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École Polytechnique Fédérale de Lausanne (EPFL)

School of Life Science (SV)

April 2025

EPFL - BMI - UPLAMANNO

Gioele La Manno BIOENG-210 / LECTURE 10



Contents

1 The Multivariate Normal Distribution
2 Principal Component Analysis (PCA)
3 Multiple-Choice Questions

Gioele La Manno BIOENG-210 / LECTURE 10 April 2025 1 / 40



The Multivariate Normal Distribution

Gioele La Manno BIOENG-210 / LECTURE 10 April 2025

The Multivariate Normal
Distribution



The Multivariate Normal Distribution

From Bivariate to Multivariate Analysis

In our journey through statistical methods, we’ve progressively increased complexity:

From univariate distributions describing single variables like gene expression levels...
To bivariate distributions examining relationships between pairs of variables...
To regression exploring how multiple predictors inform a single outcome.

Now we take a bold step into multivariate analysis, where we consider many variables
simultaneously without designating any specific variable as an outcome.

This marks our entry into unsupervised learning methods - approaches that help us
discover patterns and structure without predefined target variables.
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The Multivariate Normal Distribution

The Multivariate Normal Distribution: Definition

The multivariate normal extends the normal distribution to multiple dimensions:

Definition (Multivariate Normal Distribution)

A random vector X = (X1,X2, . . . ,Xp)
T follows a p-dimensional multivariate normal

distribution, denoted X ∼ Np(µ,Σ), if its probability density function is:

f (x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Where:

µ is the mean vector

Σ is the covariance matrix
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The Multivariate Normal Distribution

From Bivariate to Multivariate Normal: Matrix Form

The bivariate normal distribution with correlation ρ is typically written as:

f (x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

])
We can rearrange the exponent into matrix form:

−1

2

(
x1 − µ1 x2 − µ2

)( 1
(1−ρ2)σ2

1

−ρ
(1−ρ2)σ1σ2

−ρ
(1−ρ2)σ1σ2

1
(1−ρ2)σ2

2

)(
x1 − µ1

x2 − µ2

)
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The Multivariate Normal Distribution

From Bivariate to Multivariate Normal: Matrix Form (2/2)

This matches the form −1
2(x− µ)TΣ−1(x− µ), where:

Σ−1 =
1

1− ρ2

(
1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

)

We can find Σ by computing the inverse of Σ−1. First, let’s calculate the determinant
of Σ−1:

det(Σ−1) =
1

(1− ρ2)2

(
1

σ2
1

· 1

σ2
2

− ρ2

σ2
1σ

2
2

)
=

1

(1− ρ2)σ2
1σ

2
2

Now we can calculate Σ using the formula for the inverse of a 2× 2 matrix:

Σ = (1− ρ2)σ2
1σ

2
2

(
1
σ2
2

ρ
σ1σ2

ρ
σ1σ2

1
σ2
1

)
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The Multivariate Normal Distribution

From Bivariate to Multivariate Normal: Matrix Form (3/3)

Simplifying, we get:

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
This reveals that Σ is indeed the covariance matrix where:

Diagonal elements are variances σ2
1 and σ2

2

Off-diagonal elements are covariances, expressed as ρσ1σ2

The determinant is |Σ| = σ2
1σ

2
2(1− ρ2), which completes the transformation to the

standard multivariate normal form:

f (x) =
1

2π|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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The Multivariate Normal Distribution

The Covariance Matrix: Encoding Relationships

The covariance matrix Σ captures both the spread of individual variables and their
interrelationships:

Σ =


σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σ2
p


Diagonal elements σ2

i = Var(Xi ) represent variable variances

Off-diagonal elements σij = Cov(Xi ,Xj) represent covariances
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The Multivariate Normal Distribution

Important Special Cases of Covariance Matrices

Identity Covariance Matrix
When Σ = I, we have the standard multivariate normal with unit variances and
uncorrelated variables:

Σ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


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The Multivariate Normal Distribution

Important Special Cases of Covariance Matrices

The resulting density has spherical contours in p-dimensional space.
Diagonal Covariance Matrix When off-diagonal elements are zero, variables are
uncorrelated but may have different variances.

Σ =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

p


The resulting density has ellipsoidal contours, with axes aligned with the coordinate
axes.
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The Multivariate Normal Distribution

Block Diagonal Covariance Structure

Block Diagonal Covariance Matrix A block diagonal structure indicates groups of
correlated variables that are uncorrelated with variables in other groups:

Σ =


A 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · C


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The Multivariate Normal Distribution

Example (Gene Expression Modules)

In single-cell RNA sequencing, we might observe:

Σ =

(
Σcell cycle 0

0 Σmetabolism

)
This indicates that cell cycle genes covary with each other but not with metabolism
genes.
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The Multivariate Normal Distribution

Visualizing the Multivariate Normal Distribution
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The Multivariate Normal Distribution

Visualizing the Multivariate Normal Distribution
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The Multivariate Normal Distribution

Covariance Estimation in High Dimensions
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The Multivariate Normal Distribution

Flipping the Matrix: Two Views of Data

Let’s look at data matrix X ∈ Rn×p (n cells, p genes) from two perspectives:

We can compute two types of covariance matrices:

Covariance between features (genes):

Σ̂ =
1

n − 1
XT

c Xc

Covariance between observations (cells):

Σ̂obs =
1

p − 1
Xc ′X

T
c ′

Each perspective reveals different aspects of the data structure: how genes relate to
each other versus how cells relate to each other.
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The Multivariate Normal Distribution

Covariance of Features vs. Observations
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The Multivariate Normal Distribution

Geometry of the Multivariate Normal

The level sets of a multivariate normal are ellipsoids characterized by the covariance
matrix’s eigendecomposition:

The eigenvalues λi of Σ determine the lengths of the semi-axes of the ellipsoid

Specifically, the i-th semi-axis has length
√
λi

The eigenvectors of Σ determine the orientation of the ellipsoid

Sorting eigenvalues in descending order gives the principal axes of variation in the data,
from most important to least important.
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The Multivariate Normal Distribution

Ellipsoids with Eigenvectors and Eigenvalues

Eigenvectors (colored arrows)
show principal directions;
eigenvalues determine axis

lengths.

Elongated ellipsoid with one
dominant eigenvector (red).
Most variation occurs along a

single direction.
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The Multivariate Normal Distribution

Interpretation: Principal Components

The eigendecomposition of the covariance matrix provides the principal components of
the data:

Σvi = λivi where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0

The first principal component v1 is the direction of maximum variance

Each subsequent component is orthogonal to previous ones and captures the next
most variance

The eigenvalues λi represent the amount of variance explained by each component

Mathematically, the first principal component is:

v1 = argmax
∥v∥=1

Var(vTX)
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The Multivariate Normal Distribution

Principal Components in 3D Data

Data with two dominant directions of vari-
ation forming a disk-like shape.

Elongated data where one principal compo-
nent (red arrow) captures most variation.
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The Multivariate Normal Distribution

Analysis of Eigenvalues

The eigenvalues of the covariance matrix reveal the underlying structure of the data:

Eigenvalues represent variance along principal directions

Sorted eigenvalues (λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0) show how variance is distributed

The rank of the covariance matrix equals the number of non-zero eigenvalues

The distribution of eigenvalues characterizes the ”shape” of data in
high-dimensional space

By examining eigenvalue patterns, we can determine whether data shows spherical,
disk-like, elongated, or more complex structure.
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The Multivariate Normal Distribution

Eigenvalues of Different Covariance Structures
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Eigenvalues of an Elongated Distribution

Disk-shaped distribution: two eigenvalues
have similar magnitude.

Elongated distribution: one or few eigenval-
ues are substantially larger, indicating dom-
inant directions of variation.
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The Multivariate Normal Distribution

Eigenvalues of Low-Rank Covariance Matrices
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Eigenvalues of a Rank 3 Covariance Matrix
Rank Cutoff

Rank 10 covariance matrix: first 10 eigen-
values are non-zero, suggesting 10 underly-
ing factors explain all variation.

Rank 3 covariance matrix: only 3 non-zero
eigenvalues, indicating just 3 latent factors
drive all variation.

Gioele La Manno BIOENG-210 / LECTURE 10 April 2025 23 / 40



Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

An Anticipation: Beyond Pairwise Analysis

Traditional data exploration often relies on pairwise scatter plots:

Variables vs. variables (e.g., gene expression levels)

Observations vs. observations (e.g., cell similarity)

But what if we could get a more global view by transforming the data into a more
revealing coordinate system?

Principal Component Analysis transforms high-dimensional data into a coordinate
system where axes (principal components) are ordered by importance, revealing global
structure that pairwise comparisons might miss.
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Principal Component Analysis (PCA)

Pairwise Scatter Plots of Genes
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Each pairwise comparison reveals only a fragment of the data’s structure. While
informative, we’re only seeing two dimensions of our high-dimensional data at once,
missing the global picture.
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Principal Component Analysis (PCA)

Scatter Plots of Cells
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We can also compare pairs of cells, where points represent genes. This provides a
different perspective but is still limited to examining two cells at a time.
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Principal Component Analysis (PCA)

PCA Provides a Global View
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PCA plot of cells, where each point is a cell and axes represent principal components.
Notice how cells form distinct clusters that weren’t apparent in pairwise gene plots.
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Principal Component Analysis (PCA)

PCA Also Works for Variables
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PCA plot of genes, where each point is a gene. Genes with similar expression patterns
across cells cluster together, revealing functional relationships.
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Principal Component Analysis (PCA)

From Eigendecomposition to PCA

While the eigendecomposition of the covariance matrix provides theoretical insight,
practical computation of PCA faces challenges:

Computing and storing the full p × p covariance matrix can be memory-intensive

When p > n (more variables than observations), the sample covariance matrix is
singular

Numerical stability issues can arise with ill-conditioned matrices

These practical challenges motivate us to use Singular Value Decomposition (SVD)
instead, which works directly with the data matrix rather than the covariance matrix.
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Principal Component Analysis (PCA)

Singular Value Decomposition (SVD)

For our centered data matrix Xc ∈ Rn×p, the SVD gives us:

Xc = UΣVT

Where:

U ∈ Rn×n contains the left singular vectors

Σ ∈ Rn×p has singular values σ1 ≥ σ2 ≥ · · · ≥ 0 on the diagonal

V ∈ Rp×p contains the right singular vectors

This decomposition works directly with the data matrix, avoiding the need to form the
covariance matrix explicitly.
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Principal Component Analysis (PCA)

Eigendecomposition vs SVD

A

n × n =

Q
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Eigendecomposition (symmetric square matrices)

Xc
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U
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VT

p × p

Singular Value Decomposition (any matrix)

Eigendecomposition: A square matrix is de-
composed into eigenvectors and eigenvalues.
Used for analyzing the covariance matrix.

SVD: Any matrix is decomposed into orthog-
onal matrices and singular values. Works di-
rectly with the data matrix.
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Principal Component Analysis (PCA)

Connection Between SVD and the Covariance Matrix
The SVD of the data matrix is directly connected to the eigendecomposition of the
covariance matrix:

Σ̂ =
1

n − 1
XT

c Xc (1)

=
1

n − 1
VΣTUTUΣVT (2)

= V(
1

n − 1
ΣTΣ)VT (3)

This reveals that:

The right singular vectors V are exactly the eigenvectors of the covariance matrix

The singular values σi relate to eigenvalues as λi = σ2
i /(n − 1)

SVD gives us principal components without explicitly forming the covariance matrix.
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Principal Component Analysis (PCA)

The Dual Nature of PCA: Variables and Observations

PCA reveals a fascinating duality between the variable space and observation space:

The right singular vectors V (columns of V) are eigenvectors of XT
c Xc

These describe directions in the variable space (e.g., ”metagenes”)
Coefficients are called ”loadings”: Loading of variable j on PC k = Vjk

The left singular vectors U (columns of U) are eigenvectors of XcXT
c

These describe directions in the observation space
Coordinates called ”PC scores”: PC score for observation i on PC k = Uik · σk
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Principal Component Analysis (PCA)

PC Coordinates as a Change of Basis
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3D scatterplot in original variable
space.

Data approximately forms a disk
embedded in 3D space.

Red arrows show the principal
components.
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Principal Component Analysis (PCA)

PC Coordinates as a Change of Basis
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3D Scatterplot in Principal Component Space

The same data viewed in the
principal component coordinate
system.

This change of basis reveals the
intrinsic 2D disk-like structure of
the data.
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Multiple-Choice Questions

Question 1

You run PCA on a dataset and obtain eigenvalues λ = [11, 7, 6, 3, 2, 1]. You decide to
retain the first three principal components. What proportion of the total variance is
explained by these three components?

A) 20%

B) 60%

C) 80%

D) 90%

E) None of the above
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Multiple-Choice Questions

Question 2

Based on the relative magnitudes of the eigenvalues λ = [11, 7, 6, 3, 2, 1], where the
first two are significantly larger than the rest but not exactly equal, what shape best
describes the multivariate data cloud?

A) Cigar-shaped

B) Disk-shaped

C) Spherical

D) Rugby-ball-shaped

E) None of the above
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Multiple-Choice Questions

Question 3

In PCA, what do the loadings represent?

A) The coefficients of the observations on each principal component

B) The coefficients of the original variables in each principal component

C) The correlations between observations

D) The eigenvalues associated with each principal component

E) The distances of observations from the global mean
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Multiple-Choice Questions

Question 4

You calculate the covariance matrix of your data and obtain the following 9×9
block-diagonal matrix (variables 1–3, 4–6, and 7–9 form independent blocks):

Σ =



10 9 8 0 0 0 0 0 0
10 10 5 0 0 0 0 0 0
6 10 5 0 0 0 0 0 0

0 0 0 9 2 1 0 0 0
0 0 0 11 7 1 0 0 0
0 0 0 1 9 9 0 0 0

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 2 5 4
0 0 0 0 0 0 7 1 9



How many blocks of correlated variables would you expect PCA to capture?

A) 1

B) 2

C) 3

D) 4

E) Cannot tell
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Multiple-Choice Questions

Question 5

Which of the following statements about PCA is FALSE?

A) The first principal component captures the maximum variance in the data

B) Principal components are orthogonal to each other

C) The number of principal components equals the number of original variables

D) PCA can increase the dimensionality of the data

E) Principal components are linear combinations of the original variables
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