, bootstrap confidence intervals closely match analytical results,
validating the bootstrap approach.
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The Bootstrap

Bootstrap vs. Analytical - Sample Variance
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For the sample variance, bootstrap confidence intervals again provide similar results to
analytical methods.

Gioele La Manno BIOENG-210 / LECTURE 12 May 2025 30 / 36



The Bootstrap

Bootstrap Confidence Interval - Entropy
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For complex statistics like entropy where analytical approaches are challenging, the
bootstrap provides a straightforward method for confidence interval construction.
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The Bootstrap

Bootstrap Sampling Distribution - Sample Mean
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Bootstrap Distribution: Sample Mean
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The bootstrap distribution (top) approximates the theoretical sampling distribution
(bottom) for the sample mean.
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The Bootstrap

Bootstrap Sampling Distribution - Sample Variance
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Bootstrap Distribution: Sample Variance
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Theoretical Distribution: Sample Variance

For the sample variance, the bootstrap (top) captures the asymmetry of the theoretical
sampling distribution (bottom).
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The Bootstrap

Bootstrap Sampling Distribution - Entropy
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Bootstrap Distribution: Sample Entropy

No theoretical distribution available

For entropy, the bootstrap provides an empirical sampling distribution when theoretical
distributions are difficult to derive.
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The Bootstrap

Bootstrap Confidence Intervals

Beyond standard error estimation, the bootstrap excels at constructing confidence
intervals.

Percentile Method:
The simplest approach uses percentiles of the bootstrap distribution directly:

CI1−α = [θ̂∗α/2, θ̂
∗
1−α/2]

where θ̂∗α/2 and θ̂∗1−α/2 are the α/2 and 1− α/2 percentiles of the bootstrap
distribution.

Advantages:

Intuitive and simple to implement

Preserves range restrictions (e.g., correlations between -1 and 1)

Accounts for asymmetry in the sampling distribution
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The Bootstrap

Parametric Bootstrap

When sample sizes are small, the standard (nonparametric) bootstrap may not
adequately capture population variability.

Definition (Parametric Bootstrap)

The parametric bootstrap involves:

1 Fit a parametric model to the observed data and estimate its parameters θ̂

2 Generate synthetic datasets by sampling from the fitted model with parameters θ̂

3 Calculate the statistic of interest for each synthetic dataset

4 Use the distribution of these statistics to approximate the sampling distribution
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