
BIOENG-210: Biological Data Science I: Statistical Learning

Required Formulas

Lecture 1

Expectation

E[X] =
∑
x

x · P(X = x) or

∫ ∞

−∞
x · fX(x) dx

Variance

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

Normal Distribution PDF

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

Poisson Distribution

P (X = k) =
λke−λ

k!

Lecture 2

Maximum Likelihood Estimation

θ̂MLE = argmax
θ

L(θ | x1, x2, . . . , xn) = argmax
θ

n∏
i=1

f(xi | θ)

MLE equivalent minimize the negative log-likelihood

θ̂MLE = argmin
θ

− logL(θ | x1, x2, . . . , xn) = argmin
θ

−
n∑

i=1

log f(xi | θ)

Covariance

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Correlation

Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

Pearson Correlation

s(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
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Lecture 3

Joint Probability Distribution

P ((X,Y ) ∈ A) =

∫∫
A

fX,Y (x, y) dx dy

Conditional PDF and Chain Rule

fY |X(y|x) = fX,Y (x, y)

fX(x)

Mutual Information

I(X;Y ) =

∫∫
fX,Y (x, y) log

fX,Y (x, y)

fX(x)fY (y)
dx dy
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Sample Mean and Its Properties

X̄ =
1

n

n∑
i=1

Xi, E[X̄] = µ, Var(X̄) =
σ2

n

Central Limit Theorem

X̄ − µ

σ/
√
n

d−→ N (0, 1)

One-Sample t-Test Statistic

t =
x̄− µ0

s/
√
n

∼ tn−1

Benjamini–Hochberg (BH)
Threshold

p(k) ≤
k

m
α

Lecture 5

Least Squares Estimators

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
; β̂0 = ȳ − β̂1x̄

Residual Sum of Squares (RSS)

n∑
i=1

(yi − (β0 + β1xi))
2 = RSS(β0, β1)

Sampling Distribution of Slope Estimator

β̂1 ∼ N
(
β1,

σ2∑n
i=1(xi − x̄)2

)

Confidence Interval at 100(1− α)% for regression parameters

β̂ ± tα/2,n−2 × SE(β̂)
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Lecture 6

Multiple Regression Model
(Matrix Form)

y = Xβ + ε

Normal Equations

XTXβ = XTy

Solution to Normal Equa-
tions (if X has full column
rank)

β̂ = (XTX)−1XTy

RSS for Multiple Linear Regression

RSS(β) = εTε = (y −Xβ)T (y −Xβ)

Coefficient of Determination R2

R2 = 1− RSS

TSS
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

Lecture 8

Poisson GLM

Random component: Y ∼ Poisson(λ)

Link function: η = log(E[Y ]) = log(λ)

Inverse link function: E[Y ] = λ = eη

Logistic regression

Random component: Y ∼ Bernoulli(p)

Link function: η = g(p) = log
( p

1− p

)
Inverse link function: p = g−1(η) =

eη

1 + eη

Classification metrics

Accuracy =
TP + TN

TP + FP + FN + TN
=

Correct predictions

Total samples

Sensitivity/Recall =
TP

TP + FN
=

Correctly predicted positive

Total positive samples

Precision =
TP

TP + FP
=

Correctly predicted positive

Total predicted positive

Lecture 9

Ridge regression

Objective: min
β

∥∥y −Xβ
∥∥2
2
+ λ∥β∥22

Bayes’ Theorem

P (θ | y) = P (y | θ)P (θ)

P (y)

Maximum A Posteriori (MAP) Estimation

θ̂MAP = argmax
θ

P (θ | y)

= argmax
θ

[
P (y | θ)P (θ)

]
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MSE Definition

MSE
(
f̂(x)

)
= E

[
(Y − f̂(x))2

]
Bias (squared)

Bias2
(
f̂(x)

)
= (f(x)− E[f̂(x)])2

Variance

Var
(
f̂(x)

)
= E[(E[f̂(x)]− f̂(x))2]

Bias-Variance Decomposition

MSE
(
f̂(x)

)
= Bias2

(
f̂(x)

)
+Var

(
f̂(x)

)
+ σ2

ϵ
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Multivariate Normal

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
; µ = E[X]; Σ = E[(X− µ)(X− µ)T ]

Singular value decomposition (SVD)

X = USVT

SVD properties

X ∈ Rn×p U ∈ Rn×n,UTU = In V ∈ Rp×p,VTV = Ip S ∈ Rn×p(Rect. diag)
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Proportion of variance explained in PCA

Proportion of variance explained =

∑k
i=1 σ

2
i∑min(n,p)

i=1 σ2
i

=

∑k
i=1 λi∑p
i=1 λi

Single Linkage

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x,y)

Average Linkage

d(Ci, Cj) =
∑
x∈Ci

∑
y∈Cj

d(x,y)

|Ci||Cj |

Lecture 12

No formulas to memorize for this lecture!
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