
Principal Component Analysis and Clustering

Gioele La Manno
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Principal Component Analysis - Part 2

PCA as Dimensionality Reduction

PCA enables dimensionality reduction by projecting data onto the first k principal
components:

X
(k)
c = UkΣkV

T
k

Where Uk , Σk , and Vk contain only the first k columns/entries.

The Eckart-Young theorem guarantees this is the best rank-k approximation in terms

of minimizing the squared Frobenius norm ∥Xc − X
(k)
c ∥2F .

The proportion of variance explained by the first k principal components is:

Proportion of variance explained =

∑k
i=1 σ

2
i∑min(n,p)

i=1 σ2
i

=

∑k
i=1 λi∑p
i=1 λi
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Principal Component Analysis - Part 2

Proportion of Variance Explained

The proportion of variance explained measures how much of the total data variation is
captured by the first k principal components:

Proportion of variance explained =

∑k
i=1 λi∑p
i=1 λi

This metric helps determine how many principal components to retain:

Often visualized as a scree plot or cumulative variance plot

Common thresholds: retain components explaining 80-90% of variance

Alternatively, look for an ”elbow” in the scree plot where additional components
add minimal explanation
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Principal Component Analysis - Part 2

Rank-k Approximations of the Data Matrix
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Original data matrix (top left) and its low-rank approximations: rank-1 (top right),
rank-2 (bottom left), and rank-5 (bottom right). Note how adding components
progressively captures more structure.

Gioele La Manno BIOENG-210 / LECTURE 11 May 2025 4 / 74



Principal Component Analysis - Part 2

Using Scree Plots to Determine Dimensionality
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A scree plot displays eigenvalues in descending order. The ”elbow” where the curve
levels off suggests how many components to retain.
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Principal Component Analysis - Part 2

Cumulative Variance Explained
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Cumulative proportion of variance explained as components are added. A common
heuristic is to retain enough components to explain 80-90
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Principal Component Analysis - Part 2

The Shape of Your Data: Geometric Intuition

PCA provides geometric intuition about data structure through eigenvalue patterns:

Spherical data: All eigenvalues approximately equal - no preferred directions

Disk-shaped data: Two dominant eigenvalues with similar magnitude - data
concentrated in a plane

Cigarette-shaped data: One dominant eigenvalue much larger than others -
data elongated along a single direction

Rugby ball-shaped data: Smoothly decreasing sequence of eigenvalues -
complex, multi-factorial variation

This geometric language provides an intuitive way to discuss high-dimensional data
structure.
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Principal Component Analysis - Part 2

Interpreting Principal Components

Principal components represent ”latent factors” that explain patterns of variation:

Each principal component is a linear combination of the original variables:

PCi =

p∑
j=1

vijXj

The challenge in interpretation comes from:

Loadings having both positive and negative values

Observations having both positive and negative coordinates

A component doesn’t simply represent presence/absence of a biological process, but
rather contrasting patterns - for example, high expression of proliferation genes and
low expression of differentiation genes versus the opposite pattern.
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Principal Component Analysis - Part 2

Loadings of the First Principal Component
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Loadings of PC1, with genes sorted by magnitude. Positive loadings (red) and negative
loadings (blue) show which genes drive variation along this component in opposite
directions.
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Principal Component Analysis - Part 2

Loadings of the Second Principal Component
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Loadings of PC2. The different pattern compared to PC1 indicates this component
captures a distinct axis of variation in the data.
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Principal Component Analysis - Part 2

Biplot of Gene Expression Data
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Biplot of gene expression data. Points represent cells, while arrows show genes. This
visualization reveals which genes drive the separation between cell groups.
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Principal Component Analysis - Part 2

Biplots: Visualization of Observations and Variables

A biplot displays both observations and variables in the same principal component
space:

Points represent observations (e.g., cells)
Arrows represent variables (e.g., genes), with direction and length indicating
loadings

Construction:

Observations: Plot the principal component scores (elements of U ·Σ)
Variables: Represent as arrows with coordinates determined by loadings (elements
of V)

Interpretation:

Observations positioned in direction of a particular variable arrow tend to have
high values for that variable
Length of variable arrows indicates how well that variable is represented in the
displayed components
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Principal Component Analysis - Part 2

Biplot of Metabolomics Data

6 4 2 0 2 4 6 8
PC1 (12.9%)

4

2

0

2

4

PC
2 

(4
.9

%
)

Glucose

Lactate

Glutamine

Pyruvate

ATP

Biplot of Metabolomics Data
Sample Groups

Control
Treatment A
Treatment B

Biplot of metabolomics data. Reflecting the distinct correlation structure in
metabolomic measurements.
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Principal Component Analysis - Part 2

Practical Considerations and Limitations

Despite its power and elegance, PCA has several limitations to consider:

Sensitivity to scaling: Results depend crucially on variable scales. Variables with
larger scales dominate the first components regardless of importance.
Standardization (scaling to unit variance) is often used to address this.

Sensitivity to outliers: As a least-squares method, PCA can be heavily
influenced by outliers. Robust variants exist to address this issue.

Interpretation challenges: Principal components are linear combinations of all
original variables, which can make biological interpretation difficult.

Understanding these limitations helps ensure appropriate application of PCA in
biological data analysis.
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Clustering
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Clustering

From Continuous Variation to Discrete Groups

When we apply PCA to biological data, we often observe that individual data points
naturally organize into distinct groups in the reduced dimensional space.

This clustering pattern suggests underlying biological structure:

Discovering novel cell types in single-cell data

Identifying patient subtypes with different disease prognoses

Finding functional modules in gene regulatory networks

Clustering formalizes this process of identifying these groups objectively.
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Clustering

Clustering Patterns Emerge from PCA
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PCA of Gene Expression Data

Natural clusters emerge in PCA space, showing distinct cancer subtypes (red)
separated from normal samples (blue).
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Clustering

The Data Matrix Reveals Cluster Structure
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The same data as a heatmap: distinct expression patterns define different groups.
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Clustering

Clustering as Optimization

Clustering finds a partition of data that minimizes an objective function J(C),
balancing two competing goals:

Intra-cluster similarity: Observations within the same cluster should be similar

Inter-cluster dissimilarity: Observations in different clusters should be dissimilar

Definition (Clustering as Optimization)

A clustering is a partition C = {C1,C2, ...,Ck} that minimizes:

C∗ = argmin
C

J(C) (1)
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Clustering

Distance Matrices Visualize Cluster Quality

Distance matrix with random ordering shows no obvious structure.
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Clustering

Clusters Reveal Structure in Distance Matrices

Same data sorted by clusters: small intra-cluster distances (red boxes), large
inter-cluster distances (blue boxes).
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Clustering

Clustering: There’s No Single ”Right” Answer
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The ”true” clustering based on domain knowledge: 5 distinct groups.
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Clustering

Different Algorithms Give Different Results
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Clustering with Fixed Number of Clusters (k=3)
Cluster 1
Cluster 2
Cluster 3

Same data with clustering forced to 3 groups: merges related cancer types.
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Clustering

Algorithm Assumptions Matter
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Clustering with Spherical Cluster Assumption (GMM)
Cluster 1
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Cluster 7

Method assuming spherical clusters: misses the natural structure completely.
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Clustering

Two Major Clustering Approaches

Partition-based methods (like k-means):

Divide data into predetermined number of clusters

Each observation belongs to exactly one cluster

Good when expected number of groups is known

Hierarchical agglomerative methods:

Create nested sequence of partitions

Reveal relationships at different scales through dendrograms

Good when natural number of clusters is unclear
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Clustering

Partition-based Clustering Provides Flat Structure
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Partition-based Clustering (K-means)

K-means clustering partitions data into exactly k groups without hierarchy.

Gioele La Manno BIOENG-210 / LECTURE 11 May 2025 25 / 74



Clustering

Hierarchical Clustering Reveals Relationships
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Hierarchical Clustering Dendrogram

Dendrogram shows how clusters merge, providing insight into relationships.
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means: Minimizing Within-Cluster Variance

K-means partitions data into k clusters by minimizing the within-cluster sum of squares:

J(C) =
k∑

i=1

∑
x∈Ci

∥x− µi∥2 (2)

where µi is the centroid (mean) of cluster Ci .

This ensures points within each cluster are as close as possible to their cluster’s center.
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Clustering • § K-Means Clustering: A Foundational Algorithm

The K-Means Algorithm

K-means alternates between two key steps:

1 Assignment Step: Assign each observation to the nearest cluster centroid

2 Update Step: Recalculate cluster centroids as the mean of assigned points

This iterative process continues until the algorithm converges.
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means Algorithm

Algorithm: K-Means Clustering
Input: Dataset X = {x1, x2, ..., xn}, number of clusters k
Output: Clusters C1,C2, ...,Ck and centroids µ1,µ2, ...,µk

1 Initialize centroids µ1,µ2, ...,µk (e.g., randomly)

2 Repeat until convergence:
Assignment step: Assign each observation xj to cluster Ci where:

i = argmin
i∈{1,...,k}

∥xj − µi∥2

Update step: Recalculate each centroid as the mean of its assigned points:

µi =
1

|Ci |
∑
x∈Ci

x

3 Return cluster assignments C1,C2, ...,Ck and final centroids µ1,µ2, ...,µk
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means: Initial Random Centroids
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K-means: Initial Centroids

Algorithm starts with randomly chosen centroid locations.
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means: First Assignment Step
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K-means: Assignment Step (Iteration 1)

Each point is assigned to its nearest centroid, creating Voronoi regions.

Gioele La Manno BIOENG-210 / LECTURE 11 May 2025 31 / 74



Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means: Second Assignment Step
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K-means: Assignment Step (Iteration 2)

Centroids are updated to cluster means, changing point assignments.
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means: Approaching Convergence
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K-means: Assignment Step (Iteration 4)

After several iterations, cluster assignments stabilize.
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Clustering • § K-Means Clustering: A Foundational Algorithm

K-Means Creates Voronoi Regions
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Voronoi Regions with Initial Centroids

Initial Voronoi tessellation divides space based on proximity to centroids.
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Clustering • § K-Means Clustering: A Foundational Algorithm

Voronoi Regions Evolve with Convergence
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Voronoi Regions after K-means Convergence

Final regions reflect the optimal partition of the data space.
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Clustering • § K-Means Clustering: A Foundational Algorithm

Choosing k: The Challenge of Unknown Group Numbers

Determining the appropriate number of clusters, k, requires balancing:

Domain knowledge: Expected cell types, disease stages

Model selection: Avoid over- or under-clustering

Stability: Consistent results across multiple runs

The silhouette score provides a quantitative measure of cluster quality.
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Clustering • § K-Means Clustering: A Foundational Algorithm

The Silhouette Score: Measuring Cluster Quality

For each observation, the silhouette coefficient compares inter- and intra-cluster
distances:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

where:

a(i): average distance to points in same cluster

b(i): average distance to points in nearest neighboring cluster

Values range from -1 (wrongly clustered) to +1 (well-clustered).
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Clustering • § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=2
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The visualization of the clustered data

Silhouette analysis for KMeans clustering with n_clusters = 2

With two clusters, most points have positive silhouette values.
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Clustering • § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=3
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The visualization of the clustered data

Silhouette analysis for KMeans clustering with n_clusters = 3

Three clusters show one problematic cluster with negative values.
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Silhouette Analysis for k=4
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The visualization of the clustered data

Silhouette analysis for KMeans clustering with n_clusters = 4

Four clusters reveal better-defined groups with higher scores.
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Silhouette Analysis for k=5
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The visualization of the clustered data

Silhouette analysis for KMeans clustering with n_clusters = 5

Five clusters maintain high silhouette scores and balanced group sizes.
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Agglomerative Clustering: Bottom-Up Approach

Hierarchical agglomerative clustering builds clusters progressively:

Start with each observation as its own cluster

Progressively merge the most similar pairs

Continue until all observations belong to a single cluster

The result is a dendrogram showing the hierarchy of merges.
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Agglomerative Process: Initial State
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Initial Singleton Clusters

Each observation starts as its own singleton cluster.
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Agglomerative Process: First Merge
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First Merge Step

First merge combines the two most similar points, beginning the dendrogram.
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Agglomerative Process: Progressive Merging
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Merge Step 5

Additional merges form larger clusters, extending the hierarchy.
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Building the Dendrogram Structure
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Merge Step 6

Higher merges correspond to greater dissimilarity between joined clusters.
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Complete Dendrogram Reveals Hierarchy
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Final Dendrogram

Completed dendrogram shows hierarchical relationships between all clusters.
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Understanding Dendrograms
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Hierarchical Clustering Dendrogram

Tree structure encodes the sequence and distance of cluster merges.
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Cutting Dendrograms to Create Clusters
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Dendrogram with High Cutting Threshold (Few Clusters)

High cut produces few, large clusters.
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Low Cuts Produce Many Clusters
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Dendrogram with Low Cutting Threshold (Many Clusters)

Low cut creates many small, fine-grained clusters.
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Single Linkage: Nearest Points
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Single linkage connects clusters at their nearest points, prone to chaining.
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Complete Linkage: Farthest Points
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Clusters with Complete Linkage

Complete linkage uses maximum distance, creating compact, similar-sized clusters.
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Ward’s Method: Minimizing Variance
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Clusters with Ward Linkage

Ward’s method minimizes within-cluster variance, producing tight, homogeneous
clusters.
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Linkage Methods Affect Cluster Structure

Different linkage methods define inter-cluster distance differently:

Single Linkage: Distance between nearest points

d(Ci ,Cj) = min
x∈Ci ,y∈Cj

d(x, y)

Complete Linkage: Distance between farthest points

d(Ci ,Cj) = max
x∈Ci ,y∈Cj

d(x, y)

Ward’s Method: Based on variance increase from merging
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Agglomerative Clustering: Bottom-Up Approach

Hierarchical agglomerative clustering builds clusters progressively:

Start with each observation as its own cluster

Progressively merge the most similar pairs

Continue until all observations belong to a single cluster

The result is a dendrogram showing the hierarchy of merges.
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Agglomerative Hierarchical Algorithm

Algorithm: Agglomerative Hierarchical Clustering
Input: Dataset X = {x1, x2, ..., xn}, distance function d(·, ·)
Output: Hierarchical cluster structure (dendrogram)

1 Initialize singleton clusters Ci = {xi} for i = 1...n

2 Calculate distance matrix D where Dij = d(Ci ,Cj)

3 For t = 1 to n − 1:

Find (i , j) = argmini,j Dij with minimum distance
Merge Ci and Cj into new cluster Cnew

Record merge and distance for dendrogram
Remove rows/columns i , j from matrix D
Calculate distances from Cnew to other clusters
Add Cnew to distance matrix D

4 Return dendrogram of cluster hierarchy
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Agglomerative Process: Initialization
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Initial Singleton Clusters

Each observation starts as its own singleton cluster.
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Agglomerative Process: First Merge
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First Merge Step

First merge combines the two most similar points, beginning the dendrogram.
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Agglomerative Process: Progressive Merging
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Merge Step 5

Additional merges form larger clusters, extending the hierarchy.
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Building the Dendrogram Structure
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Merge Step 6

Higher merges correspond to greater dissimilarity between joined clusters.
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Complete Dendrogram Reveals Hierarchy
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Final Dendrogram

Completed dendrogram shows hierarchical relationships between all clusters.
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Understanding Dendrograms
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Hierarchical Clustering Dendrogram

Tree structure encodes the sequence and distance of cluster merges.
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Cutting Dendrograms to Create Clusters
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Dendrogram with High Cutting Threshold (Few Clusters)

High cut produces few, large clusters.
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Low Cuts Produce Many Clusters
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Dendrogram with Low Cutting Threshold (Many Clusters)

Low cut creates many small, fine-grained clusters.
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Single Linkage: Nearest Points
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Clusters with Single Linkage

Single linkage connects clusters at their nearest points, prone to chaining.
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Complete Linkage: Farthest Points
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Clusters with Complete Linkage

Complete linkage uses maximum distance, creating compact, similar-sized clusters.
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Ward’s Method: Minimizing Variance
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Clusters with Ward Linkage

Ward’s method minimizes within-cluster variance, producing tight, homogeneous
clusters.
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Linkage Methods Affect Cluster Structure

Different linkage methods define inter-cluster distance differently:

Single Linkage: Distance between nearest points

d(Ci ,Cj) = min
x∈Ci ,y∈Cj

d(x, y)

Complete Linkage: Distance between farthest points

d(Ci ,Cj) = max
x∈Ci ,y∈Cj

d(x, y)

Ward’s Method: Based on variance increase from merging
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Multiple-Choice Questions

Question 1

What does a PCA biplot display?

A) Only the observations plotted on the first two principal components

B) Only the principal components of the variables, with arrows representing the
observations

C) Both the observations (as points) and the original variables (as arrows) in the
same principal-component space

D) Only the variables plotted as arrows on the PC axes

E) A heatmap of variable loadings across all PCs

Gioele La Manno BIOENG-210 / LECTURE 11 May 2025 69 / 74



Multiple-Choice Questions

Question 2

Which graphical tool helps determine the optimal number of principal components by
plotting eigenvalues against their component index?

A) Biplot

B) Parallel coordinates plot

C) Scree plot

D) Loading plot

E) Heatmap of scores
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Multiple-Choice Questions

Question 3

What is the main objective function minimized by the k-means clustering algorithm?

A) Total pairwise distances between all points

B) Between-cluster variance

C) Within-cluster sum of squared distances from cluster centroids (WCSS)

D) L1 distance from the global mean

E) Maximum distance between clusters
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Multiple-Choice Questions

Question 4

Why might hierarchical clustering be preferred over k-means when analyzing biological
data with unknown grouping structure?

A) It always runs faster than k-means for large datasets

B) It reveals relationships at multiple granularities without pre-specifying the number
of clusters

C) It always produces spherical clusters

D) It requires fewer computational resources

E) It guarantees optimal cluster separation
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Multiple-Choice Questions

Question 5

In biological data analysis, when should you prefer clustering over classification with
pre-defined labels?

A) When predicting known disease outcomes from gene expression data

B) When assigning samples to established experimental conditions

C) When validating a diagnostic test against known disease status

D) When discovering novel cell types or patient subtypes without prior knowledge of
categories

E) When replicating published gene expression signatures
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Multiple-Choice Questions

Question 6

What is a dendrogram?

A) A statistical representation of dendrites in neurons

B) A tree diagram showing the hierarchical relationship between data points through
successive merges

C) A cladistics representation useful in biological data analysis

D) A graphical display of the branching structure of blood vessel networks in medical
imaging

E) A statistical plot showing the spread of data across population branches
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