Take-home message

« Dimension dominates behaviour, membranes are not

like random walks

- Membrane models on different scales can only exhibit

properties present in the model

* Vesicle fusion exhibits competing relaxation processes

under non-equilibrium membrane deformations
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Macroscopic membrane models

Membranes as fluctuating surfaces

Random walks and phantom membranes (1d and 2d)

Elasticity theory of membranes

Discretized membranes, triangulated surfaces, Monte Carlo simulations

Polymerized membranes, auxetic materials, cytoskeleton

Membrane as a barrier, multicomponent membranes

Domains, budding and fusion in membranes
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Membranes on macroscopic scale  £PrL

Cell size / membrane thickness ~ 10 micron/4 nm = 2500

the PM is a very thin, flexible fluid sheet when viewed on the scale of the whole cell.We can ignore
the molecules and treat the membrane as an infinitely thin elastic sheet.

How do we mathematically describe a membrane at this scale?
a)
A 2-dimensional surface requires 2 in-plane coordinates (xi, X2).

But in 3D, each point has 3 coordinates.

Nearly flat membranes can be described by Monge representation,
where the height is specified at the projected (x,y) coordinates

h(x1, x2) = function of (X, y) in the projected plane.

e..g, h(x,y) = hO*sin(kx x)*cos(ky y)

<)

Now we have a coordinate system for the membrane surface, but
what controls its dynamics?
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Membrane models

We can construct a range of membrane models similar to the range of random walks (see
Lecture 2 - random walk, Gaussian chain, self-avoiding walk, wormlike chain, rigid polymer)

RwW < Ree?> = N.a2
Gaussian chain P(R) = const. exp( -d.R?/2.N.a?)
Wormlike chain P({r(s)}).~ ePBH(r()

H( r(s)) = k/2 | Or/ds|2 ds

Rigid polymer < Ree> = N.a

The properties of each type of walk are determined by the energy (if non-zero) associated with
conformations.

The shape of a 2d membrane (or surface) is similarly determined by the energy associated with its
conformations (or entropy if there is no energy function). But there is extra connectivity in 2d.
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Membranes as random surfaces

In 1980s, a lot of interest in random surfaces, usually triangulated networks.

Quoting Kantor, Kardar and Nelson, PRL 57:791 (1986)

There is presently considerable understanding of
properties of random walks and polymers, obtained
through many experimental and theoretical methods.!
It is therefore natural to generalize the problem from
one-dimensional polymers to two-dimensional (2D)
surfaces, and there are indeed many recent studies of
random surfaces.2® However, in contrast to polymers,
there is not a single universality class encompassing all
types of surfaces.” Most studies have focused on ran-

If the surface is self-avoiding, its radius of gyration is:
R ~ LV
where Flory theory gives: v=4/(d + 2) cp. 3/ (d + 2) for RWs

Flory theory gives:v =D + 2/ (d + 2) for D-dim. objects embedded in d-dim. space.

Statistical Mechanics of Membranes and Surfaces, eds. D. Nelson,
T. Piran, S.Weinberg, World Scientific Publishing, Singapore, 2004
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Phantom membrane

A phantom membrane or random surface is the generalisation of a simple RW to 2d

It has some unusual properties ...
... it can collapse ...

... it is non-volume preserving
(has a negative Poisson ratio) Ve WAVAN %
AP,

Random surfaces are not a

more on this later today good model for biomembranes

Extracellular Fluid

Protein channel
Hydrophilic heads

“\:(\mmﬁ i)\\onnn“::nn .”f ) ) .: ) “ ) “ nn:;].? ”)’j.)ll‘),( Phospholipid bilayer
g U Sy 2
| ) { ) N ) '

)
(]
(Globular protein) Surface protein

Phospholipid
molecule

Filaments-of / Alpha-Helix-protein

: Hydrophobic tails
cytoskeleton (Integral protein)

Cytoplasm
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Elasticity theory of membranes

To go beyond a random surface model, we need to know the energy of
membrane conformations: biological membranes do not self intersect!

a)

Canham-Helfrich Hamiltonian gives the energy cost of smooth near-planar
shapes of the cellular plasma membrane in terms of two parameters: a
bending stiffness x and spontaneous curvature co

H=x/2 & dA (ci +c2- co)? !

where ci(X,y), c2(x,y) are the local curvatures at any point (x,y) of the
surface. If co = 0, the preferred membrane conformation is planar.

For symmetric lipid membranes x ~ 10 - 25 kgT, co~ 0 9

This is the first term in an expansion of the energy in powers of the
curvature, recall definition of curvature: let a curve be defined
parametrically by r(s) and the local tangent ¢(s)

P. B. Canham, The minimum energy of bending as a possible explanation of the
c(s) = dt/ ds = d?r(s) / ds? biconcave shape of the human red blood cells, ].Theor. Biology 26:61-81 (1970)

WV. Helfrich, Elastic properties of lipid bilayer membranes: theory and possible
experiments, Z. Naturforschung C 28:693-703 (1974)
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Red blood cells are dominated by symmetry

RBCs take up a wide variety of shapes controlled O
by physical constraints arising from environment / \
-

rotational symmetry

and the energy of deforming the PM:

axisymmetry &
reflection symmetry

Inner volume is fixed U
Plasma membrane area is fixed (# lipids constant) & @ Vv R axisymmetry

(at constant temperature, osmolarity)

6 9 @ @ limit shapes
Canham-Helfrich Hamiltonian gives the energy

cost of near-spherical shapes of the cellular axisymmetry &
plasma membrane: 8 GO reflection symmetry

H - K/ 2 # dA ( Ci + C2- Co )2 Figure 11. Bifurcation scheme with stationary shapes and their symmetry.

where ci(x,y), c2(x,y) are the local curvatures at any point U.Seifert, Advances in Physics, 46:13-137 (1997)

(x,y)of the surface, co(x,y) is the spontaneous curvature, and %

is the bending rigidity (units of energy); for pure lipid RBC Lifetime ~ 120 days,
membranes x ~ 10 - 25 ksT circulation ~ 20 sec,

bend through capillaries 1/2 its

P. B. Canham, The minimum energy of bending as a possible explanation of the diameter;
biconcave shape of the human red blood cells, ). Theor. Biology 26:61-81 (1970)

W. Helfrich, Elastic properties of lipid bilayer membranes: theory and possible POI)'Styrene balls of the same size
experiments, Z.Naturforschung C 28:693-703 (1974) fall apart after ~|10 deformations
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But we need to discretize the membrane if we want to go
beyond very simple (i.e., symmetric) shape calculations and
particularly if we want to do simulations.

Theory or Monte Carlo simulations!?

Given a Hamiltonian, we can do two things:

a)

|) Try and find an analytic solution to membrane properties

2) Try doing Monte Carlo simulations of the membrane

b)

The first one has the advantage that we can understand the
whole range of membrane behaviour for all parameter values;

The MC simulations have the advantage that we can apply them
even when we cannot find solutions to I).

<)

I
=y

1
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Discretized membranes

Analytic theories of membrane shape are only useful for highly symmetric cases.
MC simulations have been used for many purposes because they are general and powerful.

« Consider a 2d tethered (i.e. non-fluid) hexagonal membrane (e.g. fish net)

+ Ny vertices (X, y) connected by Ne = 3 Ny Hookean springs to 6 neighbours

 Applied pressure p (p < 0 stretches the membrane)

+ Use NpT Monte Carlo simulations to study the membrane properties

b
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Planar membrane

V(s;) =%k|s,.j -s,,lz, 0<|Si;| < oo,
MC Moves

V3, Each vertex (x,y) moves in plane ~ e-fH({xy})

Area changes ~ e- B AA

2

3
EV =-2—k(S""S,,) :

What does it do!?
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Springs in |1d and 2d

Before we look at a network, let’s compare simple Hookean springs in | and 2 dimensions.

We just need to calculate the partition function to get mean values.

Z = [dx eBH() <A> = |/Z[dx A({X}) e-BH(x)

|) 1d Hookean spring with an unstretched length s, = 0 under tension subject to thermal
fluctuations!?

What are <s>, <s2>? (Blackboard calculation) V(S,-,-)=%k|si,- -S,.|2, 0<|S,-,-|<°°,
Z =V(keT / 2k)
<s>=v(2 keT / Tk )
<s2> = kgT / k

which predicts: ) average length increases with increasing temperature, 2) decreases with
increasing spring constant. This is just an elastic spring subject to thermal fluctuations.

2) With a non-zero unstretched length or applied force we cannot calculate it in closed form in |d.

BIO-692 Symmetry and Conservation in the Cell
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Collapse transition of phantom network in 2d
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Network collapses at a finite (stretching) pressure because it
* can maximise its entropy while not costing energy by allowing
springs to overlap and produce “lines” of equal length springs

P M. F Thorpe and E. ). Garboczi, Elastic properties of central-force networks with
bond length mismatch, Phys. Rev. B. 14:4771 4775 (1990)
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Expansion of |d spring

A |Id Hookean spring under a (finite) tension F simply oscillates about a mean length. But even this is
hard to calculate.

Given H(x, F) = 1/2 k x2 - F x
when F=0, <x>=kgl/k
F>0, <x> = exp( BF2/2k) .[ dy exp(-1/2 Bky?) from y = -F/k to ®

where y = x - F/k. But this integral cannot be done in closed form because of the lower limit. But
<x> remains finite for any finite force.

Unlike the Id RW case, the 2d phantom network has unusual behaviour because the energy density
due to the stretched springs can be less than the (negative) energy density of the applied (stretching)
tension. This is a result of the phase space factor in 2d (dA =s ds ) compared to |d (dx).

But a 2d network is even harder to calculate ... this is the partition function:

2 2T 2 2 : 2
7= -J_3C e-i&ﬂlﬂ!)! 3 + e-%ﬂt(wp')r +925 —-3Bk(1+7)y |
3pk(1+p)  3pk(1+Dp) Sk Yl
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Expansion instability of 2d network

) 1 —
S"=<S>=1+hﬁ+3ﬁks,, t  p =p/V3k, p<0for tension

1 _
As: —(52)—(s>2 = 3BE(1+7) +-..<s> oo when p = V3 k

Bulk modulus K = -1/A 0A / dp

Shear modulus - 3k (1 JEPJ

(K and 4 must be positive for stability)

Poisson ratio =K - u/ (K + )

p
1+5
s 3k
This is the ratio of the transverse strain to the 3__P

longitudinal strain and is usually positive for, e.g., J3k
rubber or steel.
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Auxetic materials

PrL

nm

The Poisson ratio does NOT have to be positive for stability; a negative ratio means that a
substance expands transversely when stretched longitudinally. Such materials are called “auxetic”.

R. Cuerno et al. Universal behaviour of crystalline membranes: Crumpling transition and Poisson ratio of the flat hase,

Phys. Rev. E 93:0221 11 (2016)

Temperature

—@—Infinity
~——4
-1
eon oo 0,.0625

—H—0.01
= o = T=0 MFT

-Pressure

é <02

A crumpled newspaper g .

has a negative poisson ratio!
Figure 4.10

Poisson ratio o against pressure p/k for self-avoiding Hooke's law

network at all temperatures k,T /ks? considered. N=144 vertices.
The T=0 MFT prediction from Eq. (3.33) is shown for
comparison.
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Cellular cytoskeleton is a polymerized network

Beneath the plasma membrane is a 2d, polymerized network of “springs” made of spectrin/
actin/ankyrin, etc. Although the contour length of spectrin is ~ 200 nm, the vertex-to-vertex
distance is only about ~50 nm in the RBC (Nans et al. 201 1)

It provides shear rigidity and compression resistance to the fluid lipid bilayer and has a negative
Poisson ratio!

Simulations of RBC membranes (lipid bilayer + spectrin network) have been done, and
micropipette experiments have been simulated.

A. Nans, N. Mohandas, and D. L. Stokes, Natice ultrastructure of the

red cell cytoskeleton by cryo-electron tomography, Biophys. J.
101:2341-235- (2011).

FIGURE 1 Simulation of a small
erythrocyte under aspiration. The mi-
cropipette, indicated by the solid gray
shading, has an inside diameter of
12sg = 0.9 um. The surface of the cell
is triangulated with 6110 vertex nodes
that represent the spectrin-actin junc-
tion complexes of the erythrocyte cy-
toskeleton. The volume of the cell is ISR

0.6 times the fully inflated volume, ’gé#ve;g‘;‘“ S V:v(

i ion i F i DANANISEEANSXVOR
and the S]InlllathI‘1 is drawn from the XA '1#4; 3‘ ATV 'A‘;' e"‘?‘;‘
stress-free model in the free shape en- XV SAANANANDS [y VA,
semble, as described in the text P OOANNSISABOOK X
’ : TATAY, A TAYAVANATAVAT AT L
AVTS, O
XX BEEI ORI

>

SYAVAVAYS
Y AYAVAY,Y:

oA
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-

K
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FIG. 2. Sample membrane configuration at « = 2 inthe flat phase
for L = 24.

. . . D. Discher, D. H. Boal and S. K. Boey, Simulations of the erythrocyte
Relevance of negative poisson ratio??? membrane at large deformation, Biophys. |. 75:1584 - 1597 (1998).
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Breaching the barrier

Cellular membranes form an impermeable barrier for good reason:

* ionic concentrations inside and out are different (esp. for neurons)

* Lysosomes contain low pH and would kill itself, endosomes carry materials,
mitochondria need a large electron gradient

* bacteria and viruses would invade and kill cell

- DNA, RNA and proteins would diffuse away

 osmotic stress or other gradients would swell or shrink the cell

But the cell still needs to breach membranes for its own purposes:

- uptake of nutrients (endocytosis)
- expulsion of waste products (exocytosis)
« fusion (sperm and agg)

- transport vesicle fusion (ER to Golgie transport)

So, how does a cell stop unwanted pores appearing but create them when necessary?

BIO-692 Symmetry and Conservation in the Cell
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Endocytosis

Phagocytosis Macropinocytosis

Clathrin- Caveolin-
dependent dependent Clathrin- and caveolin-
endocytosis  endocytosis independent pathways

oGO
O

Particle

Dynamin

Actin filaments 1

© O A

L Lﬁcgting 5N ‘ l
J ®> Caveosome @
Lysosome J J

Retrograde transport, C.Wunder, Ludger Johannes, Curie Inst. France
How can we quantify the energy cost of pore formation! What work is done!?

O-
O
—

Transmembrane proteins span the bilayer and some peptides (e.g., magainin, mellitin are anti-
bacterial agents) enable pore formation, how?

- exert force on surrounding membrane - “tear it apart™?
- modify lipid environment and so reduce the hydrophobic effect, membrane “dissolves’?

- interact with each other and form a pore, e.g., barrel stave!?

BIO-692 Symmetry and Conservation in the Cell 18
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Classical theory of pore formation

Litster in 1975 proposed a simple theory for how pores should behave in the plasma membrane
of cells. A pore in a flat membrane has an area and circumference. Assume:

« Membrane is flat and incompressible

* Pore is circular with radius R

* Pore is energy dominated (temperature is irrelevant)
* Membrane is under tension [ (energy/area)

* Pore rim has energy cost A (energy/length)

Energy cost of a pore is then
E(R) = 2mRA - mR2[
Minimising this gives a critical pore radius:
R*=A/T

Pores smaller than this shrink while larger ones grow until they rupture the membrane. But there
is an energy barrier to the pore growing:
ER*) =1iN2/ [

Litster, ). D. 1975. Stability of lipid bilayers and red blood cell membranes. Phys. Lett. A. 53: 193-194.
BIO-692 Symmetry and Conservation in the Cell 19
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Classical theory of pore formation

Relevance to biological membranes?

-
8

« Cells can be under osmotic stress = tension

80
60
- Lipid bilayer can only stretch a tiny amount before it ruptures “ Tension =0
> 20
A pore requires that lipids on the boundary rearrange g’ 0
w 20
= edge energy or line tension (stretched and tilted) w
40
* What is the effect of temperature? *
-100
* Are holes stationary? Can they merge! Hole perimeter

From experiments:
R* =A/T" ~1/310¢cm~3nm

[ ~3 dyn/cm for SOPC!, 10 dyn/cm for RBCs2
AER*) =TiN2/ [ ~ 10-19 ) ~ 24 keT

A ~ 10-6 dyn for SOPC3
IEvans and Needham, J. Phys. Chem. 91:4219-4228 (1987)

2Needham and Hochmuth, Biophys. J. 55:1001-1009 (1989)
3Zhelev and Needham, BBA. |147:89-104 (1993)

So, spontaneous pores are very unlikely
in an unperturbed SOPC membrane.

BIO-692 Symmetry and Conservation in the Cell
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Extended theory of pore formation

Revisit the assumptions

- Litster’s theory assumed circular pores so only energy is relevant: at finite temperature, the
membrane fluctuates both in plane and out of plane, so the pore boundary can change shape
and may not be circular; the free energy is then important: G =E + PV -TS

- Lipids on the boundary have greater freedom to move than those in the bulk membrane, so
the entropy of their extra configurations reduces the pore edge energy

* Proteins and peptides may bind to/insert into the membrane and nucleate pores or aggregate
at their boundary modifying the edge energy, this can stabilise membrane or make pores grow

- Nothing prevents spontaneous pore formation so multiple pores can appear

- Lipid membrane is a fluid, so pores can “diffuse” and merge to form larger ones

Can we extend the theory to multiple pores and include the effects of
temperature, pore shape fluctuations and proteins!?

BIO-692 Symmetry and Conservation in the Cell 21



Thermodynamics of pores in lipid bilayers

2

Consider an MC simulation of a 2d network of N vertices
connected by fluid edges

N
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- pores are formed by removal of a single edge with a
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- pores grow/shrink by removal/addition of edges around
their rim with an edge energy cost AL controlled by a
line tension parameter A
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Gibbs free energy of a single pore:

G(A, p,T) = A<L> + p<A> -TS(<L>) . I
Pores in membrane:
A = line tension around pore edge (] / m) a) qlarge, A large

b) q small, A large

p = stretching pressure (tension) (] / m2) O qlarge A small

T= temperature (J ) d) q small, A small

L = length of pore edge Network has a 2d phase space controlled by
A = area of membrane including pore the probability of pore creation, and the edge
S(<L>) = entropy of fluctuations of pore edge energy of the pore boundary.
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Pore edge is a self-avoiding random walk

Once a pore appears what does it do? Will it
grow or shrink and disappear?

To answer this, we need to calculate the free
energy of a pore and minimise it. Assume a
single pore for now and let it fluctuate in
shape and size in two dimensions. lts energy
is just proportional to the edge length.

From lattice calculations, the number of
configurations of a pore with n steps is!:

Q(n) = Q,z"n*

where n is the length (L/ag) of the edge, z is the
lattice coordination number; d is an exponent
and Q) is a prefactor independent of n.

What is the Gibbs free energy of the pore!?
(Blackboard calculation)
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I D. S. McKenzie Physics Reports 27:35-88 (1976)
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Barrier height against pore growth

BG=n(PAao-Inz)-(a-2)Inn-InQp

We have a similar behaviour to the Litster theory
but now a pore can appear without any stretching
tension if the line tension is small enough.

The entropy of the shape fluctuations of the pore’s
edge destabilises the membrane.

The Litster theory is a zero temperature theory,
and here we include entropy.What are the finite
temperature equivalents to the barrier height and
critical hole size?

Litster model: T =0

nm
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r

Free energy

35

15

10

-10

-15

Line tension

2

15
14
13
12

B B

Hole perimeter

Free energy model withT > 0

R¥=N/T n*=(a-2)/(BAao-Inz)=15/(Inz- BAao)

AE(R¥) = TIA2/ T

BIO-692 Symmetry and Conservation in the Cell

ABG(M) = (@-2)( 1 -In((a-2)/ (BAao-1Inz))

Triangular lattice
z=4.15
a=0.5
McKenzie, 1976
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Single pore shape dynamics
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Fluctuations grow at the critical value of BAao

= phase transition from stable membrane to

ruptured membrane as [BAao decreases
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Multiple pores in a membrane

If we allow multiple pores, whose number is controlled
by a barrier height 3q, and whose subsequent growth by

BAao, we can calculate the phase diagram as shown. or S
ncreasing
small

. el hole densi

There are two limiting cases: 4} ¢ id

b a
|) Ideal pore “gas” OOO

Assume: q > grup: but also not too large, so lots of <
holes, but BAao is large so each hole is small, circular and o

unlikely to merge with others but can have a range of @ - GCQ Single-hole
sizes. - w transition
1 Increasing hole
fluctuations
2) Chemical reaction of multiple interacting pores [Hetaleacfonailien e e
0 2 4 6 8 10 12 14 16
q

Assume: pores are of two types: small hydrophobic pores
form spontaneously and can shrink and disappear, or J. C. Shillcock and U. Seifert, Biophys. |. 74:1754-1766 (1998)
transform into hydrophilic pores and grow and/or merge.
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Biological significance

What does this imply for a cell?

Clearly a cell is always at T > 0, and cannot easily change its temperature.

But the model says that the only important parameters are the dimensionless barrier height to
pore formation 3q, and the line tension of the pore boundary, BAao.

So a cell can modify the number of pores, and their subsequent behaviour by modulating 3q and
BAao. It can do this by changing the composition of the membrane: lipids with shorter tails or
larger headgroups weaken the lamella state, and molecules that can easily change their
orientation (single tailed lysolipids or peptides) reduce the energy cost of the pore boundary.

Animals use this mechanism to kill bacteria; they secrete peptides that pack in the bacterial
membrane and lower the barrier height against pore formation and expansion.

Synaptic vesicle fusion relies on being able to create a pore “on demand” so that the
neurotransmitter packed inside a vesicle can be released swiftly and reliably.

BIO-692 Symmetry and Conservation in the Cell 27
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|deal pore “gas”

Assume: q > q* ~ 3.3 so lots of holes and BAao > 2 so each hole is small, circular and unlikely
to merge with others but can have a range of areas.

N 160 — : : , .

Hamiltonian of one pore =  H= 2 2mA.
j=1

140

120

Partition function o vy
of “gas” of pores =  ZT, A, pu,A) = 3 PN 3 e, Nl
N=0 states 3
Y 0
. 1 + 27BAr, <
= = — —(2mBAro—Bu)
Grand potential BT, A, ., A) (uBha) © . ol

[\S]
<

We calculate the thermodynamic properties

from derivati fQ(T, A |, A):
rom derivatives of {)( 1, A) Horizontal arrows show predictions of the average

<L>=90Q /A pore perimeter for BAao = 4 and 2.

BA(L) 1
<N> = -aQ/a“ W=1+2W3Aro+m.
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Chemical reaction model of pores

Assume: q ~ q* ~ 3.3 so lots of holes and BAao < 2 so holes fluctuate in shape, grow/shrink and
merge/break up. Small (< Inm) hydrophobic pores spontaneously appear and can transform into
hydrophilic ones where the lipids rearrange at the pore edge to minimise the exposure of
hydrophobic tails to water; only hydrophilic pores grow larger and merge.

W e

Hydrophobic pore HO Hydrophilic pore Hl

x = HO-HI conversion
d = HO resealing
y = HI-HO conversion r = HI-HO merging
¢ = HO creation

<\ 4

Ni(t) = # lipids around HO pores at time t Ni(f) = ¢ — (d + x)N; + yN, — rN\N,

N2(t) = # lipids around HI pores at time t Ny(t) = xN, — yN, + rN;N,.
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Steady state solutions

Consider the linearised steady state, and set rN ;N3 = 0, then
dNi/dt =0 and dN»/dt =0

gives:
Ni*=c/d and Ny" = x/y N/*

We assume that HO pores must cross an energy barrier to transform into Hl pores,so x <y,
and N>* < N* and the membrane is stable against HI pores growing (NB Nz is number of lipids
on pore edge not number of pores)
But when the non-linear term is included, HI pores can grow without limit:
Ni*=c/d
N2"=x Ni*/ (y-rN/")

The key parameter is r, which we can relate to the line tension as it controls the rate of
absorption of HO pores by HI pores due to the shape fluctuations of HI pores.
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Synapses =PrL
Synapses are chemical connections between
neurons (often between an axon and a m Synapse
dendrite). A

A tightly-regulated sequence of steps:

*Arrival of AP at axon terminal

*Opening of Ca channels
*SNARE-mediated fusion of vesicles
*Release of neurotransmitter (NT) into the
synaptic cleft (20-50 nm wide)

*Binding of NT to receptors

*Modification of post-synaptic neuron’s
membrane potential

*Transport of membrane voltage to soma of /F\\r
post-synaptic neuron eceptor

dendrites

Synapses are involved in: learning, memory, mental disorders, drug actions,... They
appear to do computations depending on their state, and modify this state and produce
new proteins from RNA located near dendritic spines.
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Fusion in reality...

Vesicle fusion requires several steps:

Polyunsaturated phospholipids
facilitate membrane deformation and

* membrane bendin
S fission by endocytic proteins

* membrane merging
+ membrane rupture or fission Lanrie Anne Payet Thierry Fereeir* Romain Gautier,: Bruno Goud,s

Bruno Antonny,'* Héléne Barelli'

Pinot M et al. Science 345:693-697 (2014)
PUFAs in synaptic vesicle membranes lower the energy cost of bending, so facilitating fusion.

- Vesicle

Close Is Not Enough: SNARE-dependent Membrane Fusion Requires an
Active Mechanism that Transduces Force to Membrane Anchors

James A. McNew, Thomas Weber, Francesco Parlati, Robert J. Johnston, Thomas J. Melia,
Thomas H. Séllner, and James E. Rothman

Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

McNew JA et al.]. Cell Biology 150:105-117 (2000)

SNARE proteins present in both membranes pull them together and drive the formation of
the fusion pore.
But... what do they actually do? Force, torque, displacement...?



Exocytosis Machinery

synaptic

synaptotagmin
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Molecular machinery driving exocytosis in neurotransmitter release: the core
SNARE complex (formed by four a-helices contributed by synaptobrevin, syntaxin
and SNAP-25) and the Ca2+ sensor synaptotagmin.

plasmalemma




and in simulations ...

|00 nm

DPD simulation - water invisible, cut through vesicle and simulation box.

Cyan beads are “glutamate”, stationary pink dots are “receptors”
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Vesicle fusion protocol: tension

Legend

B Adhered
Hemifused

I Fused

B Ruptured

Vesicle ruptured

30 nm

2

0
|
|
|
|
|

Planar

Membrane
| H BB
/relaxed

-
N
|

Planar
Membrane
ruptured

Vesicle A/Na

<4— 50nm =—p

Create a bilayer and a vesicle under tension
initially close together and let them evolve 12

—
w
1

\Vesicle relaxed

LA L B R B L B B T T
12 13 14 15 16 17 18 19 20 21 22

. . . . Planar Membrane A/Na’
Bilayer and vesicle lipids: H3(T,), 0
Relaxed N, = 6542

Relaxed N, = 8228

Only 42 successful fusion events out of 93

attempts
Shillcock JC and Lipowsky R, Nature Mat. 4:225 (2005)

BIO-692 Symmetry and Conservation in the Cell 35



Fusion time distribution

7_ . 2
Vesicle A/Na0
61 B 1.3
1 0 1.35
» 5 14
s 1145
o 4
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8 3+
€ |
=
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0 T T T T T
0 100 200 300 400

Fusion Time (ns)

No fusion events between 350 ns and 1.6 us
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Why not?
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Vesicle fusion protocol: proteins

_ Tether
! TR @_@; RN
‘ s

s SNARE
complax

S~ AT~ ~——
A
NSF Priming and

)| e-SNAP tetharing

o < Talhering ™Y Tathar, —,
Vi '*'@LME#’\“ factors © Y

B SNARES %

SNAREs hold the vesicle close to the membrane and promote fusion,
Knecht & Grubmueller, Biophys. ). 84:1527-1547(2003)

| l Lipid tail beads are polymerised

into “rigid” cylinders, of radius r

{ Rab)
P m A
T
~_\\¥/"‘ W “\\__/ 7
’ trans-SNARE
complex
i85

Vesicle tethers then docks prior to fusion
(Mayer, TRENDS in Biochemical Sci. 26:717-723

An external force, of magnitude F_,,,

pulls the barrels radially apart

We create a force protocol that applies forces to membrane-bound anchors (or barrels) to

perturb it in order to drive fusion.
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“Protein-driven’” vesicle fusion in DPD

Forces applied to membrane-spanning barrels bend and stretch the membrane leading to
fusion. Is this what SNARE complexes do?

Box=100x 100 x 42 nm3
3.2 x 106 beads in total

Planar membrane ~ (100 nm)?2

28,000 lipids
Vesicle ~ 6000 lipids
Duration ~ 500 ns
Simulation Notes
Water | tin all . 3/_ ,§n H%: e O)
ater is present in all movies, o=f’o oo oo . . .
but invisible to reveal dynamics S ¥ = 6 proteins 1n a circle per membrane

IS IS S - area per protein matches expts.

Periodic Boundary Conditions ) ) | ;

are used, which means that a

molecule leaving one face of the Schuette et al. PNAS 101:2858 (2004)
simulation box re-enters at the
opposite face. Shillcock & Lipowsky, ] Phys Cond Matt.18:S1191 (2006)

Lipids have a headgroup (red/orange) and oily tails (green/
yellow); proteins are blue; bending forces are applied to white
lipids
Computational resources: 50 cpu-hours per fusion event



How much work is required for fusion!? cPrL

8000
6000
| z
=3
4000 - g
2
| =
-
2000 f |- | ="
1 %
o A1
214 150 A1
N 2
External Force 3
Yersin A et al, PNAS 100:8736-8741 (2003) 4

/pN per barrel
McNew JA et al. ). Cell Biology 150:105-117 (2000)

NB. Work done i1s for all 12 barrels
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Vesicle fusion simulation: a short history

Miuller M, Katsov K, Schick M, Biophys. J. 85:1611-1623 (2003) - MC
Stevens M| et al, Phys. Rev. Lett. 91:188102 (2003) - MD
Shillcock JC and Lipowsky R, Nature Mat. 4:225 (2005) - DPD
Grafmueller, Shillcock and Lipowsky, PRL 98:218101 (2007) - DPD
Kasson PM et al, PLoS Comp. Biol. 6:c1000829 (2010) - aaMD

“Our results thus suggest that the
specific molecular properties of
individual lipids are highly
important to vesicle fusion...”

Atomic-Resolution Simulations Predict a Transition State
for Vesicle Fusion Defined by Contact of a Few Lipid Tails

Peter M. Kasson'?, Erik Lindahl? Vijay S. Pande'*

1 Department of Chemistry, Stanford University, Stanford, California, United States of America, 2 Center for Biomembrane Research, Stockholm University, Stockholm,
Sweden

Abstract

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein
assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the
membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to
examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion
simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the
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