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Joint Probability Distributions

From Individual Variables to Relationships

In biological systems, variables rarely exist in isolation:

Gene expression levels influence each other

Protein concentrations depend on multiple factors

Cellular behaviors arise from interacting components

To understand these complex relationships, we need to move beyond studying single
random variables in isolation.
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Joint Probability Distributions

Patterns of Relationship in Biological Data
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Joint Probability Distributions

Visualizing Joint Distributions

For univariate data: 2D plots (value vs density) For bivariate data: 3D plots (two
values vs density)
Alternative 2D representations: contour plots and heat maps
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Joint Probability Distributions

Defining Joint Probability Distributions

Definition (Joint Probability Distribution)

For continuous random variables X and Y, their joint probability density function
fX ,Y (x , y) satisfies for any measurable set A in the plane:

P((X ,Y ) ∈ A) =

∫∫
A
fX ,Y (x , y)dxdy
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Joint Probability Distributions

Level Sets: Windows into Distribution Structure

Level sets are curves along which the probability density remains constant:

Lc = {(x , y) ∈ R2 : fX ,Y (x , y) = c}
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Joint Probability Distributions

Marginal Distributions: where does the name come from?

The term ”marginal” has a historical origin:

Early statisticians arranged bivariate data
in contingency tables with totals calculated
in the table margins.

These ”margin sums” became known as
marginal distributions.

Marginals tell us about a single variable
when we disregard information about the
other variable.
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Joint Probability Distributions

Formal Definition of Marginal Distributions

Definition (Marginal Distribution)

For joint density fX ,Y (x , y), the marginal density of X is:

fX (x) =

∫ ∞

−∞
fX ,Y (x , y)dy
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Joint Probability Distributions

”Integrating out”

This corresponds to ”integrating out” or ”marginalizing out” the other variable.

For any set A where X might take values:

P(X ∈ A) =

∫
A
fX (x)dx =

∫
A

∫ ∞

−∞
fX ,Y (x , y)dydx
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Joint Probability Distributions

Conditional Distributions: Fixing One Variable

One of the most powerful aspects of joint distributions is revealing dependencies
between variables.

The key question: How does the distribution of one variable change when we fix the
value of the other?
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Joint Probability Distributions

Conditional Distributions: Formal definition

Definition (Conditional Distribution)

The conditional density of Y given X = x is:

fY |X (y |x) =
fX ,Y (x , y)

fX (x)

Theorem (Chain Rule of Probability)

For any two random variables X and Y:

fX ,Y (x , y) = fY |X (y |x)fX (x) = fX |Y (x |y)fY (y)
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Joint Probability Distributions

Independence: When Marginals Are Sufficient

A special case occurs when variables are independent - when knowing one variable tells
us nothing about the other.

Definition (Statistical Independence)

Random variables X and Y are independent if and only if:

fX ,Y (x , y) = fX (x)fY (y)
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Joint Probability Distributions

Independence: Implications and Importance

Independence is a strong assumption, rarely perfectly satisfied in biological systems,
but it:

Simplifies probability calculations

Helps identify truly interacting components

Provides null models for testing relationships

In practical terms, independence means:

Knowing one variable gives no information about the other

Joint distribution factorizes into product of marginals

Conditional distribution equals the marginal distribution
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Joint Probability Distributions

The Bivariate Normal Distribution: A Fundamental Example

The bivariate normal extends the univariate normal to two dimensions:

For independent normal variables X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2):

fX ,Y (x , y) = fX (x) · fY (y) =

1

2πσ1σ2
exp

(
−1

2

[
(x − µ1)

2

σ2
1

+
(y − µ2)

2

σ2
2

])
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Joint Probability Distributions

The Bivariate Normal Distribution: A Fundamental Example
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Joint Probability Distributions

The General Bivariate Normal Distribution

The general form includes correlation through parameter ρ:

fX ,Y (x , y) =
1

2πσ1σ2

√
1− ρ2

×

exp

(
− 1

2(1− ρ2)

[
(x − µ1)

2

σ2
1

− 2ρ
(x − µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

])

Key parameters:

µ1, µ2: centers the distribution

σ2
1, σ

2
2: control spread along each axis

ρ: correlation coefficient (−1 ≤ ρ ≤ 1)

Gioele La Manno BIOENG-210 / LECTURE 3 March 2025 16 / 48



Joint Probability Distributions

The General Bivariate Normal Distribution: Visualization
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Joint Probability Distributions

Geometric Interpretation: Level Sets as Ellipses

The level sets of the bivariate normal form ellipses in the plane:

Setting the quadratic form in the exponent equal to a constant:

Q(x , y) = c(1− ρ2)

Q(x , y) =
(x − µ1)

2

σ2
1

− 2ρ
(x − µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

Comparing with the standard form of an ellipse reveals the geometric structure of the
bivariate normal distribution.

1
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√
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exp
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− 1
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Joint Probability Distributions

Geometric Interpretation: Properties of the Ellipses

The elliptical level sets of the bivariate normal distribution have the following
properties:

Center: Located at (µ1, µ2) - the mean of the distribution

Rotation: Determined by the correlation coefficient ρ

Semi-axes: Determined by σ1, σ2, and ρ
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Joint Probability Distributions

Marginals of the Bivariate Normal Distribution

For a bivariate normal distribution with
parameters µ1, µ2, σ1, σ2, and ρ:

The marginal distribution of X and Y are:

fX (x) =
1√
2πσ1

exp

(
−(x − µ1)

2

2σ2
1

)

fY (y) =
1√
2πσ2

exp

(
−(y − µ2)

2

2σ2
2

)
Do not depend on the correlation ρ !
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Joint Probability Distributions

Conditional Distributions of the Bivariate Normal
Applying the definition fY |X (y |x) =

fX ,Y (x ,y)
fX (x)

one can find: The conditional distribution

of Y given X = x is a normal distribution with

µY |X=x = µy + ρ
σy

σx
(x − µx)

σ2
Y |X=x = σ2

y (1− ρ2)
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Joint Probability Distributions

Properties of Conditional Bivariate Normal

Key observations about the conditional distribution:

Mean depends linearly on x with slope determined by ρ

Variance is reduced by a factor of (1− ρ2)

Stronger correlation means greater reduction in variance

This explains why knowing one variable in a correlated pair improves our prediction of
the other variable - we have both a more precise mean estimate and reduced
uncertainty.
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Bivariate Estimates
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Bivariate Estimates

From Theory to Practice: Estimating Bivariate Distributions

Having established the theoretical framework for bivariate distributions, we now move
to practical estimation:

Biological systems often exhibit relationships that simple metrics like correlation
cannot fully capture:

Threshold effects in gene regulatory networks

Saturation in enzyme kinetics

Non-monotonic dose-response relationships
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Bivariate Estimates

From Theory to Practice: Estimating Bivariate Distributions

Our toolkit for bivariate estimation includes:

Visualization tools: Scatter plots, heatmaps, contours

Parametric approaches: Fitting specific distribution families

Non-parametric methods: Letting the data speak for itself

Information-theoretic measures: Quantifying general dependencies
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Bivariate Estimates

2D Histogram: From Data to Density Estimation

Raw data Histogram 2d
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Bivariate Estimates

Too small bins (noisy) Too large bins (oversmoothed)
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Bivariate Estimates

Limitations of Bivariate Histograms

While conceptually straightforward, 2D histograms face several challenges:

Limited resolution: Constrained by bin size,
creating blocky representations

Zero-probability regions: Areas with no
observations are assigned zero probability

Non-smooth appearance: Discontinuous at
bin boundaries, creating artificial edges

Curse of dimensionality: Bins become
increasingly sparse as dimensions increase

Despite limitations, histograms provide valuable
initial insights for exploratory analysis.
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Bivariate Estimates

Parametric Estimation of Joint Distributions

When we have prior knowledge about the
distribution form, parametric estimation
offers advantages:
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Bivariate Estimates

Maximum Likelihood for the Bivariate Normal
For the bivariate normal distribution, we need to estimate five parameters

Theorem (MLE for Bivariate Normal)

Given data {(xi , yi )}ni=1, the maximum likelihood estimators are:

µ̂1 = x̄ µ̂2 = ȳ

σ̂2
1 =

1

n

n∑
i=1

(xi − x̄)2 σ̂2
2 =

1

n

n∑
i=1

(yi − ȳ)2

ρ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

Remarkably, these are exactly the familiar sample statistics!
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Bivariate Estimates

Maximum Likelihood for the Bivariate Normal: Visualization
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Bivariate Estimates

Non-parametric Estimation: Beyond Model Assumptions

When the underlying structure doesn’t conform to a specific parametric form,
non-parametric methods offer flexibility.

Kernel Density Estimation (KDE) extends histograms by:

Placing a probability density (kernel) at each data point

Summing these kernels to create a smooth estimate

Avoiding the ”blocky” appearance of histograms
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Bivariate Estimates

Non-parametric Estimation: Beyond Model Assumptions
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Bivariate Estimates

Kernel Density Estimation in Two Dimensions
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Bivariate Estimates

Kernel Density Estimation: Mathematical Formulation

Given bivariate observations {(xi , yi )}ni=1, the kernel density estimate is:

f̂ (x , y) =
1

n

n∑
i=1

1

hxhy
K

(
x − xi
hx

,
y − yi
hy

)
With a Gaussian kernel:

K (u, v) =
1

2π
exp

(
−u2 + v2

2

)
This yields:

f̂ (x , y) =
1

n

n∑
i=1

1

2πhxhy
exp

(
−1

2

[(
x − xi
hx

)2

+

(
y − yi
hy

)2
])
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Bivariate Estimates

The Crucial Role of Bandwidth Selection

Bandwidth parameters (hx , hy ) control the degree of smoothing:

Too small: Spiky estimate that overemphasizes random fluctuations

Too large: Oversmoothed estimate that obscures important features

Silverman’s rule of thumb for two dimensions:

hx = 1.06 · σx · n−1/6

hy = 1.06 · σy · n−1/6
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Bivariate Estimates

The Effect of Bandwidth Selection
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Bivariate Estimates

Advantages and Extensions of KDE

KDE offers several advantages over histograms:

Smoothness

Efficiency

Adaptability
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Bivariate Estimates

Mutual Information: Beyond Simple Associations

We can now use our distribution estimation tools to develop more comprehensive
association measures.

At its core, association is the opposite of independence:

Independence: fX ,Y (x , y) = fX (x) · fY (y)
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Bivariate Estimates

Mutual Information: fundamental comparison

The main idea is comparing the joint distribution with the product of the marginals
(independence case)
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Bivariate Estimates

Mutual Information: Beyond Simple Associations

A natural approach to measure association:

1 Estimate true joint distribution f̂X ,Y (x , y)

2 Compute marginals f̂X (x) and f̂Y (y)

3 Create reference distribution f̂X (x) · f̂Y (y)
4 Measure discrepancy between these distributions
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Bivariate Estimates

From Kullback-Leibler Divergence to Mutual Information

To quantify the difference between distributions, we use the Kullback-Leibler (KL)
divergence:

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx

Applying this to our joint and product distributions:

DKL(fX ,Y ||fX · fY ) =
∫∫

fX ,Y (x , y) log
fX ,Y (x , y)

fX (x)fY (y)
dxdy
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Bivariate Estimates

From Kullback-Leibler Divergence to Mutual Information

This KL divergence between the joint distribution and the product of marginals is
precisely the definition of mutual information:

I (X ;Y ) =

∫∫
fX ,Y (x , y) log

fX ,Y (x , y)

fX (x)fY (y)
dxdy
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Bivariate Estimates

The Power of Mutual Information
Mutual information offers several advantages:

Captures any form of dependency, not just linear or monotonic
Valuable in biological data where relationships often follow complex patterns.
Invariant under invertible transformations of variables
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Bivariate Estimates

Question 1: Marginal Distributions

Which of the following correctly defines the marginal distribution of X from a joint
distribution fX ,Y (x , y)?

1 fX (x) =
∫∞
−∞ fX ,Y (x , y)dy

2 fX (x) =
∫∞
−∞ fX ,Y (x , y)dx

3 fX (x) = fX ,Y (x , y)/fY (y)

4 fX (x) = maxy fX ,Y (x , y)
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Bivariate Estimates

Question 2: Independence in Gene Expression

A researcher measures expression levels of two genes across hundreds of cells and finds
that the joint probability density function can be expressed as
fX ,Y (x , y) = fX (x) · fY (y). What does this imply about these genes?

1 They are co-regulated by the same transcription factor

2 They are statistically independent of each other

3 They must have equal mean expression levels

4 The genes are located on the same chromosome
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Bivariate Estimates

Question 3: Conditional Distributions

In a bivariate normal distribution with correlation coefficient ρ, what happens to the
conditional distribution of Y given X=x as |ρ| increases?

1 The variance of the conditional distribution increases

2 The mean of the conditional distribution becomes more dependent on the value of
x

3 The conditional distribution approaches a uniform distribution

4 The conditional distribution becomes independent of the value of x
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Bivariate Estimates

Question 4: Bivariate Normal Properties

For a bivariate normal distribution with µ1 = µ2 = 0, σ1 = σ2 = 1, and correlation
ρ = 0.5, what is the probability density at the point (1, 1) relative to the density at the
origin (0, 0)?

1 0.223 (about 22.3% of the density at the origin)

2 0.368 (about 36.8% of the density at the origin)

3 0.472 (about 47.2% of the density at the origin)

4 0.607 (about 60.7% of the density at the origin)
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Bivariate Estimates

Question 5: Understanding KDE Visualization

Based on the KDE contour plot shown,
what can we conclude about the underlying
bivariate distribution?

1 It shows independent variables with no
correlation

2 It exhibits a single mode with roughly
circular level sets

3 It shows a strongly bimodal
distribution with two distinct clusters

4 It displays a complex distribution with
multiple local maxima and a curved
ridge structure
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