

Digital Epidemiology

BIO 512

Modeling Infectious Diseases

Learning Objectives

- Develop basic infectious disease models and understand their dynamics
- S(E)IR(S) models
- closed vs. open models
- seasonality
- stochastic vs. deterministic models

Modeling Infectious Diseases

History



- Daniel Bernoulli, 1766: first mathematical model (specific to smallpox variolation)
- 1917/18: Ross & Hudson, first general epidemiological models
- 1927: Kermack & McKendrick, first SIR model

Modeling Infectious Diseases

A Basic SIR Model

Susceptible

Infected

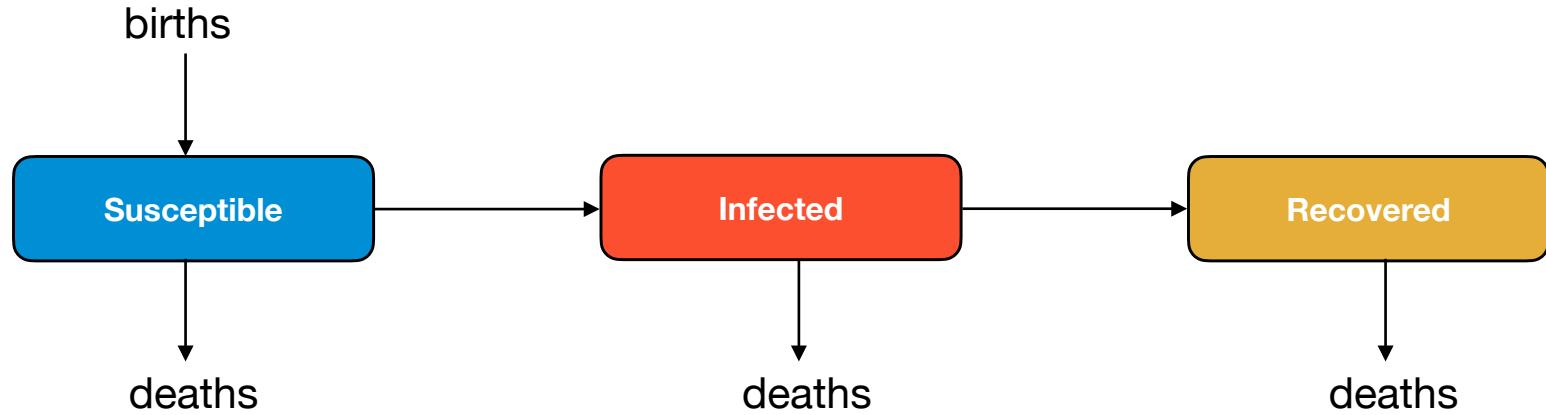
Recovered

Modeling Infectious Diseases

A Basic SIR Model

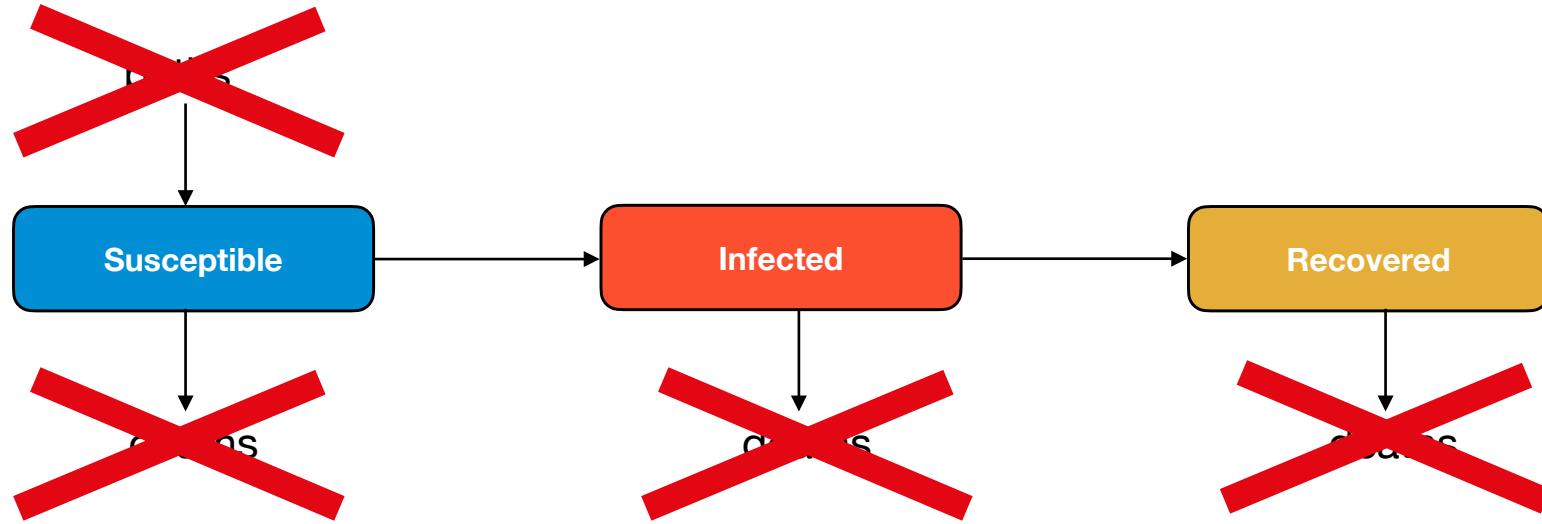
Modeling Infectious Diseases

A Basic SIR Model



Modeling Infectious Diseases

A Basic SIR Model



Modeling Infectious Diseases

A Basic SIR Model

β : per capita contact and disease transmission rate per unit time
 γ : per capita recovery rate per unit time

Modeling Infectious Diseases

A Basic SIR Model

$$\frac{dS}{dt} = -\beta I \frac{S}{N}$$

$$\frac{dI}{dt} = \beta I \frac{S}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Modeling Infectious Diseases

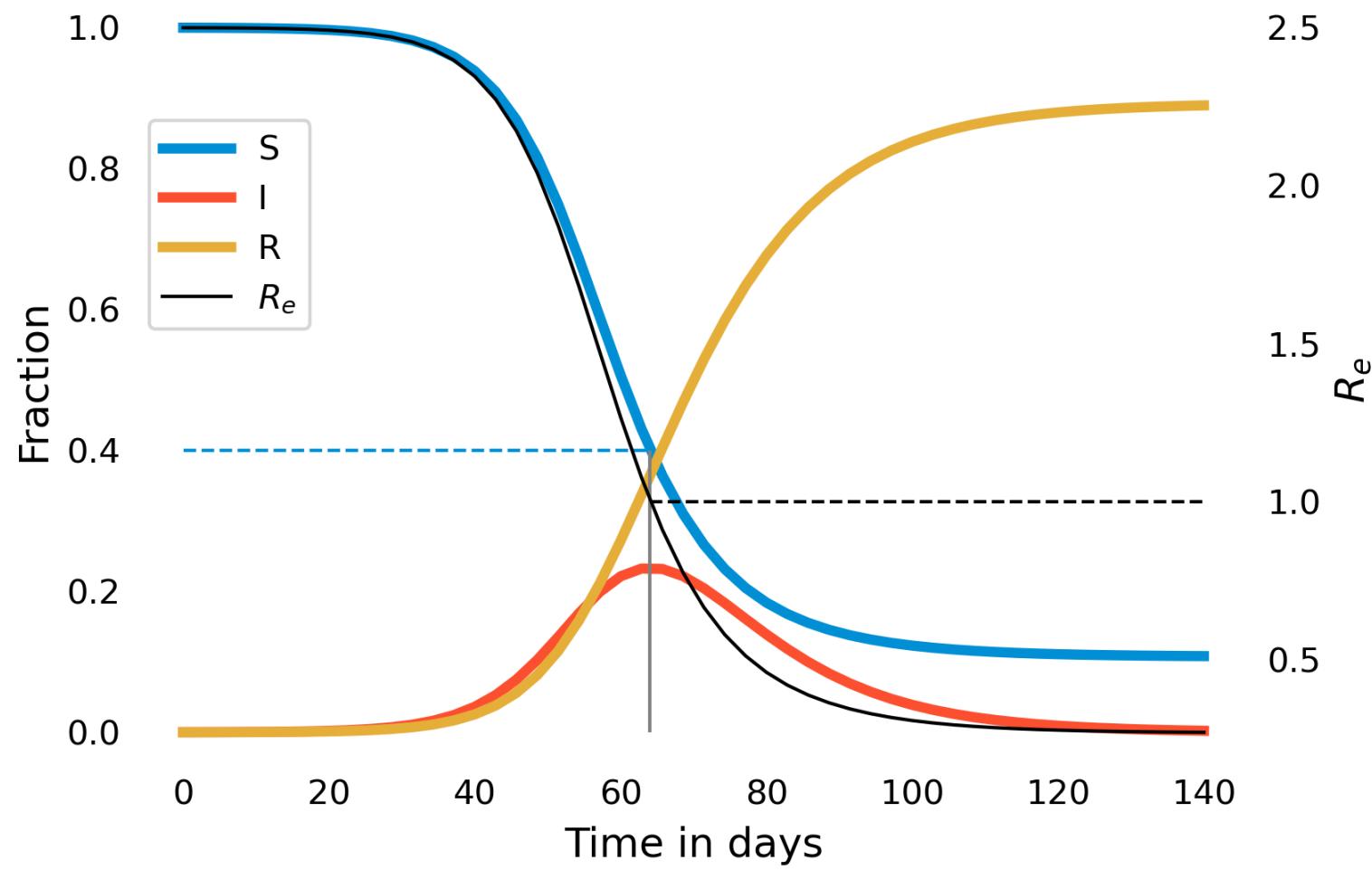
A Basic SIR Model

- First key insight: $R_0 = \beta / \gamma$

Modeling Infectious Diseases

A Basic SIR Model

- Second key insight: outbreak is not over when $R_e \leq 1$



Modeling Infectious Diseases

A Basic SIR Model

- Third key insight: not everybody gets infected

$$S(\infty) = 1 - e^{-R_0}$$



Modeling Infectious Diseases Mitigation

- “Flatten the curve”

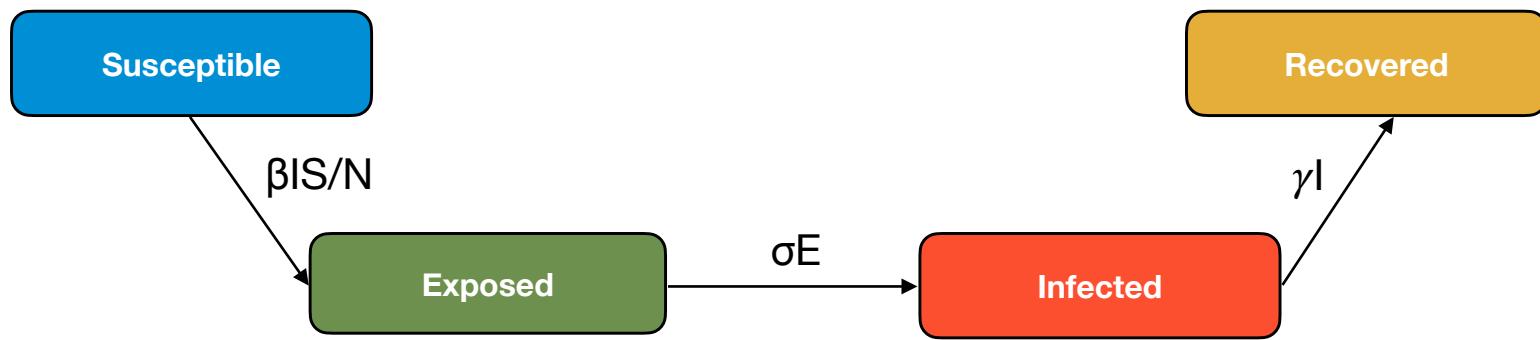
Modeling Infectious Diseases Mitigation

- Vaccination and herd immunity

$$c > 1 - \left(\frac{1}{R_0} \right)$$

Modeling Infectious Diseases

SEIR Model



Modeling Infectious Diseases

SEIR Model

$$\frac{dS}{dt} = -\beta I \frac{S}{N}$$

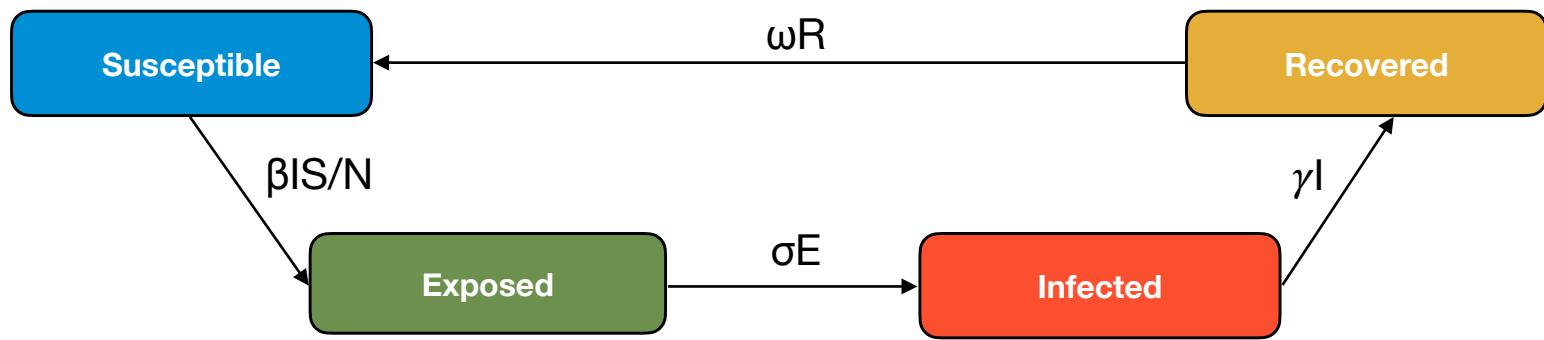
$$\frac{dE}{dt} = \beta I \frac{S}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Modeling Infectious Diseases

SEIRS Model



Modeling Infectious Diseases

SEIRS Model

$$\frac{dS}{dt} = \omega R - \beta I \frac{S}{N}$$

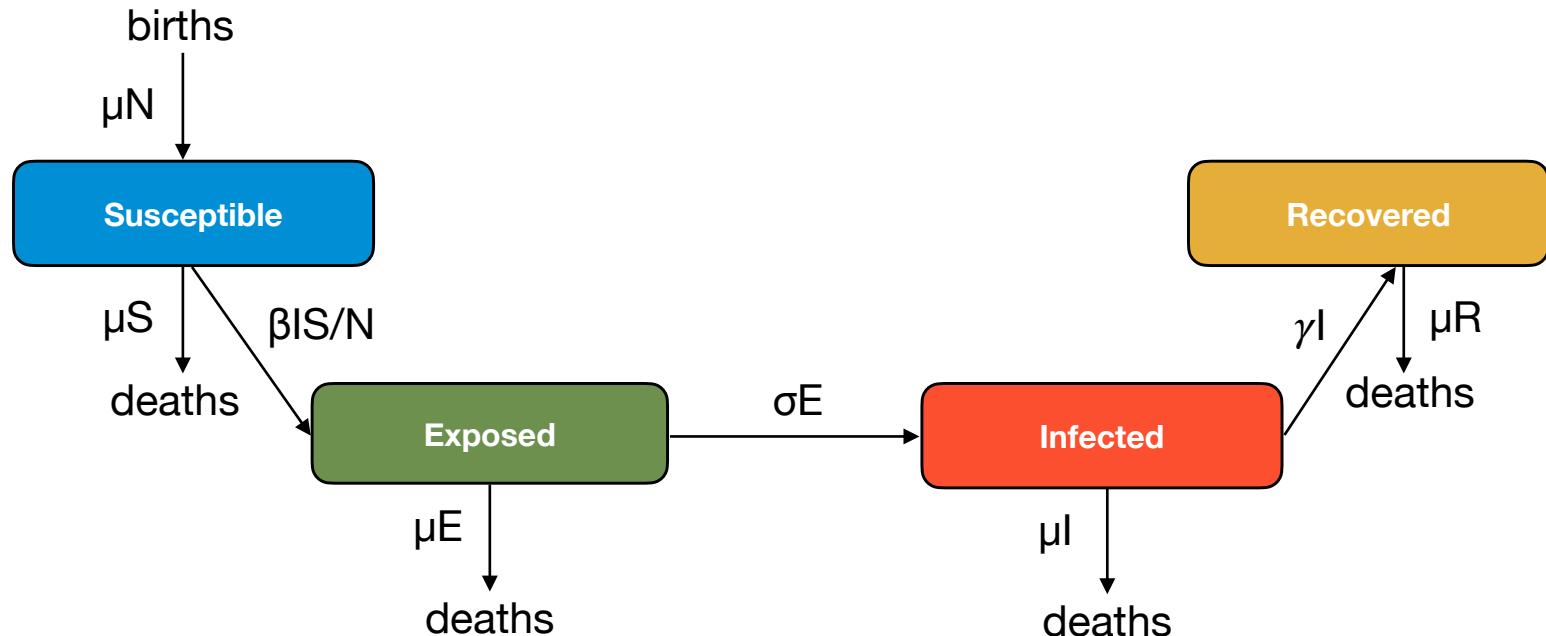
$$\frac{dE}{dt} = \beta I \frac{S}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dR}{dt} = \gamma I - \omega R$$

Modeling Infectious Diseases

An Open Epidemic



Modeling Infectious Diseases

An Open Epidemic

$$\frac{dS}{dt} = \mu N - \beta I \frac{S}{N} - \mu S$$

$$\frac{dE}{dt} = \beta I \frac{S}{N} - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

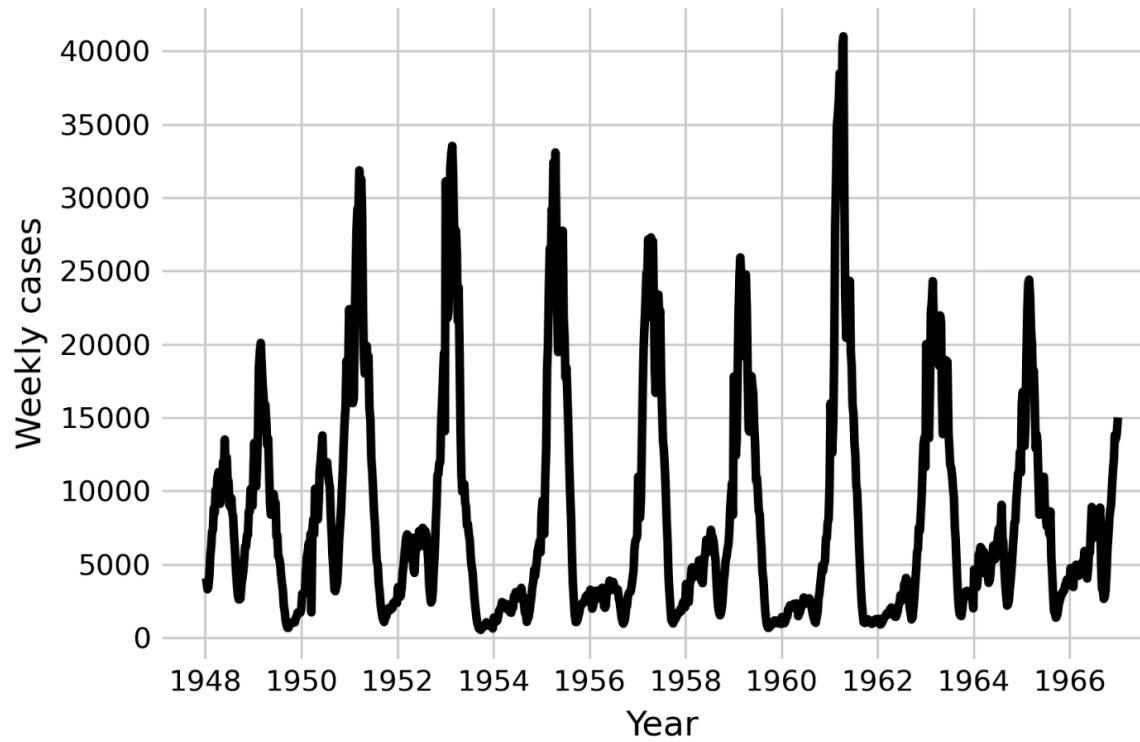
Modeling Infectious Diseases

An Open Epidemic With Seasonality

$$\beta \rightarrow \beta(1 + \beta_S \cos(2\pi t))$$

Modeling Infectious Diseases

An Open Epidemic With Seasonality



Modeling Infectious Diseases

Stochastic Models

- So far, all models were deterministic - run them again and they will produce exactly the same, predetermined result.
- Stochastic models integrate randomness - some decisions are made by “rolling a dice” -> no two simulations will be identical.

Modeling Infectious Diseases

Gillespie Algorithm

- Stochastic simulation method:
 1. generates random times for each event
 2. updates states based on state transition probabilities

Modeling Infectious Diseases

Gillespie Algorithm

$$\frac{dS}{dt} = \mu N - \beta I \frac{S}{N} - \mu S$$

$$\frac{dE}{dt} = \beta I \frac{S}{N} - \sigma E - \mu E$$

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Transition	Rate
$S \rightarrow S + 1$	μN
$S \rightarrow S - 1$	$\beta I \frac{S}{N} + \mu S$
$E \rightarrow E + 1$	$\beta I \frac{S}{N}$
$E \rightarrow E - 1$	$\sigma E + \mu E$
$I \rightarrow I + 1$	σE
$I \rightarrow I - 1$	$\gamma I + \mu I$
$R \rightarrow R + 1$	γI
$R \rightarrow R - 1$	μR

Modeling Infectious Diseases

Gillespie Algorithm

- Standard version:
 1. Calculate time to next event
 2. Choose the next transition, according to probabilities
- “tau leaping”:
 1. Fix regular time step tau
 2. Calculate all transitions that happen in that timestep

