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- The cellular world is not homogeneous nor isotropic, so simple 
random walks are not enough

- It’s not only in Quantum Mechanics that the observer changes 
the system

- The strength of a molecular bond depends on loading rate 
because thermal fluctuations are a relevant energy scale

- Simulations allow us to solve problems that cannot be done 
analytically or numerically (unknown potential)

Core Concepts
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Many dynamic problems in cells are more complex than simple Brownian motion:

• a bond between two molecules diffusing together in the cytoplasm breaks
• a lipid molecule leaves the membrane and enters bulk solvent
• a chemical reaction converts reactants into products
• a molecular motor pulls a transport vesicle along a filament
• a white blood cells crawls along a vessel wall
• cells adhere by focal adhesion contacts

These problems, and others, can be solved by considering a particle executing a RW in a 
potential landscape where barriers occur.  The interpretation of the potential, the barriers, and 
the particle (or reaction coordinate) varies for each problem but the maths is the same.

How do we extend our “RW as a model of Brownian motion”  tool to solve problems like these 
where there is a combined effect of thermal fluctuations and applied forces?
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Consider a non-covalent bond binding two molecules

Q.  What is the mean bond strength?
F

V(x)

Let the bond be represented as a particle in a potential well V(x); for any barrier height, we can 
define a mean escape time (~ bond strength) but we can perhaps shorten this by pulling on the 
particle with a force F(t). 

The overdamped Langevin equation for this problem is (acceleration term = 0):

M.d2x/dt2 + γ.dx/dt = -dV(x)/dx + F(t) + √D. Γ(t)

where γ is the friction coefficient,  V(x) the potential function,  F the applied force, and D the 
strength of the white noise Γ(t) which determines the diffusion rate.

r ~ exp(-dV/kT) 
V(f) = V0 - f.x
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We could solve the problem by integrating this stochastic differential equation:

x(t + dt) = x(t) +1/γ ( -d V(x)/dx  + F(t) ).dt + √D/γ. N(0, 1).√dt

with the Recipe:

• Specify the potential landscape V(x)

• Specify the pulling force as a function of time F(t)

• Choose the boundary conditions and initial position x(0)

• Numerically integrate the above Langevin equation until the particle escapes or a maximum 
number of time steps has passed.

e.g., V(x) = A.x2.(1-x)  and set F(t) = 0 and γ = 1 for simplicity.  Start with x(0) = 0 , and say that 
the particle has “escaped” when it reaches x ~ 5.  Repeating the simulation many times with 
different initial conditions (i.e., random number seed for the generator) allows us to estimate 
the mean and variance of the escape time. Then we could choose a force F(t) and repeat.

Or, we could do a simulation …
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(see dmpci.fs1 on moodle, lecture 3)

Note that F(t) can have different 
forms:

F(t) = constant
F(t) = k(t - t0)

We don’t know the form of V(x) 
for the membrane but the 
simulation implements it for us
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If a particle takes a certain, average time to escape from a potential well in the quasi-
equilibrium case, how does this time increase or decrease if we apply a pulling force to 
help it?

( Q. What does your intuition tell you before looking at next slides! )

Clearly, the mean escape time is the product of two terms:

Prob. escapes in t, t+dt = prob. survives to time t * prob. escapes in t, t+dt

Consider the radioactive decay of particles.

Let n(t) = number of particles present at time t, and let n(0) = n0

and let λ be the decay rate, i.e., the number of particles that decay in t, t + dt is dn(t):

dn(t) = -λ.n(t).dt

This integrates to give the number of particles still undecayed at time t: 

n(t) = n0 exp( -λ.t )
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The number of particles that survive up to time t is now (why?):

                                                                          t
n(t) = n0 exp( - ∫ λ(t’) dt’ )

         0

and we define the probability of surviving to time t as  n(t) / n0. 

What if the decay rate depends on time so that λ = λ(t)?

We can use this result to calculate the mean strength of a bond, or rather its lifetime.
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If the instantaneous probability of a particle escaping from a well is λ(t), then the probability 
that it escapes in the interval t, t + dt is:

p(t).dt = λ(t).exp( - ∫ λ(t’) dt’ ) . dt

The mean escape time is defined by: 
<T> = ∫ t. p(t).dt

But p(t) is the derivative of a function so we can integrate by parts to get the mean escape 
time:
                                                           ∞             t

<T> = ∫ dt . exp( -∫ λ(t’) dt’ )     
                                                           0              0

where we interpret λ(t) as the time-dependent rate of bond breakage.  We need a model to 
relate this to a pulling force F(t), e.g., 

λ(t) = exp (-dV/kBT). exp( F(t). xb / kBT ) = exp (-(dV - f.x)/kBT)

where F(t) is a pulling force and xb is a length related to the change in the potential (i.e., λ(t))

Mean bond lifetime under a pulling force

U Seifert, Rupture of multiple parallel molecular bonds under dynamic loading,
 PRL 84:2750 (2000)
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Given the expression for the mean escape time:
             t

<T> = ∫ dt . exp( - ∫ λ(t’) dt’ )
            0

where λ(t’)  is the time-dependent escape rate (units of 1/time).

What is <T> for the following functional forms of the escape rate (t0 = constant)

1) λ(t) = λ0 = constant <T> = 1/lambda0

2) λ(t) = t / t02.    <T> = √(π/2) t0

3) λ(t) = 1 / (t + t0), infinite

(Classroom derivations: what do you get for <T> in these cases?)

NB It’s surprisingly hard to find other “simple” expressions for λ(t) that can be integrated 
analytically,   e.g., try λ(t) = t2 / t03
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                                                          ∞             t
<T> = ∫ dt . exp( -∫ λ(t’) dt’ )     

                                                           0              0

It seems counter-intuitive that pulling on a particle in a potential well should increase the 
time required for it to escape. 

Q. How could it happen?

Can pulling make the lifetime increase?



BIO-692 Symmetry and Conservation in the Cell 11

Dynamic force spectroscopy

In the 1990s, people started to use the AFM and optical tweezers to explore the strength of molecular 
bonds. Because these bonds are very weak, there must be a way of applying tiny (pN) forces. 

One technique used an inflated vesicle 
held in a micropipette to apply the force. Another, used AFM

R. Merkel et al. Nature 397:50 (1999)

M. Rief et al. Science 275:1295 (1997)

They found that the bond strength has a strong entropic component and can exhibit several barriers 
in the free energy before finally separating.  These barriers appear because of the interplay between 
random thermal motion, the shape of the potential, and the time dependence of the applied force.
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https://www.epfl.ch/labs/lpmv/
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Dynamic force spectroscopy

γ.dx/dt = -dV(x)/dx + F(t) + √D. Γ(t)

To solve these questions, we can write down a Langevin equation and numerically integrate it, 
essentially doing a set of simulations of individual experiments.

Typical experimental questions are:

• How does the strength of a molecular bond (or, equivalently, the mean time for rupture) vary 
under an applied force?  What about a time-varying applied force?

• If a force is applied to two vesicles that are linked by many bonds connected in parallel (or series), 
how does the rupture time vary with numbers of bonds?


