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Abstract
Intrinsically disordered proteins (IDPs) and IDP regions fail to form
a stable structure, yet they exhibit biological activities. Their mobile
flexibility and structural instability are encoded by their amino acid
sequences. They recognize proteins, nucleic acids, and other types of
partners; they accelerate interactions and chemical reactions between
bound partners; and they help accommodate posttranslational modifi-
cations, alternative splicing, protein fusions, and insertions or deletions.
Overall, IDP-associated biological activities complement those of struc-
tured proteins. Recently, there has been an explosion of studies on IDP
regions and their functions, yet the discovery and investigation of these
proteins have a long, mostly ignored history. Along with recent discov-
eries, we present several early examples and the mechanisms by which
IDPs contribute to function, which we hope will encourage compre-
hensive discussion of IDPs and IDP regions in biochemistry textbooks.
Finally, we propose future directions for IDP research.
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CHARACTERISTICS
Intrinsically disordered proteins (IDPs)
have been called many names (reviewed in

Reference 1). We use the term “disordered”
because of Jirgensons’s (2) use of it for protein
classification, because of Arnone et al.’s (3)
use of it to describe ill-structured regions,
and because this name has broad coverage (4).
The word “intrinsically” indicates a sequence-
dependent characteristic (5). Small-molecule li-
gands (6, 7), macromolecular binding partners,
or posttranslational modifications (PTMs) (7)
can induce IDPs or IDP regions to become
structured or can cause structured domains to
become IDPs (8).

Linkers (9), entropic springs (10) or elas-
tomers (11), entropic bristles (12), and native
molten globules (13, 14) all directly use flexibil-
ity to carry out function. Order–disorder transi-
tions can underlie function (15), such as folding
upon binding (16) or a chaperone’s activation
following unfolding (8).

Primarily because of their lack of structural
constraints, IDPs and IDP regions facilitate
several biological processes (17). Examples
of such processes include alternative splicing
(AS) (18); movement through narrow pores
or channels (19); many but not all PTMs (20);
overprinting (21), also known as dual coding
in alternative reading frames (22); creation of
oncogenic chimera proteins following aberrant
gene fusion (23); and insertions and deletions
(INDELs), especially long ones (24), arising
from mutation (25).

IDPs with significant net charge are ex-
tended, with greater extension for greater net
charge (26). IDPs with large but approximately
equal numbers of oppositely charged side
chains behave as polyampholytes, with greater
extension if the charges are randomly dis-
tributed and with less extension if the plus and
minus charges become more segregated (27).
Neutral hydrophilic IDPs with few charged
residues form collapsed, random structures be-
cause water is a poor solvent both for the back-
bone (28) and for polar, uncharged sequences,
such as polyQ (29), or for sequences of native
premolten globules (30). Finally, hydropho-
bic IDPs that have structure-forming sequence
patterns, but insufficient folding energy, col-
lapse into molten globules characterized by
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mobile side chains and unstable tertiary struc-
tures (13). Premolten and molten globules have
been observed as transient protein folding in-
termediates and as stable forms for several
structured proteins under mildly denaturing
conditions (31). For some sequences, molten
and premolten globules represent folding end
points. Such proteins can use their particular
characteristics to perform biological functions
(13, 14, 32). In summary, IDPs and IDP re-
gions lack a stable structure; instead, they exist
as conformational ensembles (30, 31) without
equilibrium positions for their atom positions
and bond angles (17, 35).

Structured proteins are grouped by their
secondary structures (2, 36, 37). In contrast,
IDPs and IDP regions are more difficult to
partition into groups (38). Recent research
has determined that, although all structured
proteins can be unfolded by denaturing agents,
some IDPs can be induced to fold but others
cannot. This finding indicates a need to
distinguish nonfoldable IDPs from foldable,
conditional IDPs (39–41), including IDPs with
a semidisordered form that have an increased
tendency to form amyloids (41).

EARLY EXAMPLES
Beginning in the 1950s, many IDPs and
IDP regions with biological functions were
discovered; these include casein (42), phosvitin
(43), fibrinogen (44), trypsinogen (45), and
calcineurin (CaN) (46). The intrinsically
disordered aspect of proteins had mostly been
ignored until recently (Figure 1). The many
recent publications about IDPs mean that this
review can provide only a sparse sample of this
literature; many outstanding papers have to be
left out.

Current biochemistry textbooks either com-
pletely omit or contain only brief discussions
of IDPs, IDP regions, and their roles in func-
tion. Extensive and integrated coverage of IDPs
is needed to improve our understanding of
the relationships between protein structure and
function.
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Figure 1
Number of publications related to intrinsically
disordered proteins (IDPs) by year, from 1984 to
2012. Publications were retrieved from a search of
PubMed (http://www.ncbi.nlm.nih.gov/pubmed)
using IDP-related terms: “(inherently OR natively
OR intrinsically) AND (disordered OR unfolded
OR unstructured) AND protein.” These numbers
increase significantly when more terms are used in
the search, but the false-positive rate also increases.

Casein
Eutherian milks contain multiple casein iso-
forms, such as αS1, αS2, β, and κ (47). Inves-
tigators have known since before 1950 that ca-
sein can survive prolonged heating; can survive
treatment with denaturing agents such as urea,
quanidine hydrochloride, or mildly acidic or ba-
sic solutions without significant change; and is
highly sensitive to protease digestion. Specific
optical rotation showed that casein closely re-
sembles proteins that are unfolded by guani-
dine. Therefore, in 1952 McMeekin (42, p. 58)
suggested that “casein occurs in milk in an un-
folded configuration, which may be rapidly di-
gested by proteolytic enzymes.”

Thousands of casein molecules associate to
form soluble aggregates termed micelles. Many
different models for casein micelles have been
proposed (48). One model (49) that is now gain-
ing favor (50) considers a casein micelle to be
an open, IDP-based matrix with stabilization
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arising from several types of interactions, in-
cluding critical contributions from phosphory-
lated side-chain attachments to calcium phos-
phate nanoclusters.

The separated κ and αS2 caseins form amy-
loid fibrils. Also, the caseins exhibit heat-shock
protein–like molecular chaperone activity. The
many alternative interactions associated with
chaperone activity may compete with specific,
fibril-forming interactions, thereby giving rise
to amorphous aggregates rather than fibrils. In-
deed, the prevention of fibril formation may be
an important function of casein micelles (47). In
general, avoidance of fibril formation is an im-
portant consideration for IDPs, IDP regions,
and their evolution (41).

As a result of binding by casein, calcium
phosphate reaches supersaturating levels in
milk (51). Such supersaturation is crucial for
the development and maintenance of bones
and teeth. A collection of secreted calcium
(phosphate)-binding phosphoproteins have
been identified. These proteins may sequester
calcium phosphate nanoclusters by casein-like
mechanisms, so IDPs are probably important
for sustaining bones and teeth (51, 52).

Phosvitin
In 1966, Jirgensons (2) studied the conforma-
tions of many proteins by using optical rota-
tory dispersion (ORD); these comparisons led
him to propose that proteins should be classi-
fied by their conformations. His proposal pre-
ceded the Structural Classification of Proteins
(SCOP) (36) and Class, Architecture, Topol-
ogy, and Homology (CATH) (37) databases by
∼30 years. Unlike SCOP and CATH, however,
Jirgensons’s classification scheme included the
category “disordered,” which was based mainly
on the protein phosvitin (2).

Jirgensons (43) demonstrated phosvitin’s
disorder in 1958 by viscosity and ORD; his re-
sults were later confirmed by circular dichroism
(CD) and nuclear magnetic resonance (NMR).
Phosvitin, from egg yolk, contains ∼57% ser-
ine, most of it phosphorylated, along with many
polar residues and very few hydrophobic side

chains (53). These sequence characteristics ac-
count for Jirgensons’s (43) observation that
phosvitin behaves as a flexible polyanion.

Fibrinogen to Fibrin
The fibrinogen hexamer (α2β2γ2) is a verte-
brate blood plasma glycoprotein. Following in-
jury, thrombin cleaves fibrinogen, converting
fibrinogen into fibrin, which then forms an in-
soluble matrix (44). The thrombin cleavages
create GPRP and GHRP termini for the α-
and β-chains, respectively. These “knobs” dock
into specific “holes” in the C domains of the fib-
rin β- and γ-subunits, respectively. The throm-
bin cut sites map to regions of missing electron
density in human [Protein Data Bank (PDB)
identifier 3GHG] and chicken (PDB 1EI3) fib-
rinogen, and additional flexible residues link the
GPRP and GHRP knobs to their associated
globular domains, enabling tethered searches
that allow the knobs to dock into their respec-
tive holes.

Protease sensitivity and random-coil CD
spectra of a large region near the carboxyl end of
the α-chain, a region termed αC, led Doolittle
(44) to suggest the existence of “free swimming
appendages” within the complex. This αC re-
gion is a 273-residue segment and, to date, is the
longest missing electron-density region of any
PDB protein that is likely not be to a mobile,
structured domain. The IDP regions of fibrino-
gen represent 28% of residues in the asymmet-
ric unit, also the largest proportion of disorder
observed so far for any PDB asymmetric unit
(54).

The αC domain shows little sequence con-
servation (55) and is also very rich in INDELs
(55). IDP regions often exhibit high sequence
variability (56) and numerous INDELs (24,
25). Long insertions are frequently IDP
regions (24, 57).

CD and NMR spectra suggest that the αC
domains contain structured regions of limited
size that are connected by flexible IDP link-
ers (58). Hydrogen-exchange studies on intact
fibrinogen show rapid exchange for most of
the αC region, indicating that significant parts
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of this region remain unstructured in the fib-
rinogen assembly (59)—exactly as suggested by
Doolittle (44) and Doolittle & Kollman (55).

In addition to the fibrin gel–like matrix, a
blood clot contains several additional bound
components. The αC IDP region binds to
many of them (55, 58). Such binding to multi-
ple partners is a common characteristic of IDPs
that is enabled by their flexibility (60, 61).

Trypsinogen to Trypsin
Trypsinogen is activated by enteropepti-
dase cleavage after the K+ in trypsinogen’s
VDDDDK amino terminal sequence (62),
which is located in a 15-residue region of miss-
ing electron density (45). As for fibrinogen,
the rapid digestion of trypsinogen is probably
accelerated when the cleavage site is located in
an IDP region.

After enteropeptidase cleavage, a two-
residue IV knob appears at the end of an IDP re-
gion. Following a tethered search, this IV knob
binds into a hole that promotes a disorder-to-
order transition for trypsin’s substrate binding
pocket. Trypsinogen is inactive not because its
catalytic triad is misaligned, but because the
K+/R+ binding pocket is not structured (45).

Addition of the IV dipeptide and other hy-
drophobic dipeptides to solutions of trypsino-
gen activates it without protease digestion. As
dipeptides become less similar to IV, weaker
activation takes place, suggesting that specific
docking occurs for the two-residue IV knob
(63).

Calcineurin On/Off Switch
Calcium–calmodulin (CaM) binding activates
CaN, a brain-abundant S,T phosphatase (64,
65). CaN’s A-subunit contains the active site.
CaN’s B-subunit binds to an extension of the
A-subunit (Figure 2) (66). CaN plays key sig-
naling roles in multiple cell types by removing
a phosphate from the nuclear factor of activated
T cells (NFAT) that, in T cells, then proceeds
into the nucleus and turns on cell proliferation
(67).

A-subunit

B-subunit

Calmodulin 
binding site

Autoinhibitory
domain

Figure 2
Intrinsic disorder, order, and function of calcineurin. The A-subunit ( gray
surface), B-subunit (orange surface), and autoinhibitory domain (blue ribbon) are
rendered from an experimentally determined structure (Protein Data Bank
identifier 1AUI). Missing electron-density regions, including the long
disordered tail of the A-subunit, are also represented (red strand with one ball per
residue), as are the residues corresponding to the calmodulin binding site
(lavender strand and balls). Disordered regions are modeled to scale with a
random conformation, without consideration of additional experimental data.

In vitro, CaN’s phosphatase can be activated
by trypsin digestion. CaM binding protects
against trypsin digestion. Many other CaM-
activated enzymes are also activated by trypsin
and protected by CaM binding (68).

Upon binding, CaM completely surrounds
its helical target (69), so CaM’s binding site
must be extremely accessible. CaM binding
sites and flanking regions have IDP-like amino
acid compositions. Their protease sensitivity,
extreme accessibility, and amino acid composi-
tion all argue that CaM binding sites are located
in IDP regions (68).

In crystal structures of CaN (66), the A-
chain’s CaM binding site is located in a region
of missing electron density that is between
the B-subunit binding site and the autoin-
hibitory domain (AID) bound to the active site
(Figure 2). Both the AID and the binding
site for CaM have sequences that exhibit
amphipathic helices when folded, a finding that
is consistent with the coil-to-helix transitions
upon binding that have been observed for both
segments. Hydrogen exchange demonstrates
lack of protection for the CaM binding region
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and the development of protection following
addition of CaM, providing additional support
for the IDP nature of the CaM binding site (70).

The flexible IDP tether localizes the AID in
the vicinity of the active site, thereby favoring
AID binding. Unlike trypsinogen and fibrino-
gen, protease digestion is not needed to expose
a knoblike binding site. Instead, after binding,
the AID binding motif is flanked by disordered
regions on both sides (Figure 2) (66). Binding
by CaM to its target causes AID displacement,
thereby activating CaN’s phosphatase.

CaN plays a key role in the rejection of
transplanted organs. For T cells, following the
binding of a foreign antigen to a cell-surface
receptor, calcium levels rise, calcium binds
to CaM, and the calcium–CaM complex
binds to CaN’s IDP region, activating CaN’s
phosphatase. The activated CaN removes a
phosphate from the NFAT protein, which
then translocates into the nucleus and turns
on cell division, ultimately causing rejection
of the transplant (67). The FK506/FK506-BP
complex prevents organ-transplant rejection
by binding next to CaN’s active site and
keeping it turned off by steric hindrance (66).

INCREASING ATTENTION
Interest in IDPs (Figure 1) began to increase
in the late 1990s, following both the first NMR
studies and the earliest computational biol-
ogy experiments on IDPs. We speculate that
the complementary findings of these two ap-
proaches played key roles in triggering the rel-
atively recent recognition of the importance of
IDPs and IDP regions.

Nuclear Magnetic Resonance
NMR is a versatile spectroscopy method for
studying proteins (71) that, importantly, does
not require crystallization and is well suited to
the study of IDPs (34). For a structured protein,
the individual resonance peaks tend to be spread
out (e.g., there is a large chemical shift disper-
sion) because the local magnetic environments
of the nuclei differ considerably. However, in an

IDP the various peaks tend to be more closely
spaced or even overlapping (e.g., there is a lack
of chemical shift dispersion) because the lo-
cal magnetic environments of the nuclei are
indistinct (71).

Chemical shift dispersion provided critical
information about the human cell-cycle control
protein p21Waf1/Cip1/Sdi1 and its interaction with
a protein complex containing a cyclin bound to
a cyclin-dependent protein kinase (Cdk) (60).
Lack of chemical shift dispersion in the un-
bound state followed by increased dispersion
upon binding indicated that p21Waf1/Cip1/Sdi1 is
an IDP when free and that it undergoes a
disorder-to-order transition upon binding to
the cyclin/Cdk complex. This conformational
disorder allows p21Waf1/Cip1/Sdi1 to bind to mul-
tiple partners, as indicated by its biological roles
(60). Similar chemical shift dispersion experi-
ments have shown that FlgM, an Escherichia coli
protein involved in transcription regulation, is
an IDP when alone but that its C-terminal half
becomes structured upon binding to and in-
hibiting the transcriptional promoter σ28 (72).

NMR spectral data from IDP ensem-
bles have provided conformational constraints.
These constraints form the basis of two ap-
proaches to describing IDP ensembles. The
first approach uses NMR-constrained molec-
ular dynamics (MD) simulations over multiple
copies of the protein (known as replicate ex-
change MD) (73). The second approach uses
a broad sampling of possible structures, then
applies the experimental data to select among
them (33, 34). Regardless of the method used,
agreement with NMR data does not ensure
that the result is valid, given the many de-
grees of freedom compared with the paucity of
constraints (34).

Structure determination by NMR involves
fitting computationally generated structural
models to collections of dihedral angle con-
straints obtained from through-bond H–H
correlated spectroscopy and collections of
through-space interatomic distances deter-
mined from nuclear Overhauser effect (NOE)
spectroscopy (71). Insufficient constraints
lead to underdetermined structures, providing
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multiple structural possibilities. If pairs of struc-
tural possibilities are compared, structured re-
gions typically provide small root-mean-square
deviation (RMSD) values, whereas IDP regions
provide large RMSD values. Also, structured
regions sometimes provide large RMSD values
due to insufficient data (71).

The NMR-determined three-dimensional
(3D) structure of the DNA binding region of
the Antennapedia homeodomain protein has
a helix-turn-helix DNA binding motif. As-
sociated experiments have shown that a six-
residue IDP region undergoes a disorder-to-
order transition following binding to the minor
groove of DNA (74).

A recent approach to the identification of
IDP regions from NMR-determined structures
used an algorithm involving both backbone tor-
sional angles and RMSD values to assign IDP
regions to NMR structures (75). Another recent
technique compared NMR-determined struc-
tures with X-ray-determined structures to iden-
tify the RMSD values that provided the greatest
agreement between regions of missing electron
density in the X-ray structures and regions with
high RMSD values in the NMR structures (76).

NMR spectroscopy also has protocols that
reveal motional information. One approach in-
volves labeling the protein with 15N and then
measuring the NOE values arising from inter-
actions between peptide 1H and 15N atoms.
These 1H–15N heteronuclear NOE values ex-
hibit small or even negative values for more
rapidly tumbling peptides but strongly positive
values for more slowly tumbling structured pro-
teins and domains (77). Once assignments are
made, plots of 1H–15N values versus residue
numbers reveal structured and IDP regions in
the same protein (78).

By adding isotopes such as 13C or 15N cou-
pled with induction of expression of a specific
protein, one can use NMR methods to inves-
tigate the structure and behavior of a protein
residing inside a cell. Various isotopic labeling
strategies can be used to explore different as-
pects of the structure. An alternative approach
is to inject large cells (such as oocytes) with iso-
topically labeled proteins. Finally, isotopically

labeled proteins can gain entry into tissue cul-
ture cells via penetration signals, such as polyR,
or by addition of pore-forming toxins (79).

These in-cell NMR experiments involve sig-
nificant perturbation, so they are not strictly
in vivo experiments (79). Nevertheless, they
have provided direct evidence that the extreme
crowding and confinement inside cells do not
cause the IDPs tested so far to fold into struc-
ture (79–82). Although IDPs provide high-
quality in-cell NMR spectra, structured pro-
teins often do not, evidently due to NMR line
broadening that arises from significantly hin-
dered motions (83). Under some conditions,
proteins leak from cells; these leaked proteins
provide strong NMR signals, so appropriate
control experiments are crucial (84).

Computational Biology
Computational studies of IDPs began with in-
vestigations into why they do not fold. IDPs and
IDP regions do not fold primarily because they
are rich in polar residues and proline and de-
pleted in hydrophobic residues (85–87). Addi-
tional factors can override sequence tendencies
and induce an IDP region to become structured
or a structured region to become an IDP.

Individual-residue computational biases
(88) are determined by comparing residue
compositions from sets of IDPs (http://www.
DisProt.org) with compositions from rep-
resentative sets of structured proteins (89).
Through the use of previously published
data (87, 88) and with structured protein
amino acid compositions as the baseline, the
enrichments and depletions of residues in
IDPs and IDP regions can be compared with
the enrichments and depletions of surface
residues (Figure 3). With some exceptions,
the hydrophobic residues are mostly depleted
in both surface residues and IDPs, and the
hydrophilic residues and proline are mostly
enriched in both groups. The exceptions to
these trends need to be studied further.

Overall, these data suggest that P, E, S,
Q, and K are disorder-promoting amino acids;
that C, W, I, Y, F, L, M, H, and N are
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Figure 3
Comparison between the relative residue
composition of the surfaces of ordered proteins and
the residue composition of disordered proteins.
Surface residues are taken from solvent-exposed
residues in the structures of monomers (88).
Disordered residues are taken from the Database of
Protein Disorder (http://www.DisProt.org). Both
compositions relate to those of a representative set of
structured proteins (89) according to (CX − CRef )/
CRef , where CX is the composition of a residue type
in the surface or disordered set and CRef is the
composition of the same residue type in the
structured protein set.

structure-promoting amino acids; and that A,
G, T, R, and D are amino acids that are indiffer-
ent to disorder or structure. Thus, the compo-
sitional balance among these amino acids may
determine whether a protein or region folds or
whether it remains an IDP or IDP region.

Prediction of intrinsic disorder. Amino acid
composition differences between structured
proteins and IDPs (85) encouraged the devel-
opment of disorder prediction algorithms (90–
93). Two of the four seminal algorithms were
based on machine learning methods (90, 91),
and two were based on biophysical models of
protein folding (92, 93).

Factors that were expected to affect protein
folding, such as net charge, hydrophobicity,
aromatic content, polarity, and sequence com-
plexity, were tested to determine which had

the greatest effects, either positive or negative,
on structure formation (85). The most effective
attributes were then combined using neural
networks (90, 91). Additional refinements (94,
95) yielded a predictor of natural disordered
regions (PONDR R⃝). The merging of one
predictor trained on variously characterized,
long regions of internal disorder (VL) with
another trained on X-ray-characterized, dis-
ordered termini (XT) resulted in PONDR
VL-XT (95). Prediction accuracy exceeded
expectations from chance (86, 90), supporting
the concept that the sequence (or composition)
contains information about whether a protein
is folded or disordered. Another advance was
the recognition that disorder compositional
biases depend on sequence length (96). By now,
many machine learning disorder predictors
have been developed (97, 98). Investigators
have recently advanced our understanding
of the underlying similarities and differences
among IDP predictors (99).

The second machine learning approach
applied the same inputs and neural networks,
but trained on data from the CaN family
of sequences (91). Such homology-based
predictors are potentially very accurate yet are
underutilized.

The first biophysical model–based pre-
dictor used the concept that repulsion from
net charge impedes folding and increased
hydrophobicity promotes folding. This model
was implemented as a plot of net charge
versus hydropathy (92). A straight line on
the charge–hydropathy (C–H) plot separates
structured proteins from IDPs. The accuracy
of the whole-protein C–H plot predictor was
recently improved through the identification
of better-performing hydropathy scales (100).
The original predictor was modified to provide
a per-residue predictor (101).

The second biophysical model–based pre-
dictor approximated a protein’s folding energy
using two inputs: (a) amino acid pairwise inter-
action energies and (b) a protein’s amino acid
composition (93). These composition-based
folding energy estimates provide values that
correlate with estimates calculated from 3D
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structures. The composition-based folding en-
ergy differences between structured and IDP
proteins provide the basis for this predictor of
disorder, known as IUPred (93). This predic-
tor has the advantage of being based directly
on estimates of folding energy, and it is readily
available (102).

Disorder prediction became part of the Crit-
ical Assessment of (Protein) Structure Predic-
tion (CASP), beginning with CASP5 (2002),
followed by published evaluations (103, 104);
links to several of these predictors appear in
the Database of Protein Disorder (DisProt; see
http://www.DisProt.org). The CASP experi-
ment provides unbiased comparisons between
the IDP predictors, but the small sizes of the
CASP data sets are a limitation.

Current training and testing sets contain
many more structured residues than disor-
dered residues, making performance evaluation
a complex issue. One approach is to use bal-
anced accuracy (ACCbal), which is given by

ACCbal = [(% correctorder)

+ (% correctdisorder)]/2. 1.

Estimates of ACCbal range from 75% to 83% in
various CASP experiments. ACCbal has its own
limitations, so other performance metrics are
also used (103, 104).

Applications of disorder predictors. Many
experiments with disorder predictors have been
performed. Disorder predictors indicate that
sequence databases contain far more IDPs
and IDP regions than do structured pro-
tein databases (105), that eukaryotes have
significantly more predicted disorder than
do prokaryotes and archaea (106–108), that
disease-associated proteins are rich in predicted
disorder (109–112), and that several but not all
types of PTMs occur in IDPs and IDP regions
more often than in structured protein regions
(20, 113, 114).

In a recent study, overall percentages of
amino acids that were predicted to be disor-
dered for various archaea proteomes (excluding
the halophiles) ranged from ∼12% to ∼24%,

the bulk of the common bacteria proteomes
ranged from ∼15% to ∼30%, and the eukarya
proteomes ranged from ∼33% to ∼50% (108).
The halophiles are excluded here because their
proteins have adapted to a high intracellular salt
concentration by having a reduced hydropho-
bicity and a high negative surface charge (115),
properties that would cause many false-positive
predictions of disorder.

Depending on which predictor is used, the
human proteome is estimated to have be-
tween ∼35% (116) and ∼50% (117) disordered
residues. Another human proteome study fo-
cused on the modularity and distribution of pre-
dicted IDP regions; several findings indicated
that IDP regions in the human proteome should
be treated as functional units (118).

The eukaryotic nucleus is very rich in pre-
dicted disorder (107, 118). Indeed, eukaryotic
transcription factors have been long known to
contain nonfolding “acid blob” and “negative
noodle” sequences (119). Eukaryotic transcrip-
tion factors are extremely rich in predicted dis-
order (120); structured domains identified by
homology were found to be largely separated
from segments predicted to be IDP regions
(121).

FURTHER CHARACTERIZATION
OF INTRINSICALLY
DISORDERED PROTEINS
A recent two-volume book contains 60 chap-
ters describing biophysical studies of IDPs and
IDP regions (122, 123). The blind-men-and-
the-elephant parable from India tells us that
more can be learned if two or more experi-
mental methods are applied to the same IDP
molecule. Examples of such studies are dis-
cussed here.

Disorder Prediction and Proteolysis
One of the earliest methods for studying pro-
tein stability was sensitivity to proteolysis (42).
Accounting for digestion of both structured
proteins and known IDPs as controls improves
confidence in the results from using proteolysis
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to identify IDP regions, and the use of multiple
proteases with different specificities is also an
advantage (124).

Comparing digestion results with disorder
prediction allows each method to confirm the
results of the other. Such combinations have
been applied to the DNA repair enzyme XPA
(125), the transcription factor Ubx (126), and a
collection of proteins from the Protein Struc-
ture Initiative (PSI). Investigators found that
structure determination successes and failures
for PSI targets correlate with the absence and
presence of IDP regions, respectively (127).

Chemical Modification and Electron
Paramagnetic Resonance
Electron paramagnetic resonance (EPR) spec-
tra arising from an unpaired electron in a spin-
label moiety provides information about the lo-
calized motions on the millisecond (or faster)
timescale (128). In studies of protein mobility
by EPR spectroscopy, a cysteine is incorporated
into the region of interest by site-directed mu-
tagenesis, followed by covalent linkage of the
spin-label moiety to the S–H group (128). With
such labeling, EPR spectroscopy has shown that
rhodopsin’s C-terminal region, which is impor-
tant for signaling, is highly mobile and becomes
much less mobile upon antibody binding (129).
Similarly, EPR spectroscopy has been used to
characterize the disorder-to-order transition
when the C-terminal IDP region of measles nu-
cleoprotein binds to the measles virus phospho-
protein (130).

X-Ray Diffraction and Nuclear
Magnetic Resonance
Several studies that compared the structured re-
gions of proteins characterized by both X-ray
diffraction and NMR have been performed. In
contrast, too few experiments combining these
two methods have focused on IDP regions.

In a combined X-ray–NMR study of Bcl-
XL, NMR structure determination indicated
that a functionally important 55-residue re-
gion of missing electron density in the X-ray

structure was significantly unfolded. Further-
more, the 1H–15N heteronuclear NOE spec-
tra provided negative values for the region with
missing coordinates and strongly positive peaks
for the structured regions. These NMR experi-
ments showed that the region of missing density
in the X-ray structure is both unstructured and
highly mobile (78). Thus, the region of miss-
ing electron density in the X-ray structure of
this protein does not arise from a mobile struc-
tured domain, which is always a possibility for
large regions of missing coordinates in X-ray
structures.

X-Ray Crystallography and
Small-Angle X-Ray Scattering
The combination of protein crystallography
and small-angle X-ray scattering (SAXS) pro-
vides insight into the shape adopted by the re-
gion of missing electron density (131). Recent
advances have enabled more precise analyses of
SAXS data for these purposes (132). Applica-
tions of these advanced methods to the human
glycosylase NEIL1 have provided mechanistic
insight into how NEIL1’s flexible, disordered
∼100-residue C-terminal domain becomes in-
volved in multiple functional interactions (133).

Nuclear Magnetic Resonance and
Small-Angle X-Ray Scattering
NMR provides highly localized structural
information. Thus, IDP configurational en-
sembles developed by fitting sparse NMR
data provide uncertain overall shape estimates.
However, SAXS provides good shape estimates.
Thus, the combination of data from both meth-
ods is advancing our understanding of the struc-
tures and motions of IDP ensembles (131, 134).

Characterization with Multiple
Methods
Similar to many other scaffold and docking pro-
teins (135, 136), AXIN is predicted to be mostly
disordered (135), a hypothesis supported by
multiple experiments (137). The G295–A500
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region has multiple mutations associated with
the development of cancer and has known
binding sites to glycogen synthase kinase 3β

(GSK3β) and β-catenin (138).
The G295–A500 region has been probed

by multiple methods. A smooth decrease in
tryptophan fluorescence was observed over the
temperature range between 20◦C and 80◦C,
whereas a globular protein domain showed a
lateral fluorescence shift at ∼60◦C due to a
thermal unfolding event, indicating the ab-
sence of a thermal unfolding for the G295–
A500 segment over this temperature range.
The CD spectrum indicated a random-coil
structure. Size-exclusion chromatography pro-
vided a too-high molecular weight, indicating
an extended shape. The 1H–15N heteronuclear
single-quantum coherence NMR spectrum was
significantly collapsed and remained almost un-
changed with a shift to 6 M urea. Finally, 9
of 12 disorder predictors found this region to
be mostly disordered. According to all these
measures, the G295–A500 fragment is an IDP
region.

In the Wnt pathway, AXIN binds both
GSK3β and β-catenin, thereby accelerating the
phosphorylation of β-catenin by the kinase.
The G295–A500 fragment greatly accelerated
this phosphorylation in vitro. Deletion of either
binding site eliminates the acceleration. Thus,
the G295–A500 segment performed its biolog-
ical function while remaining completely dis-
ordered. The double binding of the kinase and
its substrate raises the local concentration of
each relative to the other, accelerating the phos-
phorylation by the mechanism of colocalization
(139).

Investigators have suggested the term
“stochastic machine” to describe a flexibly
linked complex such as AXIN with its bind-
ing partners (140). Given the high frequency of
disorder in scaffold and anchor proteins (135,
136), stochastic machines are likely to be very
common. Binding of two or more partners to a
single IDP region has an advantage compared
with connection with a flexible linker arising
from gene fusion because the separated com-
ponents can be reutilized in multiple machines.

Indeed, AXIN is the scaffold for at least three
different pathways (140).

Both substrate-binding and ubiquitin-chain
elongation are performed by a multiprotein E3
ligase that uses highly mobile parts based on
IDP regions (141). This complex is a good can-
didate for another stochastic machine.

BIOLOGICAL FUNCTIONS
The various functions carried out by IDPs call
for a fundamental reassessment of the protein
structure–function paradigm (5). In this sec-
tion, we discuss various methods used to iden-
tify IDP-associated functions. Overall, IDP
functions complement those of structured pro-
teins (142–144).

Computational Approaches
Because disorder can be predicted from se-
quence with fairly good accuracy, and because
the large databases of amino acid sequences
also contain functional information about
these proteins, it seems reasonable to use com-
putational approaches to search for potential
relationships between function and disorder.
Such computational studies examined the
order and disorder tendencies of collections
of proteins with the same Gene Ontology
descriptors (107, 145–147). As had been shown
for fibrinogen, trypsinogen, and CaN, these
studies indicated that, on a very large scale,
the functions of IDPs and IDP regions are
heavily biased toward signaling, regulation, and
control. However, the functions of structured
proteins seem to be related mostly to catalysis
(e.g., enzymes such as lysozyme); the controlled
binding and release of small-molecule ligands
(e.g., the binding and release of oxygen by
myoglobin); and the movement of electrons,
ions, or molecules across membranes (e.g.,
proton translocation by bacteriorhodopsin).

Regulation by disorder versus catalysis
by structure is an imperfect partition. Many
enzymes contain flexible, disordered loops
or tails that fold onto the substrates when
they bind, thereby contributing to catalysis
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by helping to exclude water and sometimes
by providing catalytic residues (148, 149).
Also, enzymes often contribute to signaling
and regulation, especially by PTMs such as
phosphorylation, acetylation, or proteolysis.
In several recent experiments, computational
biologists have attempted to predict function
from amino acid sequence (150). These exper-
iments typically used amino acid sequence and
3D structure to provide the basis for inputs for
the prediction of Gene Ontology annotations.
In some of these experiments, the inclusion of
disorder prediction combined with the various
disorder-associated linear motifs (discussed in
more detail below) proved useful for function
prediction (151).

Manual Annotation
Although computational approaches have
revealed trends and formed the basis for pre-
dicting functions of proteins from sequence,
manually curated databases provide useful
repositories. DisProt (152) currently contains
manual annotations for 694 proteins with
1,539 experimentally characterized regions of
disorder, almost all of which have identified
biological functions. DisProt lists 39 different
functions that have been associated with IDP
regions, and many of them involve intercon-
versions between order and disorder. Examples
of these functions include flexible linkers,
many types of PTMs, regulation of apoptosis,
regulation of proteolysis, transport through
narrow pores, nuclear localization signals, and
binding to a wide variety of partners.

Databases
Five databases focus on different aspects
of IDPs. These databases are the above-
mentioned DisProt, the Intrinsically Disorder-
ed Proteins with Extensive Annotations and
Literature (IDEAL) (153; see http://idp1.
force.cs.is.nagoya-u.ac.jp/IDEAL/), the Da-
tabase of Protein Disorder and Mobility
Annotations (MoBiDB) (154; see http://
MoBiDB.bio.unipd.it), the Database of

Disordered Protein Prediction (D2P2) (117;
see http://d2p2.pro/), and the Protein En-
semble Database (pE-DB) (134; see http://
pedb.vib.be).

IDEAL contains a link that enables pre-
dictions of structure and disorder (116) as
well as indications of IDP involvement in
protein–protein interaction (PPI) networks.
MoBiDB includes IDP estimates from NMR
structures as well as the outputs from several
disorder predictors. Currently, MoBiDB lists
26,993 proteins with experimental annotations
and 4,662,776 proteins with either experimen-
tal or prediction annotations. D2P2 contains
data from nine different disorder predictors
applied to >10 million sequences from >1,700
complete genomes representing >1,200
distinct species; it also presents applications
of predictions of structured domains using
hidden Markov models developed from SCOP
SUPERFAMILY structures. Finally, pE-DB
contains a collection of 39 IDP ensembles
with a total of 3,973 structures. The various
ensembles were developed by eight different
research groups using different methodologies.

These databases provide experimenters with
important sources of information against which
to test the novelty of their latest IDP findings.
Comparing information across these databases
will yield new insights into IDP structure and
function.

Solubility Enhancement
An analysis of PSI data showed that having pre-
dicted IDP regions increases the chances of sol-
uble expression and purification but decreases
the chances of successful structure determina-
tion. These results suggest that IDP regions
generally help make proteins more soluble,
thereby improving expression and purification,
but then diminish the probability of crystal-
lization and structure determination (54). Solu-
bility enhancement is expected from polar and
charged IDPs, but not necessarily from all types
of IDPs, especially if they contain local regions
with a tendency to aggregate. A direct indica-
tion that IDP regions can enhance solubility
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has come from the increased solubility that re-
sults from the fusion of insoluble proteins with
either natural IDPs (155, 156) or specially de-
signed artificial IDP sequences (156).

Regulation of Protein Lifetimes
An oft-stated objection to the existence of IDPs
and IDP regions in vivo is that they would
rapidly degrade inside cells (157). Indeed, many
IDP regions are highly sensitive to proteolytic
digestion in vitro, but such sensitivity is not a
compelling argument against IDP existence in
vivo.

First, in vivo proteolysis is highly regulated.
For example, for proteasome-mediated diges-
tion most proteins are first ubiquitinated, which
requires an exposed hydrophobic patch that is
not common in IDPs (158). When present,
such patches may be protected by chaperone-
like bodyguard (143) or nanny (159) proteins,
whose suggested purpose is protection from
proteolysis, aggregation, and incorrect part-
ner binding, rather than promotion of fold-
ing. Second, many disordered regions are in-
volved in PPIs, either transiently or in stable
complexes. Hydrophobic patches promote such
interactions (see the next section), reducing an
IDP’s proteolytic sensitivity in vivo. Third, pro-
teolytic digestion in vivo is an important reg-
ulatory mechanism. Some short-half-life pro-
teins contain certain motifs, such as KEN-box,
destruction-box, or PEST motifs (158). These
motifs are associated with regions of disorder
(158, 160, 161); therefore, rather than repre-
senting an argument against IDP existence in
vivo, many IDP regions are probably important
components of proteolytic regulatory mecha-
nisms, just as for trypsinogen and fibrinogen
activation (discussed above).

Protein–Protein Interactions
Several IDPs used to train the original disorder
predictor contained short predictions of struc-
ture that matched binding sites to protein part-
ners (162). The PONDR VL-XT in particular
shows dips that relate to binding sites and are

associated with local hydrophobic patches. We
refer to these binding site dips as MoRFs (163).

As for association between globular pro-
teins, burial of hydrophobic groups is impor-
tant for the binding of IDPs to their protein
partners (164). Very recent studies suggest that,
especially for interactions involving disordered
domains (discussed further below), polar inter-
actions are also very important (165).

Figure 4a shows an original training-set ex-
ample MoRF, 4E-BP1 (162), along with three
additional examples of IDP regions involved in
PPIs. These additional examples include two
in which each IDP region uses three separate
MoRFs to bind to one partner, namely phos-
phatase inhibitor II (Figure 4b) and calpastatin
(Figure 4c), and one in which a long IDP wraps
around its dimeric partner, namely p27kip1

(Figure 4d ), thereby forming a disordered
domain. The bound 4E-BP1 may contain
additional regions that bind to its partner with
multiple conformations (166), thereby forming
a fuzzy complex. Disordered domains and
fuzzy complexes are further discussed in below
subsections.

Some protein segments map to regions of
missing electron density in certain crystals but
are structured in other crystals. These protein
segments are referred to as ambiguous (167)
or dual-personality (DP) (168) segments. DP
segments have amino acid compositions that
are intermediate between those of structure
and disorder (168) and similar to those of helix-
forming MoRFs plus their nearby flanking
regions (169). Recent studies on semidisorder
(41) are probably dealing with regions similar
to these.

MoRFs that form irregular structure upon
binding typically do not show short structure
predictions with PONDR VL-XT. Recently
developed predictors that identify all types of
binding segments within IDP regions are use-
ful (170, 171).

An alternative approach is to identify
binding-associated sequence patterns known as
ScanSite motifs (172), eukaryotic linear motifs
(173), short linear motifs (174), or minimotifs
(175). The motifs identified by these various
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a b

c d

Figure 4
Examples of intrinsically disordered domains bound to partners. In all of these structures, a portion of the
intrinsically disordered domains becomes structured upon binding (blue ribbons), whereas other portions
remain disordered (red strands with one ball per residue). Disordered regions are modeled to scale with a
random conformation, without consideration of additional experimental data. (a) The completely disordered
protein 4E-BP1 binds to eukaryotic initiation factor 4E (eIF4E) through a few central residues [Protein Data
Bank (PDB) identifier 1EJ4]. Additional evidence suggests that a significant fraction of the IDP regions form
fuzzy complexes with eIF4E (166). (b) Protein phosphatase inhibitor 2 binds to type 1 protein phosphatase
by using three discrete regions connected to and flanked by disordered regions (PDB 2O8A). (c) Calpastatin
binds to calpain by using three discrete regions connected by disordered regions (PDB 3DF0). (d ) p27kip1

binds to the CDK2/cyclin A heterodimer, whereas the termini remain disordered (PDB 1JSU). Such large
regions are termed disordered domains (203).

methods are located mostly in IDP regions
(176), except for minimotifs, which map to
both structured and disordered regions (177).

Given the crystal structure of a protein com-
plex, a plot of monomer surface area versus
buried surface area separates complexes that
arose from two globular, structured proteins
from complexes that arose from two IDPs. The
former lie close to the origin of the plot, and
the latter are located much farther from the
origin (178). A modification of this plot sep-
arates hetero- and homodimer complexes into
three types. In the first type, both monomers
are structured before association. In the second

type, one is structured and one is an IDP before
association. In the third type, both monomers
are IDPs before association (179). This modi-
fied approach was recently applied to the ribo-
some, and the results indicate that most ribo-
somal proteins have IDP regions that become
structured upon binding (180)

The association between a structured
protein and a flexible IDP or IDP region may
involve preformed elements (181) or, alterna-
tively, conformational selection, a concept first
proposed in 1974 for binding to a flexible lig-
and (182). An alternative mechanism is known
as induced fit (183) or coupled binding and
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folding (184), wherein structure formation
occurs concomitantly with binding. Any
given association might involve a mixture of
conformational selection and induced fit (185).
Characterization of the mechanistic details of
individual IDP-based PPIs is an active area
of research (165, 186–193) that is expected to
continue indefinitely.

Protein–protein interaction networks. Eu-
karyotic PPI networks contain hubs that bind
to many partners, as well as other proteins
that bind to only a few. Hubs may require a
new principle for protein molecular recognition
(194). An IDP is flexible, so it can bind to multi-
ple partners (60, 142). Thus, IDP-based inter-
actions have been proposed as the new principle
to explain hub-associated binding to multiple
partners (195). Multiple partner binding may
involve two mechanisms. In the first, one region
of disorder binds to many different partners
(one-to-many binding). In the second, many
different regions of disorder bind to one struc-
tured partner (many-to-one binding) (195).

One-to-many binding. An IDP region can
bind to many partners by having one binding
site after another (196). Alternatively, one IDP
region can change its shape and thereby bind
to many different partners (61, 144, 179). The
interactions between p53 and its partners illus-
trate both of these IDP-based multiple partner
binding mechanisms (Figure 5). These multi-
ple partner capacities are further enhanced by
PTMs and by AS (61), both of which frequently
occur in IDPs and IDP regions (18, 20).

These structures (Figure 5) represent only a
small fraction of the known protein interactions
involving p53’s IDP regions. The N-terminal
IDP region probably binds to more than 40 dif-
ferent partners (C. Anderson, personal commu-
nication), and the C-terminal IDP region binds
to an even larger number. As we determine
more structures, the complexity of the overlap
for the various binding sites will increase fur-
ther. Also, with so many partners for each IDP
region, it is important to consider not only that
a single disordered region can bind to multiple

partners, but that these multiple partners com-
pete for binding to the same IDP region. This
competition certainly has important biological
consequences.

Many-to-one binding. Alternatively, many
different IDPs or IDP regions of differing se-
quence can use their flexibility to bind to a single
structured partner. The different MoRFs can
bind to essentially the same binding site, to an
overlapping but distinct binding site, or to com-
pletely different binding sites on the same pro-
tein (179, 197). When the sites are completely
different, the binding regions can arise from the
same protein. The PDB contains examples in
which a single IDP has two or even three sepa-
rate MoRF regions bound to the same partner
with IDP linkers (Figure 5).

Tissue-specific rewiring of protein–protein
interaction networks. Tissue-specific AS re-
veals that, in many specific examples, one AS
isoform bears a MoRF-containing IDP region
and another isoform in another tissue lacks the
MoRF-containing IDP region. Thus, tissue-
specific AS in messenger RNA (mRNA) regions
that code for IDP regions can cause rewiring of
the overall PPI network (198–200).

Mutual folding. Interaction between two
IDPs can lead to mutual synergistic folding.
The cyclic AMP (cAMP) response element–
binding protein (CREB) interacts with the
CREB-binding protein (CBP). CBP contains a
molten globular IDP region that interacts with
a fully unstructured segment from the p160
steroid coactivator ACTR. Upon interaction,
these two IDPs mutually fold to yield an inter-
twined structured domain containing six helical
segments, three from each IDP (14, 201).

Disordered domains. A structured protein
domain evolves, functions, and exists inde-
pendently of the rest of the protein chain
(202). Some IDP regions longer than ∼25
residues likewise evolve, function, and exist
independently of the remainder of the protein
chains, so such regions have been termed
disordered domains (203). A common function
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Figure 5
Intrinsic disorder and molecular interactions of the tumor suppressor p53. For the PONDR VL-XT
(predictor of natural disordered regions, with one predictor trained on variously characterized, long regions
of internal disorder and another trained on X-ray-characterized, disordered termini) prediction of intrinsic
disorder for p53 (center), values above or below the 0.5 threshold indicate predictions of disorder or order,
respectively. The prediction indicates that the N and C termini are largely disordered, whereas the central
DNA binding domain is ordered. Also shown are the structures of several discrete regions of p53 (ribbons)
that have been determined in complexes with partners (surfaces); the corresponding horizontal bars indicate
the region of p53 that participates in each structure. Five partners of the N terminus (clockwise from lower
right) are high-mobility group protein B1 [Protein Data Bank (PDB) identifier 2LY4], Taz2 domain of p300
(PDB 2K8F), nuclear coactivator–binding domain of p300 (PDB 2L14), MDM2 (PDB 1YCR), N terminus
of replication protein A (PDB 2B3G), and PH domain of RNA polymerase II transcription factor B subunit
1 (PDB 2GS0). Eight partners of the C terminus (clockwise from upper left) are histone acetyltransferase
domain of Tetrahymena general control nonderepressor 5 (PDB 1Q2D), SET9 (PDB 1XQH), CDK2/cyclin
A (PDB 1H26), Sir2 (PDB 1MA3), bromodomain of CBP (PDB 1JSP), S100B(ββ) (PDB 1DT7), Tudor2
domain of PHF20 (PDB 2LDM), and p53 homotetramerization (PDB 3SAK). Four partners of the central
DNA binding domain (left to right) are 53BP2 (PDB 1YCS), large T antigen of simian virus 40 (PDB 2H1L),
BRCT domain of 53BP1 (PDB 1GZH), and DNA (PDB 1TSR).
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of disordered domains is that they associate
with and thereby regulate the activities of
globular protein partners.

Researchers have devoted much effort to
grouping proteins into homologous protein
families. One such attempt, Pfam (204), uses
hidden Markov models to find and group mem-
bers of the same family by sequence pattern
matching. For multicellular eukaryotes, many
of these Pfam domains are IDPs or contain IDP
regions (203, 205). Many of these IDP Pfams
fit the characteristics of disordered domains.

These disordered domains are character-
ized by long, complex interfaces between the
IDP region and its globular binding partner.
Given the lengths of such interactions and the
flexibilities of such IDP regions, the association
and dissociation of these complexes can involve
multiple localized steps, each regulated by sep-
arate signals, thereby enabling signal integra-
tion. For example, the protein p27kip1 regulates
the progression from G1 into S phase. A disor-
dered domain region of p27kip1 causes cell-cycle
arrest by binding to and shutting off the cyclin
A/Cdk2 complex (Figure 4d ). Dissociation of
p27kip1 from this complex causes progression
into S phase. This dissociation involves a signal
conduit that includes both T and Y phos-
phorylations, ubiquitination, and proteasome
digestion (206) in a series of steps that integrate
signals from different pathways by using the
advantages of IDP regions (207). Follow-up
studies have suggested that IDPs are generally
important in cell-cycle regulation (208).

Fuzzy complexes. Upon binding, many
MoRFs contain regions, either internal or
flanking, that remain disordered (209). Sur-
prisingly, the nearby IDP region can affect the
binding constant of the interaction between the
MoRF and its partner, even though the IDP
region fails to form structure upon binding.
Complexes with IDP regions that affect bind-
ing are described as fuzzy (210). An interesting
open question is whether an interaction can
be fuzzy over the entire interaction surface or
whether it requires at least some local region
of structure (31).

The binding of the IDP protein 4E-BP1
to eukaryotic elongation factor 4E (eIF4E) in-
volves a short region that becomes well struc-
tured (Figure 4a) (211) and an additional re-
gion that is indicated to bind by NMR. The
overall shape of the complex, as determined by
fitting the X-ray structure to SAXS data, shows
where the remaining regions of disorder project
beyond the structured eIF4E surface and how
the fuzzy binding region is probably organized
(166).

Another interesting fuzzy complex forms
between the IDP Sic1 and the cell division con-
trol protein 4 (Cdc4) in budding yeast. Phos-
phorylation of any six (or more) of nine subop-
timal sites on Sic1 leads to tight binding of Cdc4
to a WD40 domain, followed by ubiquitination
and degradation of Sic1, promoting the onset
of DNA replication (212). Although multiple
phosphorylations increase the apparent bind-
ing constant, the interaction is not polyvalent;
rather, the WD40 domain has only one binding
site. An electrostatic model shows that electro-
static interactions between Cdc4 and Sic1 lead
to a fuzzy, non-structure-forming interaction
that raises the apparent binding constant (213).
Fuzzy interactions essentially maintain a high
local concentration [e.g., colocalization (139)]
of phosphorylated Sic1 sites, each of which can
bind to one side on the WD40 domain of Cdc4,
so as one hops off, another one rapidly hops on.

Binding affinities and kinetics. On the ba-
sis of a concept originally proposed in 1979 by
Schulz (214) for protein–nucleic acid interac-
tions, the energy needed to fold an IDP must be
taken away from the interaction energy, which
results in high specificity and low affinity. Ex-
periments show that although many IDPs do
indeed have weak affinities with their partners,
the range of affinities for complexes involving
IDPs strongly overlaps the range for complexes
involving structured proteins; similar overlaps
are also observed for on and off rates (190). In-
teractions involving IDPs can exhibit remark-
ably fast on rates (191), which probably occur
via a fly-casting mechanism (192) or a dock-
and-coalesce mechanism (193).
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Protein–Nucleic Acid Interactions
In the late 1970s, the X-ray crystal structure of
the tobacco mosaic virus (TMV) coat protein
revealed a 25-residue, positively charged IDP
region. Subsequent X-ray and NMR studies
showed that this segment undergoes a disorder-
to-order transition upon RNA binding during
TMV assembly (16).

Later, in 1994, Spolar & Record (184)
performed thermodynamic studies on several
protein–DNA interactions. Their careful dis-
section of the thermodynamic data, along with
analyses of known structural changes, led to the
suggestion that these interactions often involve
coupled binding and folding of proteins upon
specific DNA binding.

In 1999, a collection of 75 crystal struc-
tures of protein–nucleic acid complexes were
analyzed. Most of them contained DNA rather
than RNA. Of them, investigators determined
24 crystal structures of the proteins without
any nucleic acid, along with the structures of
the complexes. For 8 of these 24 complexes,
the proteins exhibited regions of disorder when
alone, and these regions were structured in
their complexes. The authors concluded that
such examples of disorder in the proteins be-
fore binding were likely to be much more com-
mon but were not observed due to inhibition of
crystallization by the disordered regions (215).

Protein–DNA interactions. Studies of
DNA–protein interactions indicate that IDP
regions are affinity tuners of such interactions.
Also, via a so-called monkey-bar mechanism,
IDP regions increase the overall capability of
proteins to efficiently search DNA for specific
binding regions (216).

For example, the important Drosophila reg-
ulatory transcription factor Ubx contains a
homeobox (HOX) domain flanked by dis-
ordered regions. Ubx’s HOX domain alone
binds much more tightly than the HOX do-
main with the flanking IDP regions, a finding
that is consistent with affinity tuning. Further-
more, intramolecular binding by an IDP-linked
YPWM motif plays an especially important role

in weakening Ubx’s HOX binding to DNA
(126).

Although Ubx has low binding specificity to
DNA, interaction with Extradenticle (Exd, or
Pbxl in mammals) causes significant gains in
both affinity and specificity. These interactions
are mediated by Ubx’s IDP-linked YPWM mo-
tif, which binds into a pocket within Exd’s
HOX domain (217). Thus, the same IDP-
linked YPWM can either weaken or strengthen
Ubx binding to DNA, depending on the rela-
tive locations of Ubx and Exd’s binding sites
and the length of the IDP linker. Furthermore,
the IDP linker between the Ubx HOX domain
and the YPWM motif is encoded by several mi-
croexons (126), allowing the use of AS to change
the length of this IDP linker; in turn, the use of
AS can alter both Ubx’s intrinsic DNA binding
affinity and its interactions with Exd.

Protein–RNA interactions. Two important
multisubunit RNA–protein complexes are the
spliceosome (218) and the ribosome (219). The
former excises the introns and splices the ex-
ons of precursor messenger RNA (pre-mRNA)
molecules to yield mature mRNA, and the lat-
ter uses the coding instructions from mRNA to
specifically link amino acids together to form
polypeptide chains. For both assemblies, the
catalytic steps are performed by RNA, not pro-
tein (218, 219).

Overall, the prokaryotic and eukaryotic ri-
bosomes contain 52 and 79 proteins, respec-
tively (220). Astoundingly, the 3D structure of
the ribosome has been determined (219). A no-
table finding is that a large fraction of ribosomal
proteins contain highly extended structures that
play critical roles in ribosomal assembly (221).
These extensions are also probably important
for ribosome stability (219). A recent compre-
hensive analysis indicates that essentially all of
the ribosomal proteins have large regions that
are predicted to be IDPs both from their se-
quence and from their observed structure con-
text (180) using a plot of monomer surface
area versus buried surface area (178), as mod-
ified for generalized heterodimers (179). Cor-
rect ribosomal assembly probably depends on

570 Oldfield · Dunker

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
4.

83
:5

53
-5

84
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f L

au
sa

nn
e 

on
 0

7/
12

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BI83CH22-Dunker ARI 3 May 2014 11:29

disorder-to-order transitions of these long IDP
regions (221).

Although the ribosome contains well-
organized RNA and protein components, the
spliceosome exhibits exceptionally dynamic
composition and structure. Thus, identification
of the key protein components has been a sig-
nificant challenge (218). A recent analysis sug-
gests that the ∼100 proteins associated with
the spliceosome are similar to the ribosomal
proteins in that they are very rich in IDP re-
gions (222). Thus, both major ribonucleopro-
tein assemblies in eukaryotes probably utilize
IDPs and IDP regions for their assembly and
function.

Allosteric Regulation
Several enzymes and binders of small molecules
are regulated by effector molecules that bind
to sites that are distant from the active site.
Two models have been proposed to explain
this allosteric regulation: the Monod–Wyman–
Changeux (MWC) concerted model (223)
and the Koshland–Némethy–Filmer (KNF) se-
quential model (224). Both models involve mul-
tisubunit proteins with two alternative states
that differ in activity; one of the states is fa-
vored by effector binding. The MWC and KNF
models differ in several interesting details with
regard to the steps involved in coupling effector
binding to changes in activity.

Recently, researchers proposed an alterna-
tive model for allosteric regulation in which the
two structured states are replaced by an ensem-
ble. In this model, effector binding alters the
ensemble characteristics (225). IDP-region in-
volvement in allosteric regulation has recently
been identified for several proteins (226–228).

Single-molecule fluorescence energy trans-
fer was recently used to study a mechanism
by which an adenovirus hijacks cellular func-
tions by using ternary interactions involving
E1A (an adenovirus IDP that becomes a Hub),
the retinoblastoma protein (pRB), and CBP
(229). This study has shown that the E1A–
pRB–CBP interactions can be induced to switch
between positive and negative cooperativity,

thereby changing whether the resulting com-
plex is one of the two binary complexes or the
ternary complex. A context-dependent switch-
ing among the various forms can, in turn, al-
ter downstream signaling outputs. This IDP-
dependent example of allosteric interactions has
very broad implications (229).

Chaperone Function
IDPs and IDP regions have been implicated
as chaperones for both RNA and protein fold-
ing (230, 231). Even for the mostly folded,
multisubunit GROEL/GROES complex, IDP
loops may be important for chaperone function
(232). Various IDPs exhibit chaperone activity
(233, 234).

The oxygen-sensor bacterial protein Hsp33
contains a zinc ligand that binds two cysteine
S–H moieties among its ligands. Cysteine oxi-
dation leads to disulfide-bond formation, which
in turn triggers a major order-to-disorder tran-
sition. This order-to-disorder transition is as-
sociated with the development of chaperone
activity (40).

The flexibility of IDP regions and their
ability to bind to multiple partners may be
important components of the mechanisms un-
derlying chaperone activity (8, 231). More re-
search is needed to understand the mechanisms
by which IDP regions carry out chaperone
activity.

EVOLUTION
Surface amino acids evolve faster than do
buried residues (235). Shannon’s entropy, cal-
culated from the number of position-by-
position changes in the sequence alignments
of 130 protein families with 7,143 aligned se-
quences, increases linearly with the recipro-
cal of the packing density (236), indicating
that protein 3D structure significantly reduces
amino acid substitutions over evolutionary
time.

Observations of structured proteins pre-
dict that, due to their lack of structure, IDP
regions should show higher rates of change
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compared with the structured regions of the
same proteins. This hypothesis was tested in
26 protein families containing at least one ex-
perimentally characterized IDP region. As ex-
pected, the segments that aligned with the
IDP regions showed statistically significant in-
creased mutation rates compared with the seg-
ments that aligned with structure (56).

Unexpectedly, 3 of the 26 protein fami-
lies revealed IDP regions with higher sequence
conservation than that of the structured parts
(56). Many additional predicted IDPs have high
sequence conservation (237, 238). IDP regions
with the expected lack of sequence conserva-
tion, known as flexible disorder, are associated
with signaling pathways and multifunctionality,
whereas those with unexpected sequence con-
servation, known as constrained disorder, are
associated with RNA binding and chaperone
activity (239). Constrained disorder is also asso-
ciated with regions of proteins that are involved
in PPIs and encoded by mRNA segments sub-
ject to tissue-specific AS (240). Both flexible dis-
order and constrained disorder are enriched in
regions of proteins that undergo tissue-specific
AS, but not general AS (199).

Replication protein A (RPA) contains an
IDP linker that exhibits very high sequence
variability, including multiple INDELs (56).
Homologous RPA IDP segments from five
widely divergent organisms were cloned, ex-
pressed, purified, and analyzed by NMR. De-
spite their sequence differences, the NMR data
indicated very similar flexibilities. Thus, RPA’s
IDP linker exhibits well-conserved flexibility
and disorder, whereas its sequence lacks signif-
icant conservation (241).

Comparing substitution matrices for struc-
tured and disordered proteins with similar
degrees of sequence conservation shows that
their patterns of amino acid substitution are
clearly different (242). For example, substitu-
tions of G for W or Y (or the reverse) are much
more common in IDPs, whereas substitutions
of N for E (or the reverse) are much more
common in structured proteins. Overall,
structured proteins favor structurally similar
replacements, whereas IDPs and IDP regions

show less favoritism. IDPs’ greater tendency
toward random substitutions becomes clearer
from their lower rate of conservation, indicated
by the identity elements of the substitution
matrices (242).

As discussed above, IDP regions provide
binding sites that are important for enabling the
complexities observed for PPI networks in eu-
karyotes (195), especially with multiplexing by
AS and PTM (61, 198). Several studies of the
evolution of PPI networks suggest that changes
in IDP regions—whether by point mutation,
INDELs, changes in PTM sites, or changes in
AS patterns—play fundamental roles in the evo-
lutionary changes observed in these networks
(243–246).

A recent study of p53 evolution found that
disorder prediction values and evolutionary
rates of change are significantly correlated.
When combined with other observations about
the evolution of IDP regions, these data suggest
that IDP regions are likely to be disordered in
vivo (247).

In silico studies suggest that random muta-
tions readily convert IDP regions into struc-
ture, indicating that IDP regions require active
maintenance (248), yet IDP regions are quite
well conserved over evolutionary time (239,
249). Among yeast proteins that are harmful
if overexpressed, the strongest determinant is
IDP prediction, which suggests that overpro-
duction of IDPs is often harmful (250). Consis-
tent with this finding, IDPs are tightly regulated
in yeast (251) and probably in other organisms
as well (252). This tight regulation is probably
needed, at least in part, because of the ability of
IDPs to be involved in multiple processes, also
known as moonlighting (253). Thus, an excess
or dearth of a given IDP could give rise to un-
favorable moonlighting activities or a lack of
crucial ones, respectively. Viruses are proposed
to hijack cell regulation by rapidly evolving IDP
regions containing linear motifs that compete
with similar cellular signaling motifs (254). All
of these observations suggest that the amounts
of IDPs in cells are necessarily maintained at
specific levels because of their crucial regula-
tory activities.
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The Myc proteins (c-Myc, MycN, and
MycL in humans) are IDPs with so many
INDELs and mutations that their sequences
are essentially impossible to align. Investiga-
tors have recently attempted to construct a
phylogenetic tree for this protein on the ba-
sis of PONDR VSL2P predictions (255). This
tree seems reasonable overall and presents
some interesting insights into the history of
this protein family. We will learn over time
whether this highly novel approach is generally
useful.

FUTURE DIRECTIONS
A major shortcoming is that databases of PPIs
are constructed as though each protein had
a single binding site. For example, by using
several PPI databases we identified more than
400 protein partners for the BRCA1 protein.
None of the PPI databases indicate the BRCA1
sequence locations for partner binding, nor are
the splice variants identified (257).

Tedious literature searches are needed to
identify BRCA1’s partner binding sites. Fewer
than 40 of the 400 partner binding sites were
identified, and most of these sites map to
BRCA1’s long central IDP region (256). Not
one 3D structure has been determined for a
BRCA1 MoRF, linear motif, or disordered do-
main bound to a partner.

How can we possibly understand tissue-
specific rewiring around the BRCA1-based
Hub in the overall PPI network unless we know

both the regions of pre-mRNA AS and the
sites of partner–MoRF interactions? Precision
medicine will remain elusive until these MoRF–
partner interaction sites and their 3D structures
are determined on a very large scale. Concerted
efforts are needed to perform this task.

Since the 1980s, investigators have known
that eukaryotic transcription factors are rich in
IDP regions (119), yet there have been sur-
prisingly few studies that aimed to determine
the roles of disorder in gene regulation, espe-
cially with regard to tissue-specific gene reg-
ulation. We suggest that, as for PPI networks,
researchers will find that AS of pre-mRNA cod-
ing for transcription factor IDP regions, cou-
pled with PTMs mapped to IDP regions con-
taining MoRFs for proteins and nucleic acids,
act to rewire gene regulation in a tissue-specific
manner. The importance of this combination of
factors for gene regulation has already become
evident (126, 257).

We speculate that the orchestration and
modulation of PPIs and protein–nucleic acid
interactions involving IDP regions via tissue-
specific alternative splicing and PTM provided
the molecular basis for the original develop-
ment of metazoans and that these same activ-
ities underlie cellular differentiation. Thus, an
important future direction will be to test these
hypotheses by performing experiments to iden-
tify and understand the various roles of IDP
regions in gene regulation by transcription fac-
tors and in tissue-specific regulation of PPI net-
works and pathways.

NOTE ADDED IN PROOF
Matthew John Gage brought to our attention several recent biochemistry textbooks that contain
brief discussions of IDPs (258, pp. 161–62; 259, pp. 104–5; 260, pp. 135–55; 261, pp. 60–61; 262,
pp. 283–84; 263, pp. vii, 141–43), varying in extent from a couple of paragraphs to a small section.
We look forward to seeing more extensive and integrated coverage of IDPs in future textbook
editions.

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

www.annualreviews.org • Intrinsically Disordered Proteins/Protein Regions 573

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
4.

83
:5

53
-5

84
. D

ow
nl

oa
de

d 
fro

m
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f L

au
sa

nn
e 

on
 0

7/
12

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BI83CH22-Dunker ARI 3 May 2014 11:29

LITERATURE CITED

1. Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, et al. 2013. What’s in a name? Why these
proteins are intrinsically disordered. Intrinsically Disord. Proteins 1:e24157

2. Jirgensons B. 1966. Classification of proteins according to conformation. Makromol. Chem. 91:74–86
3. Arnone A, Bier CJ, Cotton FA, Day VW, Hazen EE Jr, et al. 1971. A high resolution structure of an

inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and
chain tracing. J. Biol. Chem. 246:2302–16

4. Uversky VN, Oldfield CJ, Dunker AK. 2005. Showing your ID: intrinsic disorder as an ID for recognition,
regulation and cell signaling. J. Mol. Recognit. 18:343–84

5. Wright PE, Dyson HJ. 1999. Intrinsically unstructured proteins: re-assessing the protein structure–
function paradigm. J. Mol. Biol. 293:321–31

6. Uversky VN, Narizhneva NV, Ivanova TV, Tomashevski AY. 1997. Rigidity of human α-fetoprotein
tertiary structure is under ligand control. Biochemistry 36:13638–45

7. Johnson LN. 1992. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB
J. 6:2274–82

8. Reichmann D, Jakob U. 2013. The roles of conditional disorder in redox proteins. Curr. Opin. Struct.
Biol. 23:436–42

9. Qian YQ, Otting G, Furukubo-Tokunaga K, Affolter M, Gehring WJ, Wüthrich K. 1992. NMR struc-
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91. Romero P, Obradović Z, Dunker AK. 1997. Sequence data analysis for long disordered regions prediction

in the calcineurin family. Workshop Genome Inform. 8:110–24
92. Uversky VN, Gillespie JR, Fink AL. 2000. Why are “natively unfolded” proteins unstructured under

physiologic conditions? Proteins 41:415–27
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95. Romero P, Obradović Z, Li X, Garner EC, Brown CJ, Dunker AK. 2001. Sequence complexity of
disordered protein. Proteins 42:38–48

96. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradović Z. 2006. Length-dependent prediction of protein
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