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1 The Multivariate Normal Distribution

1.1 Introduction: From Bivariate to Multivariate Analysis

In our journey through statistical methods, we have progressively increased the complexity of our
models. We began with univariate distributions, describing single variables like gene expression
levels or cell sizes. We then moved to bivariate distributions, examining relationships between
pairs of variables. In regression analysis, we explored how multiple predictors could inform a single
outcome variable.

Now we take a bold step further into the realm of multivariate analysis, where we consider
many variables simultaneously without designating any specific variable as an outcome. This shift
marks the beginning of our exploration into unsupervised learning methods - approaches that help
us discover patterns and structure in data without predefined target variables.

Imagine a single-cell RNA sequencing experiment where thousands of genes are measured across
hundreds of cells. While regression might help us predict cell type based on gene expression pro-
files, multivariate analysis asks a different question: ”What is the intrinsic structure of this high-
dimensional data?” The answer to this question can reveal cellular states, developmental trajectories,
and functional groupings that we might not have known to look for.

The multivariate normal distribution serves as our theoretical foundation for this exploration,
just as the normal distribution formed the basis for much of our previous work.

1.2 Definition and Form

The multivariate normal distribution extends the familiar normal distribution to multiple dimen-
sions. Just as the normal distribution is characterized by its mean and variance, the bivariate
normal distribution is defined by its mean vector, two variances, and ρ (the correlation coefficient).
the multivariate normal is defined by two parameters: a mean vector µ and a covariance matrix Σ.

Definition 1.1 (Multivariate Normal Distribution). A random vector X = (X1, X2, . . . , Xp)
T fol-

lows a p-dimensional multivariate normal distribution, denoted X ∼ Np(µ,Σ), if its probability
density function is:

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where:

• µ = E[X] is the p-dimensional mean vector

• Σ = E[(X− µ)(X− µ)T ] is the p× p covariance matrix

• |Σ| is the determinant of Σ

This formulation may appear intimidating, but we can build intuition by examining special cases.
When p = 1, this reduces to the familiar univariate normal distribution. For p = 2, we recover the
bivariate normal distribution we studied earlier, where the covariance matrix encodes the correlation
between two variables.

Let’s show how the familiar bivariate normal formula with correlation coefficient ρ can be written
in the multivariate normal form:

Example 1.2 (From Standard to Matrix Form). The bivariate normal distribution is often written
as:

f(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

])
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We can derive the matrix form by starting with the standard form and working backward:

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

])
This exponent can be rearranged as:

−1

2

(
x1 − µ1 x2 − µ2

)( 1
(1−ρ2)σ2

1

−ρ
(1−ρ2)σ1σ2

−ρ
(1−ρ2)σ1σ2

1
(1−ρ2)σ2

2

)(
x1 − µ1

x2 − µ2

)
This is in the form − 1

2 (x− µ)TΣ−1(x− µ), where:

Σ−1 =
1

1− ρ2

(
1
σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

)

We can find Σ by computing the inverse of Σ−1. First, let’s calculate the determinant of Σ−1:

det(Σ−1) =
1

(1− ρ2)2

(
1

σ2
1

· 1

σ2
2

− ρ2

σ2
1σ

2
2

)
=

1

(1− ρ2)2
· 1− ρ2

σ2
1σ

2
2

=
1

(1− ρ2)σ2
1σ

2
2

Now we can calculate Σ using the formula for the inverse of a 2× 2 matrix:

Σ = (1− ρ2)σ2
1σ

2
2

(
1
σ2
2

ρ
σ1σ2

ρ
σ1σ2

1
σ2
1

)
Simplifying, we get:

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
This reveals that Σ is indeed the covariance matrix where:

• Diagonal elements are variances σ2
1 and σ2

2

• Off-diagonal elements are covariances, expressed as ρσ1σ2

The determinant of this matrix is |Σ| = σ2
1σ

2
2(1 − ρ2), which completes the transformation to

the multivariate normal form:

f(x) =
1

2π|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
We found an equivalent expression but in a more compact form where basically everything but

the normalizing constant is identical to the multivariate case.

1.3 The Covariance Matrix: Encoding Relationships

The covariance matrix Σ is the multivariate analog of variance. It captures not only the spread
of individual variables but also their interrelationships. For a p-dimensional random vector, Σ is a
p× p symmetric positive semidefinite matrix:

Σ =


σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σ2
p


where:
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• σ2
i = Var(Xi) is the variance of the i-th variable (diagonal elements)

• σij = σji = Cov(Xi, Xj) is the covariance between variables i and j (off-diagonal elements)

The covariance matrix contains all the information about the scale of variation in each dimension
and the associations between dimensions. When variables are uncorrelated, all off-diagonal elements
are zero, and the covariance matrix is diagonal.

1.3.1 Important Special Cases of Covariance Matrices

Several special forms of covariance matrices are particularly useful:

Property 1.3 (Identity Covariance Matrix). When Σ = I, we have:

Σ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


This represents a standard multivariate normal distribution where all variables have unit variance

and are uncorrelated (independent). The resulting density has spherical contours in p-dimensional
space.

Property 1.4 (Diagonal Covariance Matrix). When Σ = diag(s), where s = (s1, s2, . . . , sp):

Σ =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sp


This represents uncorrelated (independent) variables with possibly different variances. The re-

sulting density has ellipsoidal contours with axes aligned with the coordinate axes.

Property 1.5 (Block Diagonal Covariance Matrix). A block diagonal structure indicates groups of
correlated variables that are uncorrelated with variables in other groups:

Σ =


A 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · C


For example, with two blocks:

Σ =

(
A 0
0 B

)
This structure appears in biology when variables cluster into functional modules or pathways

that operate independently.

Example 1.6 (Gene Expression Modules). In single-cell RNA sequencing, we might observe a
covariance structure like:

Σ =

(
Σcell cycle 0

0 Σmetabolism

)
This indicates that cell cycle genes covary with each other but not with metabolism genes, and

vice versa. Such structure can reveal functional organization in biological systems.
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1.4 Visualizing MN Distributions

Let’s visualize the highest dimensional multivariate normal distribution we can visualize using con-
tours and a density map: the trivariate normal distribution.

(a) Trivariate normal distribution visualization - density

map

(b) Trivariate normal distribution visualization - con-

tours (level sets)

Figure 1: Trivariate normal distribution visualization

As we move beyond three dimensions, direct visualization becomes challenging. However, the
geometric principles remain the same.

1.5 MN Level Sets: Ellipsoids

You recall that level sets of the univariate normal distribution are simply points on a line, and for the
bivariate case, they are ellipses in a plane. in the multivariate normal distribution creates ellipsoids
in higher dimensions. Contours of equal density in p-dimensional space.

If you remember the lecture about the bivariate normal distribution, you probably can guess,
even if you never saw this formula that the formula for an ellipsoid can be expressed in linear algebra
as:

(x− xc)
TM−1(x− xc) = 1

with xc being the center of the ellipsoid and M determines the shape and orientation of the
ellipsoid. Note that M needs to be positive definite. Let’s remember the definition:

Definition 1.7 (Positive Definite Matrix). A symmetric matrix M is positive definite if for all
non-zero vectors x, the quadratic form xTMx > 0.

In other words if it does not have negative eigenvalues. Geometrically: it represents a transfor-
mation that does not ”flip the space”.

The basic correspondence is that µ is the center of the ellipsoid, and Σ−1 determines the shape
and orientation.
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(a) Ellipsoid with disk-like shape (b) Ellipsoid with elongated shape

Figure 2: Examples of Ellipsoids in 3D

2 Estimation in the Multivariate Normal

2.1 Sample Mean Vector and Covariance Matrix

Let’s consider a dataset of n observations, each a p-dimensional vector. Let’s assume a Multivariate
Normal distribution as a good model for our data. We want to estimate the parameters of this
distribution, specifically the mean vector µ and the covariance matrix Σ. The sample mean vector
and covariance matrix are the natural estimators for µ and Σ, respectively.

• The sample mean vector is:

µ̂ =
1

n

n∑
i=1

xi

• The sample covariance matrix is:

Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T

If we indicate the centered matrix Xc = X− µ̂, we can write it as:

Σ̂ =
1

n− 1
XT

c Xc

These estimators are unbiased and, when the data truly follow a multivariate normal distribution,
they are the maximum likelihood estimators (after adjusting the denominator in the covariance
formula from n− 1 to n).

2.2 Challenges in High Dimensions

While these estimators work well in low dimensions with ample data, they face significant challenges
in high-dimensional settings common in modern biology.
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When the number of variables p approaches or exceeds the sample size n, the sample covariance
matrix becomes ill-conditioned or singular, meaning its inverse (required for density calculations)
does not exist or is numerically unstable.

This phenomenon reflects the ”curse of dimensionality” - as dimensionality increases, the volume
of the space increases so rapidly that the available data becomes sparse. Definition:

Definition 2.1 (Curse of Dimensionality). The curse of dimensionality refers to various phenomena
that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-
dimensional settings. In particular, it describes the exponential increase in volume associated with
adding extra dimensions to a mathematical space, leading to sparsity of data points.

Estimating a full p × p covariance matrix correspond to estimating p(p + 1)/2 parameters (due
to symmetry), which means that a sample size of n must be larger than p(p + 1)/2 to ensure a
well-defined estimate.
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Figure 3: Covariance estimation in high dimensions

2.3 Flipping the matrix

Let’s take a step back and look at the data matrix X and question a bit the orientation we are using
it in. Say that X ∈ Rn×p, with n > p, the data matrix from a single-cell RNA-seq experiment, where
n is the number of cells (the number of observations) and p is the number of genes (the number of
variables). We could consider its transpose XT ∈ Rp×n, where now which are the observations and
which are the variables is flipped and, also here, we could chose a Multivariate Normal distribution
to model the data XT . In other words, instead of studying the covariance of the genes, we could
study the covariance of the cells.

Therefore, there are two ways to look at the data matrix X:

Σ̂ =
1

n− 1
XT

c Xc

Σ̂obs =
1

p− 1
Xc′X

T
c′

Where we have:

• Xc is the centered data matrix where each column is centered by subtracting the mean of that
column.

• Xc′ is the centered data matrix where each row is centered by subtracting the mean of that
row.
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(c) Covariance of observations

Figure 4: Covariance estimation in high dimensions

2.4 Geometry of the Multivariate Normal

We discussed level sets, let us study the level set with c = 1.
It is an ellipsoid with volume V =

√
|Σ|Vball where Vball is the volume of a unit ball in p

dimensions. But which ellipsoid? A simple way to characterize it is to be able to say something
about the major and minor axes of the ellipsoid.

Let’s consider the equation xTΣ−1x = 1. Recall that a semiaxis of the ellipsoid is defined as the
segment from the center to a point on the surface, along a direction that is preserved (only scaled,
not rotated) when transforming the ellipsoid back into a sphere.

From linear algebra this sounds familiar and is expressed by the equation Av = λv, which is the
eigenvalue equation. Recall also that the eigenvalues λi of Σ

−1 are the reciprocals of the eigenvalues
of Σ, and the eigenvectors vi of Σ

−1 are the same as those of Σ.
So we have gathered enough information to list two of important properties:

• The eigenvalues of Σ determine the lengths of the semi-axes of the ellipsoid. Specifically the
semi-axis i of the level set with c = 1 has length

√
λi, where λi is the i-th eigenvalue of Σ.

• The eigenvectors of Σ determine the orientation of the ellipsoid in p-dimensional space. Specif-
ically sorting the eigenvalues in descending order of eigenvalues gives the ordered semi-axes.

(a) Ellipsoid with eigenvectors and eigenvalues (b) Ellipsoid with eigenvectors and eigenvalues

Figure 5: Ellipsoid with eigenvectors and eigenvalues
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This is a powerful result because it allows us to understand the geometry of the multivariate
normal distribution in terms of its covariance structure. It is expecially useful when we have a
dataset in multiple dimensions and we want to understand the relationships between the variables.

2.5 Interpretation: Principal Components

The eigenvalues and eigenvectors of the covariance matrix Σ can be interpreted in terms of principal
components.

Σvi = λivi where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0

The principal components are the directions in which the data varies the most. The first principal
component corresponds to the direction of maximum variance, the second principal component is
orthogonal to the first and captures the second most variance, and so on.

v1 = argmax
∥v∥=1

Var(vTX)

The eigenvalues of the covariance matrix represent the amount of variance explained by each
principal component.

Variance explained by vi = λi

The eigenvectors represent the directions of these principal components in the original variable
space.

Total variance =

p∑
i=1

λi and Proportion explained by vi =
λi∑p
j=1 λj

This interpretation is particularly useful in high-dimensional data analysis, where we often seek
to reduce dimensionality while preserving as much variance as possible.

Xk ≈
k∑

i=1

viv
T
i X where k ≪ p

2.6 Analysis of eigenvalues

The eigenvalues of the covariance matrix Σ can be analyzed to understand the structure of the data.
The eigenvalues λi are non-negative and can be ordered as λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.

The eigenvalues can be interpreted as the amount of variance explained by each principal com-
ponent. The rank of the covariance matrix is equal to the number of non-zero eigenvalues.

These plots can be used to visualize the rank of the covariance matrix and the amount of variance
explained by each principal component. What does it mean to have a rank k covariance matrix?
It means that all our variables have a strong correlation-anticorrelation structure. Where basically
there are k groups of variables that are strongly correlated with each other.

In these case one talks about the presence of k latent factors that explain the data.
Here, we can see that the eigenvalues decay rapidly, indicating that most of the variance is

explained by a small number of principal components. The eigenvalues equal to 0 correspond to
components that don’t contribute to the variance of the data (they emerge from the existence
of strictly correlated variables in the dataset). (Please note that these plots are generated from
simulated data, in real data the eigenvalues ”equal to zero” are not equal to exactly zero because of
noise in the data.)
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(a) A 3D dataset with principal directions (b) Another 3D dataset with principal directions

Figure 6: A 3D dataset with principal directions
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(b) Eigenvalues of an elongated distribution

Figure 7: Eigenvalues of covariance matrices
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Figure 8: Eigenvalues of low-rank covariance matrices
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3 Principal Component Analysis (PCA)

3.1 An anticipation

Before getting to lost in further analysis it is worth to anticipate that the theory of what we just
discussed and what we will discuss will lead us to remarkable analytical ”powers”.

To see this, let’s consider the following example: We have a dataset of n observations, each a
p-dimensional vector. Say, again, our single-cell RNA-seq experiment, where n is the number of
cells (the number of observations) and p is the number of genes (the number of variables). With
your previous knowledge, of analytical methods, if given this dataset you would probably approach
”having a look at the data” by plotting scatters of pairs of genes against each other, where points
are cells, maybe color-coded by some metadata (e.g. time point).
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Figure 9: Scatter plots of genes

You could also consider plotting the other scatters, the one where you compare pairs of cells.
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(b) Scatter plot of cell 1 vs cell 3

0 5 10 15 20 25 30
Cell 1 (log(TPM+1))

0

5

10

15

20

25
Ce

ll 
4 

(lo
g(

TP
M

+1
))

Scatter plot of Cell 1 vs Cell 4

(c) Scatter plot of cell 1 vs cell 4

Figure 10: Scatter plots of cells

You might also consider studying mutual information matrices to understand pairwise relation-
ships between genes, or evaluate meaningful measures of distance between cells.

But what if you could do something more powerful, to get a more global view of the data? I am
going to anticipate it now and we are going to understand this in the next sections.

3.2 From Eigendecomposition to PCA

Building on our understanding of the multivariate normal distribution and its geometry, we can now
explore a powerful technique for analyzing high-dimensional data: Principal Component Analysis
(PCA). While we have discussed the eigendecomposition of the covariance matrix from a theoretical
perspective, in practice there are computational and numerical considerations that lead us to a
slightly different approach.

The eigendecomposition of the covariance matrix gives us valuable insight into the structure
of our data, but computing the sample covariance matrix explicitly can be problematic for several
reasons:
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Figure 11: PCA plot of cells and genes

• For large datasets with many variables, computing and storing the full p×p covariance matrix
can be memory-intensive

• When p > n (more variables than observations), the sample covariance matrix is necessarily
singular and has at most rank n

• Numerical stability issues can arise when computing eigenvalues and eigenvectors of ill-conditioned
matrices

• In terms of computational complexity, the eigendecomposition of a p×p matrix is O(p3), while
SVD is O(np2), with even more scalable ”online” algorithms available.

These practical challenges motivate us to consider an alternative but equivalent approach based
on the Singular Value Decomposition (SVD) of the data matrix itself.

3.3 Singular Value Decomposition (SVD)

The SVD provides a powerful factorization of any matrix, not just data matrices. For our centered
data matrix Xc ∈ Rn×p, the SVD gives us:

Xc = USVT

where:

• U ∈ Rn×n is an orthogonal matrix whose columns are the left singular vectors

• S ∈ Rn×p is a rectangular diagonal matrix containing the singular values σ1 ≥ σ2 ≥ · · · ≥
σmin(n,p) ≥ 0

• V ∈ Rp×p is an orthogonal matrix whose columns are the right singular vectors

The beauty of this decomposition becomes apparent when we connect it to the eigendecomposi-
tion of the covariance matrix:
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Figure 12: Eigendecomposition vs SVD
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n− 1
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c Xc (1)
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1

n− 1
VSTUTUSVT (2)

=
1

n− 1
VSTSVT (3)

= V

(
1

n− 1
STS

)
VT (4)

(5)

Since U is orthogonal, UTU = I, and STS is a diagonal matrix with entries σ2
i .

This reveals that:

• The right singular vectors V from the SVD are exactly the eigenvectors of the covariance
matrix

• The singular values σi relate to the eigenvalues of the covariance matrix as λi = σ2
i /(n− 1)

The SVD gives us the principal components without explicitly forming the covariance matrix,
offering computational advantages especially for high-dimensional data.

3.4 The Dual Nature of PCA: Variables and Observations

PCA has a fascinating duality, which we hinted at earlier when discussing the transposition of the
data matrix. Let’s explore this more deeply now.

When we compute PCA, we obtain two sets of vectors:

• The right singular vectors V (columns of V), which are the eigenvectors of XT
c Xc. These

describe directions in the variable space.

• The left singular vectors U (columns of U), which are the eigenvectors of XcX
T
c . These

describe directions in the observation space.

These two perspectives offer complementary insights into our data’s structure.
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3.4.1 Variable Space (Right Singular Vectors)

In the variable space, the principal components represent new axes that define a convenient coordi-
nate system. Each axis (principal component) is a linear combination of the original variables.

For gene expression data, these new axes can be thought of as ”metagenes” - patterns of gene
expression that vary together across cells. These axes are chosen specifically to align with the
directions of maximum variance in the data.

For instance, the first principal component axis might align with coordinated expression of cell
cycle genes, while the second might align with stress response genes. These orthogonal axes reveal
the underlying structure of gene co-expression.

The coefficients that define these new axes are called ”loadings” and are given by the entries in
the right singular vectors:

Loading of variable j on PC k = Vjk

These loadings tell us how much each original variable contributes to defining each new axis.

3.4.2 Observation Space (Left Singular Vectors)

In the observation space, PCA provides new coordinates for each observation along these principal
component axes. Vectors (i.e. points in the visualization below) represent the observations (e.g.,
cells), and their coordinates are given by the left singular vectors. For example, in single-cell data,
each cell gets a set of coordinates in this new system.

The coordinates of each observation in the principal component coordinate system are given by:

PC score for observation i on PC k = Uik · σk

These ”PC scores” are effectively the coordinates of each observation in the new principal com-
ponent space. They allow us to visualize high-dimensional data in a lower-dimensional coordinate
system where the axes are ordered by importance (variance explained), often revealing clusters or
trajectories that were hidden in the original space.
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Figure 13: PC coordinates as a change of basis

This geometric interpretation makes PCA powerful for visualization and analysis: it creates a
new coordinate system where the axes are optimally aligned to capture the data’s variance. The
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first few axes often capture the most important structure, allowing effective dimensionality reduction
while preserving relationships between observations.
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