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Highlights
Depending on the species, aggressive
behaviors can differ both quantitatively
and qualitatively between sexes.

In rodents, social experiences, includ-
ing social isolation, mating, winning,
and losing, impact differentially on
aggressive behaviors between sexes.

Similar brain regions mediate male and
female aggression in mice, although
the number and response intensity of
relevant cells may differ.

Sex hormones, such as estrogen and
androgen, play important roles during
Aggression is a fundamental social behavior that is essential for competing for
resources and protecting oneself and families in both males and females. As a
result of natural selection, aggression is often displayed differentially between
the sexes, typically at a higher level in males than females. Here, we highlight
the behavioral differences between male and female aggression in rodents. We
further outline the aggression circuits in males and females, and compare their
differences at each circuit node. Lastly, we summarize our current understand-
ing regarding the generation of sexually dimorphic aggression circuits during
development and their maintenance during adulthood. In both cases, gonadal
steroid hormones appear to play crucial roles in differentiating the circuits by
impacting on the survival, morphology, and intrinsic properties of relevant cells.
Many other factors, such as environment and experience, may also contribute
to sex differences in aggression and remain to be investigated in future studies.
development to differentiate male and
female aggression circuits.

Sex hormones are necessary to main-
tain a high level of aggression in adult
male mice but not in female mice.
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Overview of Aggression Studies in Males and Females
For over a century, aggression has been a topic of investigation by ethologists, psychologists,
biologists, and more recently neuroscientists. Niko Tinbergen, an influential ethologist, con-
ducted decades of field studies and concluded that instinctive behaviors including aggression,
mating, parental behaviors, and building have characteristic species-specific stereotypical
motor patterns [1]. He proposed that these stereotypical behaviors are genetically preprog-
rammed and are triggered by specific sensory inputs. He further argued that behavioral
decision is not solely determined by extrinsic stimuli but is also influenced by internal states
defined by the prior experiences and circulating hormonal status of an animal. He envisaged
that both extrinsic and intrinsic signals are integrated at each circuit node to enable animals to
take the most relevant behavioral actions on a moment-to-moment basis. His hypothesis, as
well as others ([2], p. 273), influenced researchers in the following decades, leading to recent
discoveries of circuit nodes of instinctive behaviors that are genetically defined and hard-wired
[3–14], but at the same time are highly flexible [15,16]. One of the themes in the current review is
to highlight the recent array of work carried out using novel genetic approaches that have
brought back to light the study of aggression circuitry in rodents.

Despite the requirement for aggression in the survival of both sexes, aggression is sexually
dimorphic. It is more prevalent in males owing to selective pressures associated with limited
mating opportunities [17–19]. In many species, males have evolved bigger body sizes and
sometimes specialized body parts for fighting [20]. While females are typically not as aggressive
as males, the level of aggression in females increases dramatically during lactation in mammals
for the purpose of protecting their young, although females in non-mammalian species often
also aggressively protect their young [21,22]. Thus, aggressive behaviors differ between sexes
in both expression and modulation to fit the needs of each sex. The second theme of this review
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Glossary
Aggression circuit: the cells in the
brain and their connectivity that
generate and modulate aggressive
behaviors.
Androgen receptor (AR): a nuclear
receptor that is activated upon
binding of ligands such as
testosterone and dihydrotestosterone
to regulate transcription.
Anteroventral periventricular
nucleus (AVPV): a small nucleus in
the preoptic area of hypothalamus. It
contains abundant kisspeptin-
expressing neurons and regulates
the activity of gonadotropin-releasing
hormone (GnRH) neurons which
constitute of the initial step in the
hypothalamic–pituitary–gonadal axis.
Bed nucleus of the stria
terminalis (BNST): a cluster of
nuclei adjacent to the stria terminalis,
which is a fiber bundle carrying
signals from the amygdala to the
hypothalamus, septum, and other
brain regions. The BNST has been
proposed as extended amygdala and
is involved in anxiety, aversion, and
various social behaviors.
Corticotropin-releasing hormone
(CRH): a peptide hormone that is
generated and secreted by neurons
in the periventricular nucleus of the
hypothalamus. It is generally released
during stressful conditions to activate
the HPA axis.
Conspecific: a member of the same
species (noun) or animals that belong
to the same species (adjective).
will be to discuss sex differences in aggressive behaviors and the potential underlying neural
and hormonal mechanisms, focusing on rodents as the primary animal model.

Sexually Dimorphic Aggressive Behaviors
Patterns of Aggressive Behaviors in Males and Females
The degree to which aggression differs between sexes varies from species to species. For
example, in some species, only one sex is equipped with weaponry body parts, and thus
aggression expression using those weaponry parts is inevitably sex-specific. In rodents, while
males and females differ in body size, no sex-specific body part has evolved for the purpose of
aggression. Thus, females and males of various rodent species, such as mice, rats, and
hamsters, express aggression in qualitatively similar ways using biting as their main strategy to
harm an opponent, although the level of aggression, as measured by attack frequency and
duration, is typically higher in males than in females, with the exception of hamsters [23]. While
both males and females bite the opponent, fine differences in biting patterns have been
reported. In mice and rats, females usually attack female intruders on their back and male
intruders on their vulnerable body parts, such as head and ventral surface [10,24–26]. By
contrast, resident male mice bite male intruders on both their back and head [10,27] (Figure 1).
Importantly, the biting patterns in males and females are not fixed but are influenced by many
factors, such as the defense strategy of the opponent and the relative size of the animals [28–
30]. While resident male rats deliver most bites to the back of male intruders under normal
conditions, male rats mostly bite the head and snout of anaesthetized male intruders [30,31].
When large Swiss Webster lactating females (�35 g) encounter smaller C57 young adult males
(�20 g) or juvenile intruders, the bites are mostly directed to the back of the intruder [7]. Thus,
both males and females can employ back- or head-attack strategies depending on who they
are fighting against.

The Influence of Social Experience on Aggression in Males and Females
Although aggression is considered to be a hard-wired behavior, its level is not stationary. Age,
housing condition, sexual experience, and winning or losing experiences are some of the
known factors that can influence aggression level, often differentially in males and females
(Table 1) [32]. First, male and female mice differ in their developmental course of aggression.
Estrogen receptor (ER): there are
two classes of estrogen receptors,
ERa and ERb, that are encoded by
Esr1 and Esr2, respectively. They are
nuclear receptors that are activated
upon binding of estrogen (estradiol).
Immediate-early gene mapping:
immediate-early genes are a set of
genes that are rapidly upregulated by
cell firing or other intracellular events
(e.g., increase in cAMP
concentration). Immediate early gene
mapping is to examine the
expression pattern(s) of immediate
early gene(s) in the brain after the
behaviors of interest.
Kisspeptin: a peptide, encoded by
the Kiss1 gene, that is a ligand for
GPR54.
Lateral septum (LS): the septal
nuclei are situated below the rostrum
of the corpus callosum and consist
of medial, lateral, and posterior parts.

ComposiƟon of aggressive behavior

Few

Some
Many

Approach

Sniff

Bite Chase

Box On top

Teeth chaƩer, tail raƩle

(A) (B)

Figure 1. Sexually Dimorphic Aggression Behaviors. (A) Aggression can be divided into appetitive phase (approach
and sniffing) and a variety of consummatory actions (chase, bite, and box). (B) The body parts that male and female rodents
target during attacks differ.
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The LS receives massive inputs from
hippocampus and projects mainly to
the hypothalamus. It has been
implicated in regulating anxiety and
social behaviors, especially
aggression.
Main olfactory epithelium (MOE):
an epithelium in the nasal cavity
where olfactory sensory neurons
reside for detecting volatile odors.
This is the first stage of the main
olfactory system.
Medial amygdala (MEA): a nucleus
in the amygdala that relays olfactory
information to the hypothalamus.
Medial dorsal thalamus (MD): part
of thalamus that is strongly
reciprocally connected with the
prefrontal cortex. It also receives
information from amygdala, basal
forebrain, and other subcortical
regions.
Medial prefrontal cortex (mPFC):
the frontal cortex is the frontal part of
the cerebral cortex. It has been
indicated in numerous cognitive
functions including attention,
inhibitory control, habit formation,
working memory, and long-term
memory. The medial part of the
frontal cortex is suggested to be
more relevant for social behaviors.
Non-volatile: refers to non-
vaporized molecules that are
predominantly detected by the
vomeronasal organ.
Nucleus accumbens (NAc): a
region in the basal forebrain that has
been implicated in motivation,
reward, and reinforcement.
Optogenetic: a technique that
manipulates or controls the activity or
molecules within the targeted cells
by introducing genetically modified
light-sensitive molecules (e.g.,
channelrhodopsin) and delivering
light to the cells.
Paraventricular nucleus of the
hypothalamus (PVN): a nucleus in
the periventricular zone of
hypothalamus that is situated
adjacent to the third ventricle. It
consists of many neurons
synthesizing a variety of
neuropeptides, such as CRH,
oxytocin, and vasopressin. Many
neurons project to the posterior
pituitary.
Periaqueductal grey (PAG): a
midbrain structure that surrounds the
aqueduct. It receives extensive inputs
from hypothalamus, prefrontal cortex,

Table 1. Influence of Various Social Experiences on Aggressive Behaviors in Males and Females

Type of experience Change in aggressive behaviora

Males Females

Social isolation Increased Decreased

Brain [38]b Hood [34]b

O’Donnell et al. [37]b Increased

Matsumoto et al. [36]b Kuchiiwa and Kuchiiwa [39]b

Sexual experience Increased Increased

Insel et al. [40]c Albert et al. [44]d

Getz et al. [41]c

Flannelly et al. [42]d

Goyens and Noirot [43]b

Winning experience Increased Decreased

Dugatkin [45]e Silva et al. [52]b

Hoefler [46]f Unchanged

Whitehouse [47]f Hood and Cairns [34]b

Beaugrand et al. [48]g

Forster et al. [49]h

Oyegbile and Marler [50]b

Drummond and Canales [51]i

Defeat experience Decreased Unchanged

Hsu et al. [53] Taravosh-Lahn and Delville [60]m

Penn et al. [15]j Van de Poll et al. [57]d

Hofmann and Stevenson [54]k

Rutishauser et al. [55]l

Potegal et al. [56]m

Van de Poll et al. [58]d

Kudryavtseva et al. [59]b

Jeffress and Huhman [57]m

aAggression in males and females is differentially influenced by various social experiences including social isolation, sexual
experience, winning experience, and defeat experience. Species are indicated as follows: bmouse; cprairie vole; drat;
emodel; fspider; g

fish; hlizard; ibird; j
fly; kcricket; llobster; mhamster.
While male mice have a sharp rise in aggression around the end of puberty (45 days), the
emergence of aggression in female mice occurs during adulthood (90 days) and the level of
aggression further increases at midlife (270 days) [33–35].

Furthermore, social isolation has been consistently shown to increase the frequency of attacks
and shorten attack latency in male mice [36–38], whereas its effect on female mouse aggres-
sion remains controversial. One study showed that isolation housing abolished aggression in
female mice of a low-aggression strain, but did not change aggression in females of a high-
aggression strain [35]. However, in a more recent study it was found that the strength of
aggressive bites towards an inanimate object increases with weeks of social isolation in female
mice [39].
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and other brain regions, and the
PAG projects to brainstem areas
relevant for motor and autonomic
control. It has been implicated in
defense, motor control of social
behaviors, and pain regulation.
Pharmacogenetic: a technique that
manipulates or controls the activity of
molecules within targeted cells by
introducing genetically modified
receptors that can be activated upon
ligand binding (e.g., a modified form
of human M3 muscarinic receptor).
Self-initiated aggression-seeking
task: a behavioral task to assess the
aggressive motivation of a test
animal. Subjects learn to initiate a
trial by performing a specific action
such as nose poke for a subsequent
opportunity to attack a weaker
intruder.
Vasopressin (AVP): a nine amino
acid peptide hormone that is
synthesized in the hypothalamus. It
has been implicated in regulating
water balance and social behaviors.
Ventral premammillary nucleus
(PMv): a nucleus in the medial
hypothalamus that is posterior to the
VMHvl. It receives strong inputs from
medial amygdala and projects mainly
to other parts of medial
hypothalamus.
Ventromedial hypothalamus,
ventrolateral part (VMHvl): a
subnucleus in the medial
hypothalamus that is essential for
male and female aggression. It is
also crucial for female sexual
receptivity.
Volatile: refers to vaporized
molecules that are predominantly
detected by the main olfactory
epithelium.
Vomeronasal organ (VNO): a
second olfactory organ in the nasal
cavity where vomeronasal neurons
reside for the detection of
pheromones. This is the first stage of
the accessory olfactory system.
Sexual experience appears to consistently increase aggression in males, but its effect on
females varies with species. In monogamous prairie voles, after 24 h of cohabitation with
repeated mating experience, both males and females increased aggression towards strangers
[40,41]. In mice and rats, the experience of mating also enhances aggression in males [42,43],
while its effect on females remains unclear. In one study [44], aggression was elevated in female
rats that were cohabitated with castrated males with testosterone implants. However, such
increases may not be due to the mating experience per se, but instead to pseudopregnancy
after repeated mating.

Males with winning experience are more willing to escalate a fight and have a higher probability
of winning in future agonistic encounters. This phenomenon, referred to as the winner effect
[45], is evident across a variety of invertebrate and vertebrate species [46–51]. Studies on
winner effect in females are few and results vary among species. It was reported that, in female
California mice, attack latency significantly decreased with repeated resident–intruder tests
[52]. However, no change in attack latency or frequency was found during repeated testing in
ICR mice, an aggressive laboratory mouse strain (Mus musculus) [34].

In contrast to the winner effect is the loser effect. Defeat experience reduces the willingness of
an animal to engage in a fight and decreases the likelihood of winning in future agonistic
encounters [53]. Studies in Drosophila [15], crickets [54], lobsters [55], hamsters [56,57], rats
[58], and mice [59] consistently demonstrated that losing in fights significantly reduces male
aggression, either transiently or permanently [57]. Studies on the loser effect in females are less
common. The limited studies performed support a lack of loser effect in female rodents. For
example, it was found that juvenile female hamsters subjected to daily attack by adult females
and males developed similar agonistic behaviors as unattacked controls [60]. Defeated female
rats show similar levels of aggression in future agonistic encounters as winners [61]. Recently, a
female social defeat paradigm was established in mice by using males with artificially activated
ventromedial hypothalalmus, ventrolateral part (VMHvl; see Glossary) [62]. This paradigm
will be useful in future studies to understand the behavioral consequences of social defeat in
female mice.

The Rewarding Value of Aggression
In species ranging from fish to primates, some individuals make extensive efforts to display
aggressive actions [63–72]. Recently, using a self-initiated aggression-seeking task, it was
shown that >50% of aggressive male mice learned to voluntarily poke a nose port repeatedly to
gain access to a weak intruder and attack it immediately [16]. The aggression-seeking
behaviors extinguished rapidly when the subordinate intruders were replaced with non-subor-
dinate intruders, suggesting that winning experiences, but not social interaction alone, drive
aggression-seeking behaviors [16]. Consistent with this idea, it was found that aggressive male
mice strongly prefer the test chamber in which the male mice experienced winning over a
chamber that was not associated with winning [73,74]. In addition, microdialysis studies further
revealed that dopamine levels are elevated in the nucleus accumbens (NAc) in anticipation of
a fight and after fighting [75]. Thus, aggressive experience towards subordinates can be
rewarding, at least for some individuals. Given the generally higher level of aggression in
males, it is not surprising that all aggression-seeking studies have thus far used male subjects.
We speculate that the lack of winning effect in female mice and rats may suggest that the
attacking experience is not rewarding in females. Future studies using the aggression-seeking
task or aggression-mediated conditional place preference test in female animals will test this
hypothesis directly.
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Essential Brain Regions for Male and Female Aggression
Sexually dimorphic aggressive behaviors are presumably caused by sex differences within the
aggression circuits. Chemosensory cues from conspecifics are first detected by vomer-
onasal receptors in the nose, and are then relayed to the hypothalamus through the olfactory
bulb and amygdala. Signals are further relayed to the midbrain for subsequent motor actions
[76]. In Figure 2 and Table 2 we summarize our current knowledge regarding the brain regions
that influence male and female aggression. In short, nearly all regions that have been shown to
be associated with male aggression are also found to influence female aggression, pointing to a
shared aggression circuitry between sexes. In the next section we describe the aggression
circuit in males and females from the sensory end to the motor end, with a special focus on the
hypothalamus, whose function in aggression has been studied most extensively.

Main and Accessory Olfactory Bulbs
Rodents rely on olfactory cues for triggering aggression. Volatile cues of conspecifics and
non-volatile cues (pheromones) are detected by specific receptors expressed in olfactory
sensory neurons in the main olfactory epithelium (MOE) and vomeronasal organs (VNO),
respectively, and are further relayed to the main olfactory bulb (MOB) or accessory olfactory
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Figure 2. Aggression Circuitry in Male and Female Rodents. (A) Aggression circuit nodes and cell types in male and
female mice. (B) Sexually dimorphic and experience-dependent organization of aggression- and mating-related cells in the
ventrolateral part of the ventromedial hypothalamus (VMHvl). For abbreviations of brain regions please refer to the main text
and the Glossary.
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Table 2. Brain Regions and Genes Relevant for Aggression in Male and Female Rodentsa

Region Gene Males Females

MOE Cnga Mandiyan et al. [80]b Fraser et al. [81]b

Fraser et al. [81]b

VNO Trp2 Stowers et al. [82]b Kimchi et al. [83]b

MEA Vgat, aromatase
(Cyp19A1), Npy

Hong et al. [11]b Unger et al. [10]b

Unger et al. [10]b

Padilla et al. [90]b

LS Vgat Wong et al. [131]b Not available

BNST Not available Padilla et al. [90]b Not available

VMH Esr1/PR (Pgr) Lin et al. [119]b Hashikawa et al. [121]b

Yang et al. [9]b

Lee et al. [6]b

PMv DAT Not available, but see Stagkourakis et al. [136]b

and Soden et al. [135]b for DAT
Motta et al. [134]c

PAG Not available Mos et al. [139]c Lonstein et al. [142]c

aBrain regions and molecularly identified neurons (if available) within those structures that are crucial for male and female
aggression (see also Figure 2); bmouse studies; crat studies.
bulb (AOB) in parallel [76–79]. Impairment of MOE or VNO, either by lesioning or gene deletion
(Cnga, cyclic nucleotide-gated channel [80,81]; or Trpc2, transient receptor potential cation
channel, subfamily C, member 2 [82,83]), attenuates aggression in both males and females.
Information in the MOB is further relayed to five major regions including piriform cortex, cortical
amygdala, olfactory tubercle, anterior olfactory nucleus, and lateral entorhinal cortex [84].
However, the function of these regions in aggression remains to be studied.

Medial Amygdala and Bed Nucleus of the Stria Terminalis
Information in the AOB is relayed to the medial amygdala (MEA) and the bed nucleus of the
stria terminalis (BNST), which in turn project to the hypothalamus. MEA also receives MOB
information indirectly through the posterolateral part of the cortical amygdala (plCOA). It was
recently found that GABAergic neurons, but not glutamatergic neurons, in the MEA are
sufficient and necessary for driving male aggression [11]. It was further demonstrated that
a subpopulation of GABAergic cells expressing aromatase are necessary for aggression in both
sexes [10]. From MEA, it remains unclear how the information is relayed to the hypothalamus for
generating aggression. Although posterodorsal MEA (MEApd) projects directly to the VMHvl, its
strongest recipient is BNST [85,86]. BNST has negative effects on aggression in both sexes.
Electrical stimulation of the BNST suppressed aggression in cats of both sexes [87]. Microin-
jection of oxytocin into the BNST reduced female aggression [88]. Given that MEA cells that are
relevant for aggression are GABAergic [11], it is possible that MEA activates aggression-related
cells in the VMHvl by inhibiting the GABAergic cells in the BNST which project intensively to the
VMHvl [89]. Consistent with this hypothesis, terminal optogenetic stimulation of MEA NPY-
expressing neurons at the BNST, but not at the VMHvl, evokes aggression in male mice [90].

Despite a common role of MEA aromatase neurons [10] and BNST [87] in male and female
aggression, both regions are sexually dimorphic. The MEA, especially the posterodorsal part,
differs between sexes in its rostral–caudal extent, volume, number of cells, neuronal soma size
[91,92], number of excitatory synapses [93], and gene expression pattern [94]. Several recent
760 Trends in Genetics, October 2018, Vol. 34, No. 10



studies also suggest that MEA cell responses during social behaviors are sexually dimorphic.
Immediate-early gene mapping studies have identified two distinct MEA subpopulations
defined by embryonic transcription factors that are activated differentially after mating in males
and females [95]. Electrophysiological recording of MEA cells in anesthetized male and female
mice showed that, in males, the female responsive cells are more abundant than male
responsive cells, whereas the opposite response pattern is observed in females [96]. Recently,
in vivo microendoscopic imaging of the MEA in freely moving mice revealed that the neural
representations of various social cues, including adult males, females, and pups, change with
sexual experiences differentially in males and females [97]. Lastly, blocking oxytocin signaling in
the MEA impaired social discrimination in males but not in females [97,98]. Although the MEA
appears to play an important role in both male and female aggression [10,11], the exact
function of the MEA cells in aggression, its modulation, and circuit wiring are likely different
between sexes.

Similarly to the MEA, the BNST in males and females also differs in gene expression pattern
[99–102], cell number [103], and volume [102,104]. The in vivo responses of BNST cells during
aggressive behaviors in males and females have not been reported, and should be investigated
in future studies.

The Ventrolateral Part of the Ventromedial Hypothalamus
The main target of the MEA and BNST is the hypothalamus. Since the initial works demon-
strating that aggression could be elicited by electrical stimulation in the cat hypothalamus
[105–108], hypothalamic stimulation-elicited attack has been observed in chicken [109],
herring gull [110], opossum [111], guinea pig [112], marmoset [113], macaque [114], squirrel
monkey [115], and rat [116]. Microstimulation in rats mapped out a large hypothalamic attack
area (HAA), from which an attack could be artificially elicited [116,117]. These detailed studies in
rats compared the HAA distribution in male and female rats using hundreds of stimulation
electrodes [118], and no clear sex difference was found. More recently, a series of studies
identified a small region within the HAA, namely VMHvl, as an essential locus for aggression in
male mice [6,9,119]. Optogenetic activation of the VMHvl cells, especially those expressing
estrogen receptor a/progesterone receptor (ERa/PR; overlap nearly 100%), induced imme-
diate attack, whereas pharmacogenetic or optogenetic inactivation of the VMHvl suppressed
aggression. In vivo electrophysiological recording revealed an acute increase in VMHvl cell
activity during natural inter-male aggression [16,76,119–122]. The essential role of the VMHvl in
male aggression was further highlighted by a recent study showing that pharmacogenetic
activation of the VMHvl can induce aggression in naturally non-aggressive male mice, including
those that were group-housed, gonadectomized, or had compromised olfactory inputs [123].

Initial studies that manipulated the VMHvl Esr1+ cell activity failed to significantly change female
aggression [6,9,123]. However, a series of our experiments demonstrated that VMHvl Esr1+

cells in females are essential for aggression. Immediate-early gene mapping and in vivo
population recordings revealed high activity of VMHvl Esr1+ cells during aggressive behaviors
in female mice regardless of the reproductive status of the animal (lactating vs virgin), genetic
background (Swiss Webster or C57BL/6), or intruder type (juveniles or adult male intruder) [7].
Consistent with the natural response patterns, it was found that pharmacogenetic silencing of
VMHvl Esr1+ cells reduced female aggression, whereas optogenetic activation of the cells in
virgin females elicited attack towards both natural and non-natural targets (e.g., females
attacked males despite the fact that, in laboratory conditions, virgin females rarely attack male
conspecifics). Interestingly, VMHvl Esr1+ cells also increase activity during female–female
mounting. Activating the VMHvl Esr1+ cells in spontaneously mounting C57BL/6 virgin females
Trends in Genetics, October 2018, Vol. 34, No. 10 761



evoked stimulation-locked mounting, whereas activating the cells in spontaneously attacking
C57BL/6 lactating females or SW virgin females evoked stimulation-locked attack. Thus,
VMHvl Esr1+ cells can drive both mounting and attack in females, exactly as in males [6,7].
In males, the form of the behavioral output depends on the activation level of the VMHvl Esr1+

cells, whereas the induced behavior in females is determined by the natural behavioral pattern
of the animals at the moment of stimulation.

In females, the VMHvl, especially cells expressing both Esr1 and PR, have also been well
established as an essential population for sexual receptivity [124–130]. It has been shown that
electrical stimulation of the VMHvl can extend the duration of lordosis in female rats [125].
Knocking down Esr1 expression in the VMHvl reduced the sexual receptivity of female mice
[126]. Because both Esr1+/PR+ cells are implicated in female aggression and mating, it was
essential to further understand the organization of aggression- and mating-related cells within
the female VMHvl. In vivo electrophysiological recording revealed that mating- and aggression-
related VMHvl cells are distinct. In addition, using Fos Catfish mapping, a method that allows
examination of Fos mRNA expression induced by two different behaviors, it was found that
aggression- and mating-related cells reside in distinct compartments of the VMHvl: the mating-
responsive cells are concentrated in the VMHvll (lateral part of VMHvl), while the aggression-
related cells are concentrated in the VMHvlm (medial part of VMHvl) [7]. Laser capture
microdissection and RNA-seq further revealed distinct transcriptional profiles of the VMHvlm
and VMHvll cells, while tracing studies demonstrated that VMHvll (but not VMHvlm) projects to
the anteroventral periventricular nucleus (AVPV), a sexually dimorphic region that is
enriched for kisspeptin, a polypeptide which is essential for regulating GnRH neurons [7].

It is not yet clear whether the VMHvll and VMHvlm cellular compartments also exist in males
because the fight-related and mate-related cells are spatially mixed [7] and they partially overlap
at the single-cell level in the VMHvl [119,120]. Electrophysiological recording revealed that as
many as 50% of the VMHvl cells that are excited by males are also excited by females, although
the magnitude of cell responses between male and female stimuli often differ [119,131].
Interestingly, the extent of overlap between the male- and female-responsive cells varies with
social experience [132]. It has been shown that highly overlapping Esr1+ cells respond to male
and female stimulus mice in sexually naïve male mice. After sexual experience, the male- and
female-responsive cells start diverging within 3 days (Figure 2). Of note, most male-responsive
VMHvl cells respond during both male investigation and attack [119,120], whereas the majority
of female-responsive cells are activated during investigation but are suppressed during intro-
mission and ejaculation [119]. Consistent with the lack of excitatory responses of the VMHvl
cells during advanced stages of male sexual behaviors, silencing the VMHvl cells, either
pharmacogenetically or optogenetically, did not change ongoing mating [6,119], although
ablation of VMHvl PR+ cells impaired intromission [9]. Overall, the role of VMHvl Esr1+ cells in
male sexual behavior is likely to be relatively minor in comparison to that in females.

Ventral Premammillary Nucleus
Another hypothalamic region that has been indicated in aggression is the ventral premam-
millary nucleus (PMv). The PMv receives inputs from the MEA [86] and projects to several
hypothalamic nuclei including the VMHvl [133]. Ablation of the PMv attenuated aggression in
lactating rats and reduced fighting-induced c-Fos expression in the VMHvl [134]. Although the
role of the PMv in male aggression has not yet been thoroughly studied, it was found that cells in
the PMv that express dopamine transporter (DAT) drive inter-male social investigation via
excitatory neural transmission [135]. c-Fos mapping showed that the PMv is predominantly
activated by the presence of a male intruder in both sexes [134,135], and is only minimally
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activated by a female intruder in male subjects [135]. Optogenetic and pharmacogenetic
experiments showed that moderate activation of the DAT(+) population induced social investi-
gation to intruders [135,136] while strong optogenetic activation (>3 mW, 20 Hz) elicited
aggression reliably in male mice. Interestingly, prolonged aggression was observed even after
the termination of PMv stimulation. Slice physiological experiments demonstrated that PMv has
intrinsic, and network level features that maintain its excitation once it is activated [136]. PMv
neurons exhibited prolonged excitation to both excitatory and inhibitory inputs [136]. PMv DAT
(+) cells create recurrent network by connecting each other with excitatory neurotransmission
[136]. PMv DAT(+) cells send excitatory projection to VMHvl cells that send excitatory project
back to PMv DAT cells [136]. Importantly, fast-scan cyclic voltammetry did not detect dopa-
mine release in the VMHvl [135]. PMv DAT (+) cells control rewarding aspect of aggression and
its execution by distinct projections [136]. Whereas the projection from PMv DAT (+) cells to
VMHvl is sufficient for aggressive behaviors, the projection to the supramammillary nucleus
(SuM) is involved in aggression reward [136]. The detailed roles of PMv in female aggression
and in other social behaviors remain to be determined. Additional studies should be performed
to determine whether PMv neurons encode the sensory information of conspecifics or the
relevant actions during social behaviors (e.g., aggression, mating).

Periaqueductal Grey
Among the hypothalamic projection sites in the midbrain, several lines of research suggest that
the periaqueductal grey (PAG) plays a role in aggression. c-Fos was elevated in the PAG after
fighting in both males and females [7,137,138], while electric stimulation of the PAG induced
aggression in male rats [116,139]. Furthermore, the VMHvl, including the subpopulation
expressing Esr1/PR, projects heavily to the dorsal and lateral parts of the PAG [7,9,140]. In
vivo recording in cats showed that cells in the dorsal and lateral parts of PAG responded during
agonistic encounters [141]. However, the effect of PAG lesions on aggression has been
inconsistent in both sexes, possibly because of heterogeneity of the lesion sites in the PAG
and the existence of redundancy in the circuit [142–144]. How the hypothalamic information is
relayed to the PAG, what cell types in the PAG are relevant for aggression, and how they differ
between sexes remains unknown.

Lateral Septum
The aforementioned regions, including olfactory bulbs, MEA and BNST, VMHvl and PMv, and
PAG, constitute the main circuit for controlling the sensorimotor transformation to express
aggressive behaviors. Several other regions that are outside this direct ‘expression’ pathway
have also been implicated in playing essential roles in modulating aggression. Past studies in
humans and animals have consistently shown that the lateral septum (LS) negatively reg-
ulates aggression. Patients with tumors centered around the septum show increased irritability
and aggressiveness [145]. Neural activation of LS (as measured by Fos) negatively correlated
with aggression in male song sparrows [146]. Lesioning or silencing the septum area increased
aggression in rats [147,148], male hamsters [149], and mice [131]. Conversely, the activation of
the septum decreased aggression in male and female mice [131,150]. The LS might regulate
aggression by suppressing the activity of aggression-related neurons in the hypothalamus.
VMHvl neurons receive direct GABAergic inputs from the LS, and optogenetic activation of
these GABAergic projections suppressed aggression in male mice [131]. Moreover, optrode
recording (combined optogenetics and neural recording) showed that aggression-excited cells
in the VMHvl are preferentially suppressed by optogenetic activation of projection from the LS in
comparison to aggression-inhibited or non-responsive cells [131]. Given that LS receives
dense inputs from the hippocampus, and that some cells show place fields [151], this pathway
might modulate aggression through evaluating territoriality associated with the location of the
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subject. Future studies could test this hypothesis directly by investigating the activity of LS
neurons during agonistic encounters under different territorial contexts.

Medial Prefrontal Cortex and Medial Dorsal Thalamus (MD)
The prefrontal cortex, especially the dorsal medial part, is involved in the determination of social
dominance [152]. It has been previously observed that male mice higher in dominance rankings
possessed enhanced synaptic strengthening in medial prefrontal cortex (mPFC) pyramidal
neurons [153]. Increasing the synaptic efficacy from the medial dorsal thalamus (MD) to
mPFC cells increased social rank, while weakening the synapses had the opposite effect [153].
In addition, in vivo single-unit recordings showed that mPFC neurons display effort-related
neuronal activity during competition for social dominance [154]. Future studies could potentially
elucidate how hierarchical information encoded in mPFC may influence the aggression circuitry
in a sex-specific manner.

Overall Differences in the Male and Female Aggression Circuits
Thus far, all the brain regions relevant for male aggression appear to also play a role in female
aggression [6,7,10,32,80–83], suggesting that the aggression circuitry in rodents is likely to be
qualitatively similar between sexes. This is perhaps not surprising given that aggressive
behaviors involve similar motor patterns in male and female rodents. Nevertheless, quantitative
differences of the aggression circuit do exist between sexes. First, the number of the aggres-
sion-related cells within each aggression relay likely differs between sexes. In males, the
aggression-responsive cells are found throughout the VMHvl, whereas in females these cells
are restricted to the medial half of the VMHvl [7] (Figure 2). Given that the VMHvl is larger in
males than in females [155], the total number of aggression-responsive cells is likely to be
higher in males than in females. Consistent with this possibility, single-unit recording from male
VMHvl showed that �40% of recorded cells increased activity during aggression, whereas only
�20% of recorded units in female mice did [7,119]. In addition, the male and female aggres-
sion-responsive cells could differ in their response magnitude. Single-unit recording revealed
that the mean firing-rate increase of aggression-related cells in the VMHvl is higher in males than
in virgin females [7,119,120]. The higher responses of male VMHvl neurons appear to correlate
with the longer primary and secondary dendrites and the larger number of synapses in the male
VMHvl than in the female VMHvl [155,156].

Aggression Circuits between Different Strains of Rodents
Aggressive behaviors not only differ between sexes but also vary widely with genetic back-
ground. In rats, an inbred male CPB-WEzob strain, which shows higher anxiety levels, upon
hypothalamic stimulation predominantly attacks the head and abdominal areas of the oppo-
nent, whereas a more standardized CPB-WI Wistar strain mainly attacks the back of its
opponent [157,158]. Despite differences in attack patterns between strains, the distribution
of hypothalamic attack areas identified by stimulation electrodes seemed to be identical [157].
In mice, direct comparison of aggression intensity between wild mice and various inbred and
outbred strains of mice showed that the aggression level of Swiss-CD1 outbred mice is
comparable to that of wild mice in both sexes, while the outbred strain DBA/2 and a widely
used inbred strain, C57BL/6, are much less aggressive than wild mice [159]. Despite these
differences in murine strains, the hypothalamic neural substrates for aggression appear to be
the same between different strains of female mice [7]. Esr1+ cells in the VMHvl are necessary
and sufficient for aggression in both inbred C57BL/6 mice and outbred Swiss Webster mice,
and the topographic organization of aggression-related and mating related-cells within the
VMHvl is also the same. It will be crucial to identify additional microscopic differences in the
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aggression circuitry of male and female mice that could account for the behavioral differences
observed between strains.

Developmental Mechanisms Underlying the Sex Differences in Aggression
While early studies suggested that some genes on the Y chromosome might be relevant for
aggressive traits in males, solid evidence supporting unique genes for male aggression in
mammals remains lacking [19,160,161]. Instead, as discussed below, current evidence
supports a role for sex hormones (estrogen and testosterone) in modulating the expression
of many sexually dimorphic genes during both development and adulthood for the differentia-
tion of aggression circuits in both sexes (Figures 3 and 4) [162].

Perinatal Testicular Androgen Surge and Aggressive Behaviors
The Y chromosome gene, sex-determining region Y (sry) [163–165], determines the develop-
ment of testes [166], which are responsible for the release of testosterone during the early
postnatal period. The released testosterone is then converted to estrogen by aromatase, which
then binds to ERa expressed in the amygdala, hypothalamic, and hippocampal regions to
induce permanent masculinization of the male brain [167,168] (Figure 3A–C). Postnatal injec-
tion of estradiol into female pups causes the females to show a variety of male-like behaviors,
including heightened aggression as well as male-style mounting and urine marking
[103,167,169]. Conversely, neonatal castration of male pups dramatically reduced aggression
levels in adults [170].

In addition to the action of testosterone via conversion to estrogen, testosterone also directly
masculinizes the brain through its action on the androgen receptor (AR), which, similar to the
estrogen receptors, is expressed throughout the limbic system [171–174] (Figure 3A–C). A
series of studies using rats with a testicular feminization mutation (tfm, a null mutation of AR), as
well as AR knockout mice, demonstrated that ARs are normally involved in the masculinization
of many sexually dimorphic brain regions and in a variety of behaviors including aggressive and
sexual behaviors, stress responses, and cognitive processing [173,175]. Most convincingly,
attack duration and frequency decreased when AR was specifically knocked out in the central
nervous system, supporting a role of AR in masculinizing aggressive behaviors through its
action on the brain [176,177].

Circuit Masculinization during Development
How could elevated perinatal estrogen/testosterone masculinize the aggression circuitry? In a
study focusing on the medial preoptic nucleus (MPOA, a region essential for sexual behaviors),
it was found that the primary effect of neonatally elevated testosterone in males may be to
reduce DNA methylation, thereby releasing masculinizing genes from epigenetic repression
[178]. It was found that genes essential for dendritic spine structures, such as Dbn1 (encoding
drebrin 1 [179]) and Ppp1r9b (encoding neurabin a [180]), are particularly elevated in neonatal
male mice in comparison to females [178]. Blocking DNA methylation either pharmacologically
or genetically resulted in expression of these masculinizing genes and the development of male-
like sexual behaviors in female mice [178]. The activated masculinizing genes may promote
sexually dimorphic neural circuits in two ways (Figure 3D). First, they may increase cell survival
by reducing apoptosis [103,181–183]. Early postnatal cell death is pronounced in female
BNSTp and MeA, but not in VMH [103,181–184], and postnatal estrogen or testosterone
injection reduced cell death and increased the survival of these cells in adult female mice [103].
Second, a perinatal surge of testosterone promotes synaptogenesis as well as axonal and
dendritic growth [156,185,186] (Figure 3D). Estrogen markedly increased axodendritic synapse
formation in the arcuate nucleus and MEA during the neonatal period [187,188]. In the VMHvl,
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(Figure legend continued on the bottom of the next page.)

Neonatal Sex Hormones Masculinize the Aggression Circuit. (A) The neonatal surge of testosterone in
males masculinizes the male brain via its direct action on androgen receptors and indirect action on estrogen receptors
after conversion to estrogen by aromatase. (B) Brain regions enriched in androgen and estrogen receptors: both AR and
ER are expressed in all the highlighted regions. Abbreviations: BNST, bed nucleus of the stria terminalis; HIP, hippo-
campus; MEA, medial amygdala; MPOA, medial preoptic area; PMv, ventral premammillary nucleus; VMH, ventromedial
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Figure 4. Circulating Gonadal Ster-
oids during Adulthood Maintain Sex
Differences in Aggression. (A) Circu-
lating testosterone in adult males is
crucial for their high levels of aggression.
While circulating gonadal steroids in non-
pregnant females have minimal effects on
aggression, orchestrated changes in sex
hormone levels during pregnancy are
likely essential for elevating aggression
during lactation. (B) Gonadal steroids
can alter cellular morphological complex-
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sexes during adulthood. Testosterone
maintains the high density of dendritic
spines in males whereas estrogen
induces synaptogenesis, dendrite elon-
gation, and higher cellular excitability in
females. Abbreviation: OVX, overiectomy.
the synaptic number is higher in males than in females [189]. When females are exposed to
androgen neonatally, the number of shafts and synapses in the female VMHvl is increased to a
level comparable to that of males [156]. Future studies will address whether DNA methylation
suppression represents a common mechanism to differentiate sexually dimorphic behavioral
circuits, and cast light on the genes that undergo demethylation in the VMHvl and other
aggression-relevant brain regions.

Sexually Dimorphic Hormonal Control of Aggression during Adulthood
Control of Adult Male Aggression by Sex Hormones
Testosterone, and its aromatized product estrogen, not only masculinize the aggression
circuitry during development but also have crucial roles in maintaining a high level of aggression
in adult males (Figure 4A). The level of plasma testosterone positively correlates with aggression
level [190–192]. In mice, castration during adulthood dramatically reduced aggression
[123,193,194], whereas exogenous injection of testosterone or estrogen enhanced aggression
[193–195]. Similar effects of castration and testosterone replacement are reported during
hypothalamic aggression in male rats [196] (but also see [197]). Site-specific manipulations
suggest that the medial hypothalamus is likely a key site through which sex hormones exert
their effect in maintaining male aggression. Implantation of pellets of testosterone propionate
hypothalamus. (C) Neonatal testosterone peaks within 1–2 h after birth and only lasts for a few hours. (D) The neonatal
surge of testosterone in males exerts its action by reducing DNA methylation (Me) to release a series of masculinization-
related genes from repression. Disinhibited genes may have effects on cell survival and morphology.
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into the medial hypothalamus, but not into its dorsal and anterior region, is sufficient to reverse
castration-induced decreases in male aggression [198]. Conversely, knocking down ERa in the
VMHvl using RNAi significantly reduced inter-male aggression [199]. Beyond the VMHvl, AR
and ERs are expressed in nearly all other known nodes relevant for aggression, including BNST,
MEA, MPOA, PMv, and PAG. Future studies using systematic site-specific gene knockdown
will elucidate the importance of hormone regulation at those sites for male aggression.

How does circulating testosterone maintain male aggression? As mentioned earlier, the
male VMHvl contains more synapses than the female VMHvl [156]. Adult castration
reduced the number of VMHvl synapses in males, whereas testosterone application to
females increased the number of synapses to a level comparable to that in males [156].
Thus, the synapses in the aggression circuitry, in other words the communication between
the circuit nodes, are dynamically regulated by this sex hormone even after its initial
establishment. Indeed, in vitro imaging studies demonstrated that estrogen, testosterone,
and dihydrotestosterone, a form of non-aromatizable testosterone, could all rapidly induce
spine formation in hippocampal neurons [200,201], whereas blocking estrogen synthesis in
hippocampal slice cultures resulted in a significant decrease in the density of spine
synapses and presynaptic boutons [202] (Figure 4B). Thus, the ability of sex hormones
to modulate the aggression circuitry in adults could be essential for either increasing or
decreasing aggression after particular social experiences (e.g., winning increases both
testosterone levels and aggression [50]).

In addition to promoting the expression of genes relevant for synaptogenesis, sex hormones
also govern many other genes with diverse functions in brain regions essential for aggression. A
systematic analysis of sexually dimorphic genes expressed in BNST, POA, MEApd, VMHvl, and
PMv was conducted using microarray and in situ hybridization. It was found that the expression
of male-enriched genes requires testicular hormones, whereas the expression of female-
enriched genes requires ovarian hormones [100]. For example, synaptotagmin-like protein
4 (Sytl4) is a male-enriched gene and its global knockout results in the reduction of male sexual
behaviors, while loss of a female-enriched gene, cholecystokinin A receptor (Cckar), attenuates
female sexual behaviors [100]. Although aggression-related genes were not identified in that
study, sex hormone-controlled genes enriched in the aggression circuit are potential candi-
dates for future studies.

Sex Hormone Control of Adult Female Aggression
In contrast to the strong influence of sex hormone on male aggression, sex hormones,
specifically estrogen, do not appear to be necessary for maintaining aggressive behaviors
in virgin females. Ovariectomy did not reduce natural aggression in female mice [203], nor was
aggression elicited by hypothalamic stimulation in female rats [118]. Both Esr1 knockout female
mice [204] and female mice with VMHvl-specific Esr1 knockdown show slightly increased
aggression, instead of decreased aggression as in males [199,205]. In addition, most studies
found that the level of female aggression is independent of the estrous cycle [206–208]
(Figure 4A).

Although estrogen appears not to be required to maintain female aggression in virgin females,
surges of sex hormones and other neuropeptides during pregnancy and lactation may be
essential for enhancing aggression in lactating females [21]. During pregnancy in rodents,
progesterone levels elevate from early pregnancy until a few days before parturition, while
estrogen levels remain low during the first two thirds of pregnancy and then rise rapidly several
days before parturition [209,210]. After parturition, the estrogen level plummets while several
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peptide hormones, such as prolactin and oxytocin, are abundantly secreted during nursing
[211,212] (Figure 4A). Remarkably, a hormonal regimen resembling the hormonal changes
taking place during pregnancy followed by pup suckling could significantly increase female
aggression in mice [213,214]. Surprisingly, however, neither pregnancy nor lactation affected
hypothalamic stimulation-induced attack in female rats [215].

How could hormonal changes during pregnancy induce changes in the aggression circuit,
while those during estrous cycle do not? One possibility is that the response of some cells to
gonadal steroid hormones is duration-dependent. Although the peak plasma concentrations
of estradiol and progesterone during the estrous cycle and pregnancy are in the ranges of
�100 pg/ml and �50 ng/ml, respectively [209,216,217], the hormone elevation period is
much longer during pregnancy (�1–2 weeks) than during proestrus (12 h) (Figure 4A). Thus, it
is possible that aggression-related neuronal populations are relatively insensitive to sex
hormones in females, and extensive exposure to the hormones is necessary to change
the properties of those cells. Consistent with this idea, Esr1 is expressed at a low level in the
aggression-related cellular population in the VMHvl relative to the mating-related population
[7]. Another possibility is that the order of the elevation of estrogen and progesterone has a
distinct impact on gene expression patterns and thus on cell properties. In the estrous cycle,
estrogen precedes progesterone, while in pregnancy progesterone elevates first. Bulk RNA
sequencing showed that VNO (one of the circuit nodes for aggression) transcriptional profiles
during pregnancy are distinct from those in naïve females [218]. Future studies could
potentially reveal changes in transcriptional profiles at each node of the aggression circuit
during pregnancy and the estrus cycle, and cast light on how sex steroids may contribute to
such changes.

How could the surges of sex hormones during pregnancy alter the aggression circuit? It has
been shown that estradiol increases dendrite length of female VMHvl cells [219], increases
spine density [220], enhances cell excitability [221,222], and promotes synaptic transmission
[223] (Figure 4B). Thus, estrogen and progesterone can fine-tune the aggression circuit in many
ways. However, it remains unclear whether these sex hormones act on VMHvl mating-related,
aggression-related, and/or both cells during pregnancy. As the molecular identity of aggres-
sion-related VMHvl subpopulation starts to emerge [7], future studies that focus on molecularly
identified aggression- or mating-related VMHvl cells will help to elucidate the hormonal
modulation of social behavior circuits in females.

Regulation of Aggression by Non-Steroid Hormones
Corticotropin-Releasing Hormone
As we have seen earlier, aggression is modulated by various stressors including social defeat
and isolation. The hypothalamic–pituitary–adrenal (HPA) axis is commonly activated by stress-
ors [224]. During stress, cells in the paraventricular nucleus of hypothalamus (PVN) release
corticotropin-releasing hormone (CRH), that then triggers the secretion of adrenocortico-
tropic hormone (ACTH), which in turn acts on the adrenal cortex to produce glucocorticoid
hormones (e.g., cortisol). Significant correlations between glucocorticoid levels and aggressive
behaviors have been found in a variety of species, although the correlation could be either
negative or positive [225–233]. Functional studies showed that stress hormones can either
decrease or increase aggression. Central infusion of CRH decreased inter-male aggression
[234] and maternal aggression [235]. Stimulation of the aggression-inducible hypothalamic
areas in rats rapidly activated the adrenocortical response, which in turn facilitated stimulation-
induced attack [236]. When the natural adrenocortical stress response was blocked by
adrenalectomy, hypothalamic stimulation-induced attack was blocked [236]. Thus, the effect
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Outstanding Questions
What neural mechanisms are respon-
sible for winner and loser effects in
males, and for the potential lack of
these effects in females?

What neural mechanisms are respon-
sible for the isolation-induced
increases in male aggression but not
female aggression?

Is aggression, especially winning a
fight, rewarding to females?

What brain regions are relevant for the
expression and modulation of aggres-
sion in males and females?

What are the molecular identities of the
aggression-related cells in each brain
region in males and females?

How do the aggression-related cells
differ in their number, response mag-
nitude, electrophysiological properties,
morphology, and synaptic inputs
between sexes at each circuit node?

How do different sex hormones and
their receptors coordinate the modu-
lation of aggressive behaviors both
during development and adulthood in
males and females?

Are changes in sex hormones fully
responsible for the increase of aggres-
sion during pregnancy and lactation in
females? If so, how?

How do the specific cell types in the
aggression circuitry emerge during
development?

What are the molecular events (e.g.,
demethylation) initiated by sex hor-
mones that lead to the differentiation
of aggression circuits during the devel-
opment in both sexes?

How do early life experiences contrib-
ute to the sexually dimorphic aggres-
sion circuit?

Are there other genetic factors inde-
pendent of sex hormones that contrib-
ute to sex differences in aggressive
of stress hormones on aggression is likely to be complex, varying with hormone duration,
concentration, and brain region, and is an interesting topic for future investigation [237].

Vasopressin
Vasopressin (AVP) is also implicated in a wide range of social behaviors including aggression
[238–241]. Global knockout of one of the vasopressin receptors, V1b, reduced male aggres-
sion without affecting sexual behaviors [242]. Local application of AVP in the anterior hypo-
thalamus enhanced aggression in male hamsters [240]. In contrast to the case in male
aggression, there are conflicting results for the role of AVP in female aggression. One study
showed that a centrally administered V1a antagonist increased aggression in lactating rats
[243], while a different study found that local injection of a V1a antagonist in the BNST increased
aggression in lactating rats [244]. The inconsistency in the experimental results in females
possibly reflects complex and even opposing effects of AVP in different brain regions. Future
studies using more precise approaches to manipulate AVP signaling in specific neuronal
subpopulations will help to reconcile the published results and elucidate the precise function
of AVP in male and female aggression.

Concluding Remarks
In rodents, aggression differs between sexes in many ways, including behavior intensity,
developmental course, rewarding value, and experience-induced changes. Despite the fact
that the neural mechanisms resulting in sex-specific differences in aggression remain largely
unknown, current work suggests that such differences are unlikely to be due to broad
structural differences in the aggression circuitry between sexes. Brain regions relevant for
male aggression, from early olfactory relays to the hypothalamus, all appear to play important
roles during female aggression [6,7,10,11,80–83,122]. However, at the cellular level in each
circuit node, there appear to be differences in both the number and spatial distribution pattern
of aggression-related cells between male and female mice. Additional properties of aggres-
sion-related cells such as intrinsic electrophysiological properties, morphology, transcriptome
profile, and synaptic inputs are also likely to differ between sexes and remain to be further
investigated (see Outstanding Questions). An important goal for future studies is to link the
sexual dimorphism present in the aggression circuit to the differences in behavioral outputs. A
potential approach for achieving this goal is to masculinize or feminize a specific node or
population of cells in the aggression circuit, and then examine any possible changes in
aggressive behaviors.

Sex hormones have been suggested as central players in establishing and maintaining sexually
dimorphic aggressive circuits and behaviors. How different sex hormones and their receptors
coordinate the control of aggressive behaviors remains poorly understood and requires further
investigation [245]. Other future directions include identifying additional genetic, environmental,
and experiential factors that may contribute to the sexual dimorphism observed in the aggres-
sion circuitry. In light of recent technological advances that enable precise molecular editing,
single-cell RNA profiling, cell activity control, in vivo recording, tracing, and automated behav-
ioral analysis, our understanding of the aggression circuit is rapidly advancing, and we are now
well equipped to explore the interplay between genetics, hormones, and neural circuits that
results in sexually dimorphic behaviors.
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