Take-home message

* There’s no free lunch in coarse-graining a system

* Can multiscale simulations overcome Length- and
Time- scale challenges?

* How to coarse-grain molecules
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Why coarse-grained simulations?

If QM or Molecular Dynamics is so good, why do anything else?

Several reasons: don’t know the force fields, system considered is too large or too slow, don’t
need picosecond accuracy, interested in genera chemical features not specific chemicals

Although it might be nice to simulate a billion Lennard-Jones particles, interacting via a
hugely complicated force field for |0 minutes of real time - it ain’t gonna happen.VWe have to
choose an accuracy we can live with and see how to attain it.

Advantages of coarse-grained simulations like DPD for complex fluid simulations:

Very cheap computationally
Very forgiving of non-equilibrium initial states and force law details
Large system sizes (microns) and long times (milliseconds) accessible whilst retaining

near-molecular resolution

Provides insight into dynamics on scales well beyond molecular, e.g., long wavelength
membrane fluctuations, easy to visualize
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What are coarse-grained simulations!  EPFL

Setting up a simulation requires asking questions about what exactly is “the system” we want to
study, what are its fundamental entities, what do we want to learn, and how accurate do we need
the results (most accurate is not always desirable):

relativistic qu dyn

quantum dynamics

Brownian dynamics .
We do not simulate a real system,

but only a model of a real system;

atomic qu dyn mesoscopic dynamics we first construct a model (particles
+ forces) and, second, solve it on a
computer.

molecular dynamics

reactive fluid dynamics

fluid dynamics

Fig.4 Hierarchy of models for simulation,'” ranging from very detailed (white background) to
very coarse-grained (black background). Each level has its own description of the reduced
system and its own simulation method. Each higher level loses some details of the preceding
level.

H.]. C. Berendsen Faraday Discussions 144:467 (2010)
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What about multiscale simulations
on multicore machines?

See the paper by Yu et al. on today’s moodle page for a multiscale model of the
SARS-CoV-2 virus
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3 Blue ot ' i ’
. Brain Characteristics of single-scale simulations

# Project

a scale is a range in length and time

where distinct physical processes dominate the behaviour of matter

e.g., Brownian motion is important for bacteria but not for cars; inertia is irrelevant for
protein interaction networks; lipid diffusion is unimportant for Action Potentials, ...

In single-scale simulations:

* all dynamics outside a limited space-time range are clamped or equilibrated;
i.e., much slower or faster than the processes of interest

* dynamics involves signals whose speeds are all comparable (except MC)

* lumped parameters obscure details from finer scales

energy dissipation is ignored: systems relax to equilibrium or have no energy cost

cannot push them beyond a characteristic scale as execution time scales as L4 with d = 3




-« Blue

.Bran  Simulation techniques relevant to brain modelling
"+ Project

2 Compeartmental

membrane noise

Example Programs

Molecular Dynamics:
LAMMPS

Reaction-Diffusion:
STEPS, MCell

Compartmental Models:
Neuron

-10

Time (seconds, logarithmic scale)

-11
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Equation
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Space (meters, logarithmic scale) Dan Keller, EPFL
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Claim: multiscaling may work for some ranges of L, T but
fails at atomic scale

Remember how many water molecules are in a neuronal synaptic spine
|0**9 and 10715 time steps using | fs step size.
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Traditional MPI Approach
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New POETS Approach

Figure 3. Contrast between the traditional MPI-based parallelization approach (left panel) in which
each CPU owns a volume of space containing hundreds or thousands of beads, and the POETS
approach (right panel) where space is sub-divided down to unit-volume cells containing only 3 or

4 beads, each of which is managed by one light-weight CPU.

POETS = partially-ordered
event-triggered systems

Increasing £eM ——————p

Figure

Increasing &gp =———p

8. Morphology diagram in the (¢gg, €gpm) plane showing the equilibrium states of the IDPs

and membrane, as their relative interactions are varied.

Shillcock et al., Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular

Simulations on a Bespoke Compute Fabric, Membranes 12: 17 (2021)
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Coarse-grained simulation types

All based integrating some form of Newtonian equations of motion

m.dv/dt = F MD T
m.dv/dt = FC + FD + FR DPD Finer
m.dv/dt = FC - my.v + V(2myksT).((t) Langevin ~ Coarser
0=FC-vy.v+o.((t) Brownian

The difference lies in what constitutes a “particle” and how complex the forces are.

In MD, the particles are atoms but in coarse-grained techniques, the particles are groups of
atoms, molecular groups, even molecules.

In these cases, once the particles are defined (mass, radius), and the forces are given (bonds,
non-bonded, electrostatics), we integrate Newton’s 2nd law as in MD.

Allen, MP, and Tildesley, DJ, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
Frenkel, D and Smit, B, Understanding Molecular Simulation, Academic Press, 2002
Berendsen, HJC, Faraday Discussions 144:467 (2010)
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Coarse-graining molecules cPrL

Molecular Dynamics is accurate at atomic length scales, but sometimes we want to simulate far
above this scale, e.g., membranes and vesicles.

The process of replacing atoms by groups of atoms
particles is called coarse-graining. It has two advantages

several atoms = one bead so fewer d.o.f to integrate

Lennard-Jones forces = softer forces so larger At

This means cheaper, faster simulations!

Figure 1. Mapping between the chemical structure and the coarse
grained model for DPPC, cholesterol, and benzene. The coarse grained

POP ular coarse- g rainin g schemes bead types which determine their relative hydrophilicity are indicated.
. . . The prefix “S” denotes a special class of CG sites introduced to model
(in order of decreasing resolution) are: rings.

Marrink, S. J. J. Phys. Chem. B 111:7812 (2007)
United atom - include H atoms in definition of C atoms, etc.

Coarse-grained MD - replace methyl group by a C3 particle, etc

Dissipative Particle Dynamics - lump atomic groups into fluid particles that carry momentum
Implicit solvent MD - replace water molecules by special potentials that mimic hydrophobic effect
Brownian Dynamics - particles of interest are much larger than water, so replace water molecules
by an implicit representation in the force field

For coarse-graining lipids, a good review is: Bennun et al., Chem and Physics of Lipids 159:59-66 (2009)
BIO-692 Symmetry and Conservation in the Cell 10
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Lipids in DPD simulations P

As an example: consider a dimyristoylphosphatidyl choline (DMPC) lipid bilayer and measure its
material properties.This is a (very simplified) model of the plasma membrane.

VA s\ /. {
3 3 Cw ) O 1 = Head particle
| : / 2 = Chain of tail
particles

H3(T4)2

For DMPC and lipids that differ only in tail length (lauryl, myristoyl, palmitoyl, stearoyl, ...). We find
the relation that each DPD tail bead represents 3-4 methyl groups. So cgDMPC has ~I | beads.
Ambiguity comes from the fact that a DPD bead is a rather fuzzy concept, based on a volume of
material, and may not divide neatly into a hydrocarbon chain’s number of monomers.

Groot and Warren, J. Chem. Phys. 107:4423 (1997) and Marrink et al. J. Phys. Chem.B | 11:7812 (2007)

Headgroup must be large enough to balance the cross-sectional area of the tails
(Israelachvili’s packing param. ~ I): 3 or 4 head beads is sufficient for a tail of length 4 - 6.

Shillcock, JC, and Lipowsky, R, J. Chem. Phys. | 17:5048 (2002)
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Coarse-graining a lipid membrane cPrL

—————

Real lipid cg lipid o
Lipid bilayer
Headgroup area ~ | nm? Bead size ro ~ | nm
Tail length ~ 0.154 + 0.126*n nm How many CH per tail bead?
where n = # carbons in tail - not known a priori, but we can  Bqy size ~ 32 1o
guess ~ 2-5.
o How many lipids?
We need M’ L’T |:1 would be atomistic - not known a priori
All:2 would be a dimer H-T trial and error from simulations

BIO-692 Symmetry and Conservation in the Cell 12
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Reduced units for lipid bilayers

Typical lipid tail length is ~ 2 nm for DMPC

Bilayer width ~ 4-5 nm

Area per molecule ~ 0.65 nm?

Assume that the mass of all bead types is the same

So, a simulation box (32.ro)3 where ro is the diameter of one lipid bead, and a (dimensionless)
bead density of p=3 contains N = 3.323 = 98304 beads.

For lipid bilayers, we typically use the area per lipid to determine the number of lipid molecules.
Given an experimental value of 0.65 nm? we calculate:

Niipid = 2.( (32 ro nm)2 / 0.65 nm?2) molecules

Initially choose 1T (ro/2)2 ~ 0.65 nm2,so ro ~ 0.91 nm and N ~ 2609 or A/Nro?2 ~ 0.8

For a lipid bilayer in equilibrium, we expect the surface tension to be zero. We adjust the box
size or number of lipids until the simulation gives zero tension, and then extract the equilibrium
value of ajpid for the bilayer. That is, we obtain aLipia = A/(N. ro2) from the simulation and from
this we can extract an accurate value to ro. If aLipia = 1.26, say,

ro = V(AIN/ atipia) =V (0.65/ 1.26 ) ~ 0.72 nm and Nipia = 1633 in equilibrium

BIO-692 Symmetry and Conservation in the Cell 13
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We now have a length scale, but what about a time scale?

An obvious process involving time is the diffusion of the lipids in the membrane. A
dimensionless form of the diffusion constant is:

Dimensionless diffusion constant: D’ = (D. to/ro?)

We measure D’ in the simulation, so if we know D from experiment and ro, we can derive a
value for to. This gives us a natural time-scale for the motion of lipids in the membrane.

A typical lipid diffusion constant is 0.1 - 10 um?2/sec ( H. Gaede and K. Gawrisch, Biophys. J. 85:1734 (2003) )

Suppose in a lipid bilayer simulation we find D’ ~ 0.01 and we have estimated ro = 0.72 nm from
the membrane’s area/lipid.

A typical time-scale for the lipids in the membrane is then (using D ~ | um?2/sec):
to = 0.01.(0.72.109)2/ 10-12~ 5 ns

and, recalling that to is the self-diffusion time, a bead will diffuse its own size in this time. A
typical integration time step will then be 0.01 - 0.02.to

NB.There may be other time-scales in the system NOT described by this, e.g., lipid flip-flop
between monolayers and solvent transport across the bilayer: need judgement here.

BIO-692 Symmetry and Conservation in the Cell 14
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DPD algorithm: Basics

Particle based: N particles in a box, specify r;(t) and p,(t),i = I...N.
Mesoscopic: Each particle is a small volume of fluid with mass, position and momentum
Newton s Laws:  Particles interact with nearby particles; integrate Newton’s law F = ma
Three types of force exist between all particles:

» Conservative F<(r;) = a;(1 — [r;|/ro)r;/ |1yl

* Dissipative  FPy(r;) = — v;(1 — [r;|/ro)2(r;.vyy) 1/ |ry?

 Random FR,(ry) = oy(1 - |rij|/ro)rijr”/ |l

forces are soft, short-ranged (vanish beyond r,), central, pairwise-additive, and conserve momentum
locally. Note that y; and o; must be related by 6,2 = 2y;kg T (see Espagnol and Warren 1995)

(1853 citations) P.J. Hoogerbrugge and |. M.V.A. Koelman, Europhysics Letters 19:155 (1992)
(1366 citations) P. Espagnol and P. B.VWarren Europhysics Letters 30:191 (1995)
(1994 citations) R. D. Groot and P. B.Warren J. Chem. Phys. 107:4423 (1997)

BIO-692 Symmetry and Conservation in the Cell 15
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DPD algorithm: Forces

Conservative FC;(r;) = a; (1 —ry/ro) 1/ r;

Dissipative FDij(rij) ==Y (I - rij/r())2 (rij.vij) rij/ rij2

Random FR,(r;) = \/(2yi] keT) (I — |ryl/ro) Tr;/ |

Conservative force, ajj, gives particles an identity, e.g. hydrophobic

Dissipative force, Yj, destroys relative momentum between pairs of interacting particles

Random force, Ojj, creates relative momentum between pairs of interacting particles:
<[;(t)>=0 <[ (t) [(t')> = O(t-t))
a; (1) =, (t) v () =) rij (t) = I'ji (t) which we implement as: rij ~ N(O, 1) / Vdt

The dissipative and random forces act as a thermostat keeping the system temperature
constant on average (canonical ensemble). This thermostat is independent of the form of the
conservative force and, in fact, the DPD thermostat is sometimes used with MD forces -
Soddemann et al., PRE 68:046702 (2003). Its usefulness stems from the fact that it conserves
momentum locally, so hydrodynamic modes of the fluid are preserved.

BIO-692 Symmetry and Conservation in the Cell 16



DPD algorithm: Bond forces

T
OO0
OO0

F(ri) = k(| vy | - L) Ty /] Ty |

=PF

L

a |H| T |W
H [30]|35]| 30
T 35| 10|75
W (30|75 25

Grafmiiller et al. Biophys. J. 96:2658 (2009)

Hookean spring parameters: ko = 128 ksT/ro?, |, = 0.5 These parameters are chosen to keep

the lipid tail length on average at the desired value.

V(ijk) = k(1 - cos(dy, - o) )

Chain bending stiffness parameters: k3 = 15 ksT, ¢o=0

Chain stiffness is chosen to ensure lipids don’t interdigitate much.
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DPD algorithm: Integration P

Most common: velocity-Verlet scheme of Groot and Warren - |. Chem. Phys. 107:4423 (1997).

1. Update positions of all particles: r(t+dt) = r(t) + p(t).dt + 0.5.F(t).dt2

2. Calculate intermediate velocities: p’(t+dt) = p(t) +A.F(t).dt

3. Update forces on all particles :  F(t+dt) = F(r(t+dt), p’(t+dt))

4. Update momenta of all particles : p(t+dt) = p(t) + 0.5*dt*(F(t) + F(t+dt))
Because we set m = |, velocity (v) = momentum (p).

Note that A is a heuristic parameter, typically ~0.5, to take the stochastic force into
account. It is used to estimate the effect of the time-varying force over the course of a
time-step. It is needed because no matter how small the time-step is, the random force
ought to change during the step, i.e., the stochastic force is not smoothly-constant as the
discretized equations of motion assume.

Because of the stochastic force, we have to use special integration schemes for the
equations of motion, e.g., the velocity-Verlet scheme above.These are not needed for MD.
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Choosing DPD interaction parameters =PrL

The dissipative and random forces form a thermostat that does not change when simulating
different systems.We’ll ignore it, but see Groot and Warren (1997) for details. If we have
molecules like lipids or polymers, how do we set values for the Hookean springs that tie them
together? or bond bending stiffness? Basically, it’s Trial and Error!

But the conservative interaction parameters ajj can be set from thermodynamics.
What is the equation of state of the one-component DPD fluid (= water)?

Recall an ideal gas: PV = NkgT or P = pkgT
Van der Waal’s gas: P = pksT/(I-pb) - ap?

We measure the pressure of the fluid as a function of density
and fix the value of the single parameter aww.

P = 3 - 10 beads/volume

N = 3000 - 10000 beads
a,w = 25

BIO-692 Symmetry and Conservation in the Cell 19



Equation of state for DPD fluid

Plot the excess pressure (P - pkgT), scaled by the conservative repulsion parameter, a,,,and

density.

0.1100

0.0938

0.0775

0.0613

(P-pkBT)/awwp2

0.0450

>
>
>
>
(2

aww = 15
® aww=25
aww = 35

0.0 2.5 3.0 7.5 10.0

Density p = N/V

From the simulated DPD equation of state, we find numerically as the density increases:

P = pkgT + aay,y P2

where a=0.10

BIO-692 Symmetry and Conservation in the Cell
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Compressibility of DPD “Water” cPrL

The isothermal compressibility of water is defined as: K-! = (dp/dp)t/ ksT ~ 15.9835 at room
temperature, and this fixes the conservative self-repulsion parameter “a\,,,” for a single-

component fluid if we want it to have the compressibility of water.

If we differentiate the EOS above for the DPD fluid, we get
K-' =1 +2aap/keT ~ 16

giving ayny = 75 kgT/ p. Most DPD simulations use a bead density of p = 3, so ay\ = 25 kgT/ro

So, the single-component DPD fluid density is a free parameter as long as the beads are dense
enough to interact and not have “holes” in the fluid.

Higher densities mean more interactions, so we choose the lowest value that is consistent with
the assumed EOS.

But what if we have a mixture of fluids - how do we choose the off-diagonal parameters a;!

BIO-692 Symmetry and Conservation in the Cell 21



Off-diagonal conservative forces

The off-diagonal elements of the force matrix set the repulsion or
attraction of fluid elements of different types when they interact
which is related to their solubility.

Note that all DPD forces are repulsive: the self interactions are
repulsive because they represent the compressibility (resistance to
being compressed) of a pure fluid, and the off-diagonal elements are
repulsive because they represent the solubility of mixtures which are
usually less cohesive than the pure fluid.

This is the price paid for having no hard core repulsion - you cannot
have strongly attractive forces or the fluid will collapse on itself.
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Flory-Huggins/DPD equivalence cPrL

Groot and Warren (1997) found a correspondence between the soft DPD fluid and the Flory-
Huggins theory of polymer mixtures. FH theory is a mean-field theory of the free energy of a
polymer mixture that predicts a phase separation for sufficiently repulsive polymers.

The free energy of a mixture of two polymer types depends on their M.wt or length Na, Ng and
volume fractions pa, s

It has the form:
entropy

BF = (Pa/N,) In(P4) + (Pe/Np) In(Pg ) + X Pp Pp
energy

where 3 = I/kgT and F is the free energy

N; = No of monomers in polymers of typei =A,B
®. = Volume fraction of polymer typeiand ¢, + ¢p = |

X = Mixing parameter or repulsion parameter ~ how much the polymer like/dislike each other
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The free energy of a DPD fluid of two components A, B is:

BFv = pa/N4In(p,) + Pg/NgIn(pg) - Pa/N4 - Pa/Ngt Ba(ags Pa2 + 2255 P4 Pe t+ agg Pp?

where 3 = I/kgT, a ~ 0.l from simulations

8 -
g p=3
P; = Number density of particles of type i (= P, ) s 8
N
appa = agg= like-particle conservative force parameter o)
2t 5"
apg = unlike-particle conservative force parameter
o 1
0 5 10 15 20 25
LTIV

Now let x = pa/(pa + ps) and assume that pa + ps~ constant then:
Fig. 7 in Groot and Warren, 1997

BFv ~ x/N, In(x) + (I-x) /Ng In(I-x) + X x (I-x) + const.
yielding the relation: X =2 Ba(asg - axs )(PaTPR), between the Flory-Huggins parameter and the
relative DPD cross interaction aag - aaa.

As X is known from experiment this allows DPD to be calibrated for polymer mixtures.
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Polymeric Fluid Mixtures: XN Parameter

Experimental XN values are tabulated for different polymers, so we have a way of setting the
unlike-bead interaction parameters ajj for any pair of (immiscible) DPD polymers at a given density.

X =2 Ba(apg - asa )(Pa*Ps)

Alternatively, the ajj are free parameters whose values are varied until the simulated system has
some correct physical property, e.g., interfacial surface tension.

For lipids, the key parameters are the tail bead / water bead repulsion (the hydrophobic effect),
and the head-head, head-tail repulsion parameters as these largely determine the equilibrium A/
N of a lipid bilayer.

We have many properties of lipid bilayers that we can use to calibrate these parameters.

We aim to use a few properties to calibrate the DPD parameters, and then predict other
properties using the simulations. Obviously, we need more experimental properties than we have
parameters!

Other methods of fixing aas are:

Travis et al. J. Chem. Phys. 127:014019 (2007)
Sepehr and Paddison, Chem. Phys. Lett. 645:20-26 (2016)
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Summary

Coarse-grained simulations throw away some details to gain a space/time advantage

If the details are not important for your problem, it is a huge gain
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Exercise

Break
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