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1 MLE and MAP for Linear Models

In all of the following parts, write your answer as the solution to a norm mini-
mization problem, potentially with a regularization term. You do not need to
solve the optimization problem. Simplify any sums using matrix notation
for full credit.

Hint: Recall that the MAP estimator maximizes P (θ|Y ).

θ̂ = arg max
θ∈Rd

P (Y |θ)P (θ)

The difference between MAP and MLE is the inclusion of a prior distribution
on θ in the objective function.

For the following problems assume you are given X ∈ Rn×d and y ∈ Rn as
your data.

(a) Let y = Xθ + ϵ where ϵ ∼ N (0,Σ) for some positive definite, diagonal Σ.
Write the MLE estimator of θ as the solution to a weighted least squares
problem, potentially with a regularization term.

(b) Let y|θ ∼ N (Xθ,Σ) for some positive definite, diagonal Σ. Let θ ∼
N (0, λId) for some λ > 0 be the prior on θ. Write the MAP estimator
of θ as the solution to a weighted least squares minimization problem,
potentially with a regularization term.

(c) Let y = Xθ + ϵ where ϵi
i.i.d.∼ Laplace(0, 1). Recall that the pdf for

Laplace(µ, b) is p(x) = 1
2b exp

(
− 1

b |x− µ|
)
. Write down the MLE estima-

tor of θ as the solution to a norm minimization optimization problem.

(d) Let y|θ ∼ N (Xθ,Σ) for some positive definite, diagonal Σ. Let θi
i.i.d.∼

Laplace(0, λ) for some positive scalar λ. Write the MAP estimator of θ as
the solution to a weighted least squares minimization problem, potentially
with a regularization term.
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2 Maximum Likelihood Estimation

Let x1, x2, . . . , xn be independent samples from the following distribution:

P (x | θ) = θx−θ−1 where θ > 1, x ≥ 1

Find the maximum likelihood estimator of θ.

3 Linear models and linear transformation

In this exercise we are going to see how the solution to the least squares problem
changes when a linear transformation is applied to the input features X. Recall
that in linear regression given X ∈ Rn×d and y ∈ Rn we aim to find the set of
coefficients β̂ ∈ Rd that minimizes:

β̂ = argminβ̂||y −Xβ̂||22 =

n∑
i=1

(yi −
d∑

j=1

Xijβj)
2 (1)

For simplicity, we can define ŷ = Xβ̂. Recall that the solution is given by:

β̂ = (XTX)−1XTy (2)

For all the exercise, assume that X is full rank and therefore XTX is invert-
ible and also n > d. We would like to linearly transform our features, so that we
obtain a new set of features X ′ ∈ Rn×d′

. If our the matrix defining our linear
transformation is A ∈ Rd×d′

, the transformed features X are simply given by:

X ′ = XA (3)

Now we would like to find the set of coefficients β̂′ that minimize:

β̂′ = argminβ̂′ ||y −X ′β̂′||22 (4)

a) Write down the solution to 4, that is, what is the optimal β̂′ in terms of
X ′ and y.

We will now try to relate this solution to 2.

b) Substitute X ′ = XA to the expression found for β̂′. You will not be
able to simply much. Hint: Remember that given two matrices A,B,
(AB)T = BTAT .

From now on, assume that d = d′ and that A is full rank (thus invert-
ible). This assumption is equivalent to saying that we transform the data
”without loss of information”.

c) Show that β̂′ = A−1β̂ Hint: The same property as before also holds for
the inverse (AB)−1 = B−1A−1 if A and B are full rank and squared.

2



d) Show that the predictions of the model do not change if we fitted with the
transformed data X ′.

e) In part c, we have assumed d′ = d. What would happen to the solution
to the least squares problem in the case d′ > d? Hint: rank(AB) ≤
min(rank(A), rank(B))

f) Finally, what would you intuitively think happens in the case d′ < d. Try
to reason in terms of model performance when comparing the model fitted
with X and XA (with d′ < d).

4 Statistical Properties of the Uniform Distri-
bution

Consider a continuous uniform distribution defined on the interval [a, b] with
length L = b− a.

1. Derive the probability density function (PDF) of this uniform distribution.

2. Calculate the expectation value (mean) of this distribution and express it
as a function of L and a.

3. Calculate the variance of this distribution and express it as a function of
L only.

Hint: Remember that for a continuous random variable X with probability
density function f(x):

• The expectation is given by E[X] =
∫∞
−∞ x · f(x) dx

• The variance is given by Var(X) = E[X2]− (E[X])2

5 James-Stein estimator

Problem 1: Setup the Multivariate Normal Model
Suppose X = (X1, X2, . . . , Xp) where each Xi ∼ N(θi, σ

2) independently.

a) What is the MLE for θ = (θ1, . . . , θp)? (Hint: Note that each variable
Xi has a different mean.)

b) Show that the risk (mean squared error) of the MLE, R(θ̂,θ) = E[∥θ̂ −
θ∥2] = pσ2, where θ̂ is the MLE of θ.

Problem 2: Introduce the James-Stein Estimator
Define a James-Stein estimator:

θ̂JS =

(
1− (p− 2)σ2

∥X∥2

)
X,

3



where ∥X∥2 =
∑p

i=1 X
2
i . Compute the condition that p should satisfy so

that the shrinkage factor is positive.

Problem 3: Classical vs. Shrinkage Estimators

a) Mention the trade-off we make in terms of bias and variance between the
JS estimator and the MLE.

b) Explain the importance of the James-Stein estimator in practical applica-
tions. Where might we expect it to outperform traditional methods, and
why?

6 Pen-and-Paper PCA Exercise

Exercise

Consider the following dataset of four observations in two dimensions:

Obs. x y
1 1 2
2 2 1
3 3 4
4 4 3

1. Compute the sample means x̄ and ȳ.

2. Center the data by subtracting (x̄, ȳ) from each point.

3. Form the sample covariance matrix

S =
1

n− 1

4∑
i=1

(
xi − x̄
yi − ȳ

)
(xi − x̄, yi − ȳ).

4. Solve for the eigenvalues λ1, λ2 of S.

5. Find corresponding (unit) eigenvectors v(1), v(2).

6. Compute the proportion of total variance explained by each principal com-
ponent.

7. Project each centered point onto the first principal component.

8. Sketch the centered data, overlay the PC axes, and draw the ellipse with
semi-axes

√
λ1 and

√
λ2.
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