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Principal Component Analysis - Part 2

PCA as Dimensionality Reduction

PCA enables dimensionality reduction by projecting data onto the first k principal
components:

x® = U,z v/
Where Uy, Xg, and V contain only the first k columns/entries.

The Eckart-Young theorem guarantees this is the best rank-k approximation in terms

of minimizing the squared Frobenius norm || X. — X k)H2

The proportion of variance explained by the first k principal components is:

k 2 k .
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Proportion of variance explained =
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Principal Component Analysis - Part 2

Proportion of Variance Explained

The proportion of variance explained measures how much of the total data variation is
captured by the first k principal components:

k
Proportion of variance explained = E’p:ii\:
i=
This metric helps determine how many principal components to retain:
m Often visualized as a scree plot or cumulative variance plot
m Common thresholds: retain components explaining 80-90% of variance
m Alternatively, look for an "elbow” in the scree plot where additional components

add minimal explanation
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Principal Component Analysis - Part 2

Rank-k Approximations of the Data Matrix

Original data matrix (top left) and its low-rank approximations: rank-1 (top right),
rank-2 (bottom left), and rank-5 (bottom right). Note how adding components
progressively captures more structure.
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Principal Component Analysis - Part 2

Using Scree Plots to Determine Dimensionality

Scree Plot

——~ Kaiser's rule threshold (avg = 0.18)

Elbow point

Eigenvalue

i 3‘ g % é 1‘1 1‘3 1‘5 1‘7 1‘9
Principal Component
A scree plot displays eigenvalues in descending order. The "elbow” where the curve
levels off suggests how many components to retain.
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Principal Component Analysis - Part 2

Cumulative Variance Explained

Cumulative Explained Variance

1004 ~=- 80% threshold
90% threshold

90% variance: 6 components
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80% variance: 4 components
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Cumulative Variance Explained (%)
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Number of Components
Cumulative proportion of variance explained as components are added. A common
heuristic is to retain enough components to explain 80-90
May 2025 6 /74



Principal Component Analysis - Part 2

The Shape of Your Data: Geometric Intuition

PCA provides geometric intuition about data structure through eigenvalue patterns:

m Spherical data: All eigenvalues approximately equal - no preferred directions

m Disk-shaped data: Two dominant eigenvalues with similar magnitude - data
concentrated in a plane

m Cigarette-shaped data: One dominant eigenvalue much larger than others -
data elongated along a single direction

® Rugby ball-shaped data: Smoothly decreasing sequence of eigenvalues -
complex, multi-factorial variation

This geometric language provides an intuitive way to discuss high-dimensional data
structure.
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Principal Component Analysis - Part 2

Interpreting Principal Components
Principal components represent "latent factors” that explain patterns of variation:
Each principal component is a linear combination of the original variables:

P
PC,' = ZV,J)@

j=1

The challenge in interpretation comes from:
m Loadings having both positive and negative values

m Observations having both positive and negative coordinates

A component doesn't simply represent presence/absence of a biological process, but
rather contrasting patterns - for example, high expression of proliferation genes and
low expression of differentiation genes versus the opposite pattern.
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Principal Component Analysis - Part 2

Loadings of the First Principal Component

Gene-392

Loadings of Principal Component 1

—— Positive loading
0.150 — Negative loading

Loading value on PC1

Genes (sorted by absolute loading) Gene_501
Gene_969

Loadings of PC1, with genes sorted by magnitude. Positive loadings (red) and negative

loadings (blue) show which genes drive variation along this component in opposite
directions.
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Principal Component Analysis - Part 2

Loadings of the Second Principal Component

ene-39% Loadings of Principal Component 2

—— Positive loading
—— Negative loading

Loading value on PC2

-0.05

-0.10

Genes (sorted by absolute loading) ‘G’::Z-:;z

Loadings of PC2. The different pattern compared to PC1 indicates this component
captures a distinct axis of variation in the data.
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Principal Component Analysis - Part 2

Biplot of Gene Expression Data

Biplot of Gene Expression Data

Cell Types
o Ty
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© TypeD
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Tp53

PC2 (23.8%)

-100

PCL(51.1%)

Biplot of gene expression data. Points represent cells, while arrows show genes. This
visualization reveals which genes drive the separation between cell groups.
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Principal Component Analysis - Part 2

Biplots: Visualization of Observations and Variables

A biplot displays both observations and variables in the same principal component
space:
m Points represent observations (e.g., cells)
m Arrows represent variables (e.g., genes), with direction and length indicating
loadings
Construction:
m Observations: Plot the principal component scores (elements of U - X)
m Variables: Represent as arrows with coordinates determined by loadings (elements
of V)

Interpretation:
m Observations positioned in direction of a particular variable arrow tend to have
high values for that variable
m Length of variable arrows indicates how well that variable is represented in the
displayed components
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Biplot of Metabolomics Data

Biplot of Metabolomics Data
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Biplot of metabolomics data. Reflecting the distinct correlation structure in
metabolomic measurements.
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Principal Component Analysis - Part 2

Practical Considerations and Limitations

Despite its power and elegance, PCA has several limitations to consider:

m Sensitivity to scaling: Results depend crucially on variable scales. Variables with
larger scales dominate the first components regardless of importance.
Standardization (scaling to unit variance) is often used to address this.

m Sensitivity to outliers: As a least-squares method, PCA can be heavily
influenced by outliers. Robust variants exist to address this issue.

m Interpretation challenges: Principal components are linear combinations of all
original variables, which can make biological interpretation difficult.

Understanding these limitations helps ensure appropriate application of PCA in
biological data analysis.
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Clustering

From Continuous Variation to Discrete Groups

When we apply PCA to biological data, we often observe that individual data points
naturally organize into distinct groups in the reduced dimensional space.

This clustering pattern suggests underlying biological structure:
m Discovering novel cell types in single-cell data
m Ildentifying patient subtypes with different disease prognoses

m Finding functional modules in gene regulatory networks

Clustering formalizes this process of identifying these groups objectively.
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Clustering

Clustering Patterns Emerge from PCA

PCA of Gene Expression Data
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Principal Component 1

Natural clusters emerge in PCA space, showing distinct cancer subtypes (red)
separated from normal samples (blue).
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The Data Matrix Reveals Cluster Structure

Gene Expressi

jon Heatmap Clustered by Type
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The same data as a heatmap: distinct expression patterns define different groups.

Sampl
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Clustering

Clustering as Optimization

Clustering finds a partition of data that minimizes an objective function J(C),
balancing two competing goals:

m Intra-cluster similarity: Observations within the same cluster should be similar

m Inter-cluster dissimilarity: Observations in different clusters should be dissimilar

Definition (Clustering as Optimization)

A clustering is a partition C = {C1, Gy, ..., C¢} that minimizes:

C* = argmin J(C) (1)
c
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Clustering

Distance Matrices Visualize Cluster Quality

Distance Matrix (Random Order)

Samples
Distance

Samples

Distance matrix with random ordering shows no obvious structure.
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Clustering

Clusters Reveal Structure in Distance Matrices

Distance Matrix (Sorted by Clusters)

20
Inter cluster
dlstances

Intra-cluster
distances

Distance

Samples

Same data sorted by clusters: small intra-cluster distances (red boxes), large
inter-cluster distances (blue boxes).
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Clustering

Clustering: There’s No Single " Right” Answer

Algorithm/Metric selected with Domain Knowledge

154 ® Clusterl
® Cluster2
® Cluster3
® Cluster4

10 ® Clusters

~
€
g
g 5
£
S L )
g 8
Q
S 0 o’ °
= [ ]
&
4 e
5 °
[ ]
o o®
—~104
T T T T T T
-10 =5 0 5 10 15

Principal Component 1

The "true" clustering based on domain knowledge: 5 distinct groups.
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Clustering

Different Algorithms Give Different Results

Clustering with Fixed Number of Clusters (k=3)
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Principal Component 1

Same data with clustering forced to 3 groups: merges related cancer types.
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Clustering

Algorithm Assumptions Matter

Clustering with Spherical Cluster Assumption (GMM)

154 ® Cluster1
® Cluster2
Cluster 3
Cluster 4
10 Cluster 5
~ ® Cluster 6
2 ® Cluster7
5]
g 5]
£
o
6]
2
2 0 [) [ ]
E (]
<
a
(] ..
_5 °
[ ]
o o®
~104
T T T T T T
-10 -5 0 5 10 15

Principal Component 1

Method assuming spherical clusters: misses the natural structure completely.
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Two Major Clustering Approaches

Partition-based methods (like k-means):
m Divide data into predetermined number of clusters
m Each observation belongs to exactly one cluster

m Good when expected number of groups is known

Hierarchical agglomerative methods:
m Create nested sequence of partitions
m Reveal relationships at different scales through dendrograms

m Good when natural number of clusters is unclear
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Clustering

Partition-based Clustering Provides Flat Structure

Partition-based Clustering (K-means)
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K-means clustering partitions data into exactly k groups without hierarchy.
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Clustering

Hierarchical Clustering Reveals Relationships

Hierarchical Clustering Dendrogram
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Dendrogram shows how clusters merge, providing insight into relationships.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means: Minimizing Within-Cluster Variance
K-means partitions data into k clusters by minimizing the within-cluster sum of squares:

k

JO) =D > lx—pl? ()

i=1 xeC;

where p; is the centroid (mean) of cluster C;.

This ensures points within each cluster are as close as possible to their cluster’s center.
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The K-Means Algorithm

K-means alternates between two key steps:

Assignment Step: Assign each observation to the nearest cluster centroid

Update Step: Recalculate cluster centroids as the mean of assigned points

This iterative process continues until the algorithm converges.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means Algorithm

Algorithm: K-Means Clustering

Input: Dataset X' = {x1, X2, ..., X,}, number of clusters k

Output: Clusters G, Gy, ..., Cx and centroids puq, fto, ..., pby
Initialize centroids w1, is, ..., i (e.g., randomly)

Repeat until convergence:
m Assignment step: Assign each observation x; to cluster C; where:

i= argmin |[x; — ||
ie{l,...,k}

m Update step: Recalculate each centroid as the mean of its assigned points:

Return cluster assignments Cy, Gy, ..., C¢ and final centroids puq, to, ..., t
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means: Initial Random Centroids

K-means: Initial Centroids
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Feature 1

Algorithm starts with randomly chosen centroid locations.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means: First Assignment Step

K-means: Assignment Step (Iteration 1)

Feature 2

Feature 1
Each point is assigned to its nearest centroid, creating Voronoi regions.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means: Second Assignment Step

K-means: Assignment Step (Iteration 2)
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Centroids are updated to cluster means, changing point assignments.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means: Approaching Convergence

Feature 2

K-means: Assignment Step (Iteration 4)
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After several iterations, cluster assignments stabilize.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

K-Means Creates Voronoi Regions

Voronoi Regions with Initial Centroids
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Feature 1

Initial Voronoi tessellation divides space based on proximity to centroids.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

Voronoi Regions Evolve with Convergence

Voronoi Regions after K-means Convergence
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Final regions reflect the optimal partition of the data space.
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Choosing k: The Challenge of Unknown Group Numbers

Determining the appropriate number of clusters, k, requires balancing:

m Domain knowledge: Expected cell types, disease stages
m Model selection: Avoid over- or under-clustering

m Stability: Consistent results across multiple runs

The silhouette score provides a quantitative measure of cluster quality.
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The Silhouette Score: Measuring Cluster Quality

For each observation, the silhouette coefficient compares inter- and intra-cluster
distances:

b(i)—a(i)
() = axia(). b(7] G)

where:
m a(/): average distance to points in same cluster

m b(i): average distance to points in nearest neighboring cluster

Values range from -1 (wrongly clustered) to +1 (well-clustered).
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Clustering ® § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=2

Silhouette analysis for KMeans clustering with n_clusters = 2

The silhouette plot for the various clusters
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With two clusters, most points have positive silhouette values.
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Clustering @ § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=3

Silhouette analysis for KMeans clustering with n_clusters = 3

The silhouette plot for the various clusters The visualization of the clustered data
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Three clusters show one problematic cluster with negative values.
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Clustering ® § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=4

Silhouette analysis for KMeans clustering with n_clusters = 4

The silhouette plot for the various clusters The visualization of the clustered data
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Four clusters reveal better-defined groups with higher scores.
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Clustering ® § K-Means Clustering: A Foundational Algorithm

Silhouette Analysis for k=5

Silhouette analysis for KMeans clustering with n_clusters =5

The silhouette plot for the various clusters The visualization of the clustered data
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Five clusters maintain high silhouette scores and balanced group sizes.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Clustering: Bottom-Up Approach

Hierarchical agglomerative clustering builds clusters progressively:

m Start with each observation as its own cluster
m Progressively merge the most similar pairs

m Continue until all observations belong to a single cluster

The result is a dendrogram showing the hierarchy of merges.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Initial Singleton Clusters
Points in Euclidean Space

Agglomerative Process: Initial State
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Each observation starts as its own singleton cluster.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Process: First Merge

First Merge Step
Points in Euclidean Space
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First merge combines the two most similar points, beginning the dendrogram.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Process: Progressive Merging

Merge Step 5
Points in Euclidean Space

L) '
o
.
o

P o’
o’

B

o2
!0
7
2 5 S
5d o
3 H 3 3 ) 7 7 ;
Feature 1
Dendrogram

1

0
g
-3

,

Data Points

Additional merges form larger clusters, extending the hierarchy.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Building the Dendrogram Structure

Merge Step 6
Points in Euclidean Space
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Higher merges correspond to greater dissimilarity between joined clusters.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Complete Dendrogram Reveals Hierarchy

Final Dendrogram
Points in Euclidean Space
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Completed dendrogram shows hierarchical relationships between all clusters.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Understanding Dendrograms

Hierarchical Clustering Dendrogram
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Tree structure encodes the sequence and distance of cluster merges.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Cutting Dendrograms to Create Clusters

Dendrogram with High Cutting Threshold (Few Clusters)

Coe Lol

High cut produces few, large clusters.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Low Cuts Produce Many Clusters

Dendrogram with Low Cutting Threshold (Many Clusters)
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Low cut creates many small, fine-grained clusters.
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Clustering e § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Single Linkage: Nearest Points

Hierarchical Clustering Dendrogram
(Single Linkage)
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Feature 1

Single linkage connects clusters at their nearest points, prone to chaining.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Complete Linkage: Farthest Points

Distance

Feature 2

Hierarchical Clustering Dendrogram
(Complete Linkage)

Sample Index

Clusters with Complete Linkage
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Feature 1

Complete linkage uses maximum distance, creating compact, similar-sized clusters.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Ward’s Method: Minimizing Variance

Feature 2

Hierarchical Clustering Dendrogram
(Ward Linkage)

Sample Index
Clusters with Ward Linkage
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Feature 1

Ward's method minimizes within-cluster variance, producing tight, homogeneous

clusters.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Linkage Methods Affect Cluster Structure

Different linkage methods define inter-cluster distance differently:

Single Linkage: Distance between nearest points

d(Cl" Cj) = Xeg,-],lynECj d(X, y)

Complete Linkage: Distance between farthest points

(G, G) =, max dlxy)
i j

Ward’s Method: Based on variance increase from merging
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Clustering: Bottom-Up Approach

Hierarchical agglomerative clustering builds clusters progressively:

m Start with each observation as its own cluster
m Progressively merge the most similar pairs

m Continue until all observations belong to a single cluster

The result is a dendrogram showing the hierarchy of merges.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Hierarchical Algorithm

Algorithm: Agglomerative Hierarchical Clustering
Input: Dataset X = {xy, x2, ..., X}, distance function d(-,-)
Output: Hierarchical cluster structure (dendrogram)

Initialize singleton clusters C; = {x;} for i = 1...n

Calculate distance matrix D where D;; = d(C;, G;)
Fort=1ton—1:

m Find (i, /) = argmin; ; D;; with minimum distance

m Merge C; and C; into new cluster Cpey

m Record merge and distance for dendrogram

m Remove rows/columns i, j from matrix D

m Calculate distances from C,e,, to other clusters
Add C,e, to distance matrix D

Return dendrogram of cluster hierarchy
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Initial Singleton Clusters
Points in Euclidean Space

Agglomerative Process: Initialization
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Each observation starts as its own singleton cluster.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Process: First Merge

First Merge Step
Points in Euclidean Space
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First merge combines the two most similar points, beginning the dendrogram.
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Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Agglomerative Process: Progressive Merging

Merge Step 5
Points in Euclidean Space
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Additional merges form larger clusters, extending the hierarchy.

Gioele La Manno May 2025

59 / 74



Clustering @ § Agglomerative Hierarchical Clustering: Building Cluster Hierarchies

Building the Dendrogram Structure

Merge Step 6
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Higher merges correspond to greater dissimilarity between joined clusters.
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Complete Dendrogram Reveals Hierarchy

Final Dendrogram
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Completed dendrogram shows hierarchical relationships between all clusters.
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Understanding Dendrograms

Hierarchical Clustering Dendrogram

8 100
s
s0
15 L_’;-LE@H J;

Sample Index

Tree structure encodes the sequence and distance of cluster merges.
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Cutting Dendrograms to Create Clusters

Dendrogram with High Cutting Threshold (Few Clusters)

Coe Lol

High cut produces few, large clusters.
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Low Cuts Produce Many Clusters

Dendrogram with Low Cutting Threshold (Many Clusters)
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Low cut creates many small, fine-grained clusters.
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Single Linkage: Nearest Points

Hierarchical Clustering Dendrogram
(Single Linkage)
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Feature 1

Single linkage connects clusters at their nearest points, prone to chaining.
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Complete Linkage: Farthest Points

Distance

Feature 2

Hierarchical Clustering Dendrogram
(Complete Linkage)

Sample Index

Clusters with Complete Linkage
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Complete linkage uses maximum distance, creating compact, similar-sized clusters.
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Ward’s Method: Minimizing Variance

Feature 2

Hierarchical Clustering Dendrogram
(Ward Linkage)

Sample Index
Clusters with Ward Linkage
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Feature 1

Ward's method minimizes within-cluster variance, producing tight, homogeneous

clusters.
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Linkage Methods Affect Cluster Structure

Different linkage methods define inter-cluster distance differently:

Single Linkage: Distance between nearest points

d(Cl" Cj) = Xeg,-],lynECj d(X, y)

Complete Linkage: Distance between farthest points

(G, G) =, max dlxy)
i j

Ward’s Method: Based on variance increase from merging
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Multiple-Choice Questions

Question 1

What does a PCA biplot display?
A) Only the observations plotted on the first two principal components

B) Only the principal components of the variables, with arrows representing the
observations

C) Both the observations (as points) and the original variables (as arrows) in the
same principal-component space

D) Only the variables plotted as arrows on the PC axes

E) A heatmap of variable loadings across all PCs

Gioele La Manno May 2025 69 / 74



Multiple-Choice Questions

Question 2

Which graphical tool helps determine the optimal number of principal components by
plotting eigenvalues against their component index?

A) Biplot
B
C
D
E

Parallel coordinates plot
Scree plot

Loading plot

)
)
)
)

Heatmap of scores
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Multiple-Choice Questions

Question 3

What is the main objective function minimized by the k-means clustering algorithm?
A) Total pairwise distances between all points

B) Between-cluster variance

)
C) Within-cluster sum of squared distances from cluster centroids (WCSS)
D) L1 distance from the global mean
)

E) Maximum distance between clusters
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Multiple-Choice Questions

Question 4

Why might hierarchical clustering be preferred over k-means when analyzing biological
data with unknown grouping structure?
A) It always runs faster than k-means for large datasets
B) It reveals relationships at multiple granularities without pre-specifying the number
of clusters
C) It always produces spherical clusters
D) It requires fewer computational resources

E) It guarantees optimal cluster separation
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Multiple-Choice Questions

Question 5

In biological data analysis, when should you prefer clustering over classification with
pre-defined labels?

A) When predicting known disease outcomes from gene expression data
) When assigning samples to established experimental conditions
C) When validating a diagnostic test against known disease status

When discovering novel cell types or patient subtypes without prior knowledge of
categories

E) When replicating published gene expression signatures
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Multiple-Choice Questions

Question 6

What is a dendrogram?
A) A statistical representation of dendrites in neurons

B) A tree diagram showing the hierarchical relationship between data points through
successive merges

C) A cladistics representation useful in biological data analysis
D) A graphical display of the branching structure of blood vessel networks in medical
imaging

E) A statistical plot showing the spread of data across population branches
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