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Animal behaviours that are superficially similar can express different intentsin
different contexts, but how this flexibility is achieved at the level of neural circuits is
not understood. For example, males of many species can exhibit mounting behaviour
towards same- or opposite-sex conspecifics', but it is unclear whether the intent and
neural encoding of these behaviours are similar or different. Here we show that
female- and male-directed mounting in male laboratory mice are distinguishable by
the presence or absence of ultrasonic vocalizations (USVs)**, respectively. These and
additional behavioural data suggest that most male-directed mounting is aggressive,
althoughinrare casesit can be sexual. We investigated whether USV* and USV~
mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic
imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial
preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision
(VMHVI) revealed distinct patterns of neuronal activity during USV" and USV™
mounting, and the type of mounting could be decoded from population activity in
either region. Intersectional optogenetic stimulation of MPOA neurons that express
ESR1and vesicular GABA transporter (VGAT) (MPOA®R"VEAT neurons) robustly
promoted USV* mounting, and converted male-directed attack to mounting with
USVs. By contrast, stimulation of VMHvI neurons that express ESR1 (VMHv[®®
neurons) promoted USV”mounting, and inhibited the USVs evoked by female urine.
Terminal stimulation experiments suggest that these complementary inhibitory
effects are mediated by reciprocal projections between the MPOA and VMHVI.
Together, these dataidentify a hypothalamic subpopulation that is genetically
enriched for neurons that causally induce a male reproductive behavioural state, and
indicate that reproductive and aggressive states are represented by distinct
population codes distributed between MPOA®® and VMHVI®™f neurons, respectively.
Thus, similar behaviours that express different internal states are encoded by distinct

hypothalamic neuronal populations.

To investigate whether female- and male-directed mounting in mice
could be behaviourally discriminated, we first attempted to train a
machine-learning-based classifier® to distinguish mounting in these
two contexts (Fig. 1a, Methods). The performance of classifiers trained
using pose features from mounting bouts alone was only slightly bet-
ter than chance (63%) (Fig. 1b, c, Extended Data Fig. 1a, b). However,
when trained using features extracted between -3 s and 1 s relative to
mountinitiation (at t=0), classifier performance was improved to 78%
(Extended DataFig.1e-g). This suggested that features from associated
actions—more than from mounting itself—distinguish same-sex- and
opposite-sex-directed mounting.

We therefore investigated which associated behaviours best dis-
criminate the mounting of female versus male mice by male mice.

Audio recordings revealed that female-directed mounts were invari-
ably accompanied by USVs®* (Fig. 1e, f, h, k, Supplementary Video 1),
whereas most male-directed mounts were not (Fig. le-g, k, Supple-
mentary Video 2; the rare exceptions are discussed below). Inaddition,
female-directed mounts were followed usually by pelvic thrusting and
intromission (Fig.1h, I), whereas male-directed mounting was followed
typically by attack (Fig. 1g, m). Finally, male-directed USV- mounting
was more frequent during initial social encounters when mice were
socially inexperienced (day 1in Fig. 1g, i, j, Extended Data Fig. 1h-j),
and diminished as mice gained aggressive experience®” (days 2 and
3inFig.1n, 0). These data suggest that most cases of naturally occur-
ring female- and male-directed mounting in this mouse strain reflect
underlying sexual and aggressive motivational states, respectively.
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Fig.1|Female-and male-directed mounting are distinct male social
behaviours. a, Experimental design (top) and representative video stills for
female- and male-directed mounting (bottom). RI, resident-intruder.b, c,
Decodingthe sex of theintruder from female- versus male-directed mounting.
AU, arbitrary units. b, Projection of mouse pose features from mounting bouts
onto the maximally discriminating dimension of the decoder. ¢, Decoder
accuracy compared with shuffled data. Fifty-four behaviour sessions, Mann-
Whitney Utest, ***P=0.0004.d, Schematicillustrating resident-intruder
assay.Maleintruder tests, n=20; femaleintruder tests, n=11.e, Representative
spectrograms during female-directed (top) and male-directed (bottom)
mounting. Scale, 100 ms. Asterisksindicate USV syllables. f, Representative
raster plotsindicating mount, USV and investigation episodes during

We investigated next how the hypothalamus encodes these two
forms of mounting. In principle, female- and male-directed mount-
ing could reflect the presence of behaviour-specific neurons that
are either common or distinct (Extended Data Fig. 1k); alternatively,
the two forms of mounting could reflect a more general encoding
of aggressive and sexual internal states. ESR1" neurons in both the
MPOA and VMHvI have previously been implicated in male mount-
ing®2, To directly compare activity in these two populations during
female- and male-directed mounting in the same mice, we performed
simultaneous bulk calcium measurements in MPOA™* and VMHvI®®
neurons using fibre photometry® (Fig. 2a, b, Extended Data Fig. 2,
Methods). The activity in the former area was relatively higher dur-
ing USV'mounting, whereas activity in thelatter area trended higher
during USV-mounting (Fig. 2c, d). We observed a similar relationship
during other phases of female- versus male-directed social behaviour
(Extended DataFig. 3).

Notably, in two out of ten individual male mice (no. 629 and no.
634), activity during male-directed mounting resembled that typi-
cally observed during female-directed mounting—that s, activity was
relatively higherin MPOA®R! than in VMHVI®® neurons (Extended Data
Fig.4b, c, g, h). Furthermore, in both cases male-directed mounting
was accompanied by USVs (Extended Data Fig. 4d, e). These rare exam-
ples may reflect mistaken sex identification'* and/or male-directed
affiliative (that is, bisexual) behaviour (Supplementary Note 2), and
indicate that neural responses in these nuclei are not simply sensory
representations of intruder sex.

The quantitative differences in bulk ESR1" neuronal activity in each
nucleus during sexual (USV*) versus aggressive (USV") mounting
(Fig. 2d) could reflect differences in the activity of the same neurons
or the activation of different subsets of ESR1* neurons®**, To distin-
guish these alternatives, we performed single-cell-resolution calcium
imaging of ESR1" neurons using head-mounted micro-endoscopes”, in
either the MPOA or VMHVIS, in freely behaving mice (Fig. 2e, Methods).

interaction with female (top) or male (bottom) intruder. g, h, Distribution of
social behaviours by amale mouse that was initially naive to male, across three
consecutive days with amale (g) or female (h) intruder. See Extended Data
Fig.1h-jfor details. AT, attack; MT, mount.1i, j, Fraction of mice exhibiting
mounting (i) and time spent mounting (j) on each test day. i, Fisher’s test,
***P=0.0002;j, Kruskal-Wallis test, ****P<0.0001. k-m, Fraction of mice
exhibiting mounting with USVs (k), pelvic thrust (I) or attack (m) on each test
day. n, 0, Quantification of behaviours towards maleintruders on each test day.
n, Latency tofirstattack (Methods).n =20, Friedmantest,***P=0.0003,
0.0002. 0, Fraction of mice exhibiting USV-mount plus attack versus attack
only. Dataare mean +s.e.m. All statistical tests are two-sided and corrected for
multiple comparisons when necessary (Supplementary Table 2).

To our knowledge, the single-cell-resolutionimaging of MPOA activity
during social behaviours has not previously been reported.

In the MPOA (as in the VMHVI®), we observed that distinct popula-
tions of ESR1" neurons responded during female- and male-directed
social interactions (Fig. 2f, Extended Data Fig. 5a-h). However
female-preferring neurons outnumbered male-preferring neurons
by twofold in the MPOA (18% versus 9%) (Fig. 2g left)—the reverse of the
ratio in the VMHVI (12% versus 29%) (Fig. 2g right). In both structures,
much ofthevariancein populationactivity was explained by intruder
sex (30-52%) (grey barsinFig. 2h), althoughin the MPOA a higher frac-
tion of the variance was explained by behaviour (57%,) (pink and blue
barsinFig.2h) thanwas the case in the VMHvI (about 37%) (Methods).

To further investigate the relationship between neural activity and
behaviour, we performed a frame-by-frame annotation of behaviourin
synchronously acquired video recordings® (Extended DataFig. 6a, b).
Boththe MPOA and VMHVvI contained distinct populations of neurons
that were activated at the onset of USV* and USV” mounting, respec-
tively (Fig.2i,j). However, overall the relative activity of each cell during
mounting and investigation was highly correlated—for intruders of a
given sex—inboth the MPOA (R*=0.61-0.71) (Extended Data Fig. 5i, j)
and VMHvI (R*=0.77-0.88) (Extended Data Fig. 5k, 1), and was poorly
correlated across different sexes (Extended Data Fig. 5a-h). A small
proportion of neurons was preferentially activated (more than 20)
during mounting but not sniffing (green or blue points and sectors
in Extended Data Fig. 5i-1and 5m-p, respectively). This suggests that
the activity observed during USV* or USV- mounting is not simply a
reflection of the sex of the intruder (which would also contribute to
neuronal activation during sniffing), but that at least some neurons
are selectively activated during USV* or USV- mounting behaviour.
However, cells that responded during both behaviours were more
numerous and more strongly activated than those that responding
during onebehaviour only (grey pointsin Extended Data Fig. 5i-1, grey
sectorsin Extended Data Fig. 5m-p).
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Fig.2|Distinct neural representations of USV' and USV mountingin
MPOA®® and VMHVI®® neurons. a, Schematicillustrating dual-site fibre
photometry. b, Representative GCaMP6s expression and optic fibre tract.
Scalebars, 100 um.n=10.AC, anterior commissure; F, optic fibre tract. See
Extended DataFig. 2c, e for examples from control experiments. ¢, d, Averaged
calciumsignalsin MPOA®® and in VMHVI®* aligned to mount onset (Methods).
PETH, peri-event time histograms. d, Integrated activity during mounting.
***P=0.001.USV"mount, n=10; USV mount, n=6.e, Schematic of
micro-endoscopic calciumimaging. GRIN, gradientindex. f, Representative
calciumactivity raster during social encounters, sorted by intruder sex
preference and response magnitude. Arrows, intruder introduction. g,
Fraction of female- and male-preferring MPOA®® and VMHVI®**! neurons. h,
Mainsources of variance in population activity (Methods).n=4 foreach
region.i,j, Neuralactivity of example mount-activated neurons, shown as

To further investigate the specificity of the behavioural responses,
we computed the choice probability of each neuron for mounting (USV*
or USV") versus investigation (sniffing)®. The choice probability of a
neuronindicates how accurately the activity of the neuron can predict
whether mounting or investigationis occurring, duringeach annotated
frame in which the neuron is active’®. In both the VMHvl and MPOA,
3-11% of ESR1" neurons exhibited a choice probability of more than 0.7
for sexual (USV") or aggressive (USV') mounting, respectively (relative
toinvestigation), that was substantially higher (over 20) compared to
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PETHs (normalized to 2.5to 1.5s before mount onset). Each pair of rasters is
fromthesameneuron.k, I, Choice probabilities (CP) for female- or male-
directed investigation versus USV* or USV-mounting (coloured barsindicate
significance, Methods). m, n, Proportion of cells showing significance
(Methods) and choice probability >0.7 for USV* mounting, USV-mounting or
both.o,p,s, t, Averageactivity per neuron (g, relative to pre-mount activity)
during USV* versus USV-mounting. o, s, Scatter plots. p, t, Proportion of cells
excited (>20) during mounting. q, r,u, v, Accuracy of time-evolving (q, u) or
frame-wise (r, v) decoders predicting USV* from USV-mounting, trained on
neural activity. n=4,***P<0.0001.d, r,v,Mann-Whitney Utest. Data are
mean ts.e.m.,exceptinboxplots (d), inwhich centrelinesindicate medians,
boxedgesrepresent theinterquartile range and whiskers denote minimal and
maximalvalues. All statistical tests are two-sided and corrected for multiple
comparisons when necessary (Supplementary Table 2).

shuffled behavioural annotations (Fig. 2k, I, Methods). This confirms
thatboth nuclei containsome cells that are tuned for mounting, inde-
pendently of the sex of the intruder. However, these cellsappeared tolie
atthe extremes of a continuum of relative ‘tuning’ for mounting versus
investigation. Nevertheless, in both the MPOA and VMHVI, there was
minimal overlap between USV*-mount-tuned and USV"-mount-tuned
cellsidentified by choice probability analysis (Fig.2m, n). Similarly, in
bothnucleithe ESRI" subpopulations that were preferentially activated
(morethan 2¢) during the two types of mounting were largely distinct
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Fig. 3| MPOAFSRI"VCAT peurons control male sexual behaviour. a, Strategy to
express ChR2in MPOASRIVCAT or MPOAFR neurons using sexually and socially
experienced Esr? Vgat“ (blue bars) or Esr™? (purple bars) mice. Con/Fon,
Cre-ON/FLP-ON; fDIO, FLP-ON. b, ChR2 expressionin MPOA in Esr1’® Vgat®
mice with boxed region magnified (right). Scale bars, 500 pm (left), 100 um
(right).n=7.c,d, Optogenetically triggered mounting towards male intruders.
¢, Fraction of mice mounting. NS, not significant; ***P=0.0006.d, Fraction of
photostimulation trials with mounting. ****P<0.0001. MPOA®SRINVEAT =7
MPOA®®, n=8. Off, sham photostimulation; On, during photostimulation
(Extended DataFig.7).e-g, ChR2-triggered USVs with male intruder. e, USV
raster plots. f, Fraction of trials with USVs. g, Number of USV syllables per trial.
n=7.f,**P=0.0012;g,**P=0.0025.h, Per cent of mount bouts that were USV*
during photostimulation. Numbersindicate total mounts (USV*and USV")
observed.i-k, Photostimulation of MPOAPR™VCAT peyronsinitiated during

(coloured pointsinFig. 20, p, s, t). Accordingly, linear decoders—atype
of binary classifier based on a support vector machine learning algo-
rithm—could be trained to distinguish these two types of mounting on
the basis of the pattern of neuronal activity in both nuclei, with 70-80%
accuracy (Fig.2q,r,u,v,Methods). Nevertheless, decoder performance
may reflect the encoding of the sex of the intruder as well as of mount
type, because the two are highly correlated.

We next investigated the respective causal roles of the MPOA and
VMHvlinsexual and aggressive mounting. Although male mounting is
promoted by electrical stimulation of the MPOA?°, we observed only
weak and inefficient promotion of mounting by activating MPOAES®!
neurons (purple bars in Fig. 3¢, d), confirming a previous study?.
Because MPOA®® neurons comprise a mixture of approximately 80%
GABAergic and approximately 20% glutamatergic neurons®* and
because mating-induced Fos expressionis stronger in preoptic inhibi-
tory than in excitatory neurons®, we reasoned that intersectionally
targeting ESR1" GABAergic neurons might enrich for MPOA neurons
that promote male sexual behaviour.

Indeed, intersectional optogenetic activation? of MPOA®SRI"VAT ney-
rons using EsrP Vgat“® (Vgat is also known as Slc32al) mice (Fig. 3a,
b) robustly and efficiently promoted investigation and mounting of a
male intruder, at stimulation intensities over an order of magnitude
lower (0.5-1.5 mW) than those previously reported using Esr1 mice®
(bluein Fig. 3¢, d, Extended Data Fig. 7a-c, Supplementary Video 3).
Importantly, stimulation of MPOAER"SAT neyrons evoked USV* mount-
ing towards both male and female intruders (Fig. 3e-h, Extended Data
Fig. 7a-c, j-m), as well as towards some inanimate objects (Supple-
mentary Video 4). Optogenetic stimulation also elicited USVs in soli-
tary male mice® (Fig. 31, Extended Data Fig. 7i), which confirms that
vocalizations were not secondary to mounting or emitted by intruders.

Time relative to laser on (s)

attack towards maleintruder. i, Behaviour raster plots. j, Fraction of total time
spentattacking.k, Fraction of attacks converted to USV* mounts.n=6.
j,**P=0.0027;k,**P=0.0014.1-0, Solitary male mice. 1, Fraction of USV" trials
insolitary male mice during photostimulation. n=7.**P=0.0045. m, Strategy
to optogenetically inhibit? MPOA®R neurons in male EsrI“*mice.n, o,
Female-urine-evoked USVs during MPOA®S®! photoinhibition (pale blue bar).

n, Probability of USVs. GtACR2 mice, mice injected with GtACR2-coding AAV;
control mice, miceinjected with mCherry-coding AAV. o, Number of USV
syllables. Orange, GtACR2, n=7; grey, control,n=38,***P=0.0008.
Qualitatively similar results were obtained with iC++ inhibition of MPOAFSRINVGAT
neurons. ¢, Fisher’stest; d, f, g, j-1, 0, Kruskal-Wallis test. Dataare mean +s.e.m.
except for box plots (see Fig. 2 legend for box plot definitions). All statistical
testsare two-sided and corrected for multiple comparisons when necessary
(Supplementary Table 2).

Optogenetically evoked USVs exhibited similar syllable patterns and
acoustic features to those emitted naturally by male mice exposed to
female mice? ***?* or to female urine” (Extended DataFig. 8). Notably,
activation of MPOASR™YAT neurons also rapidly interrupted ongoing
attack, and converted it to male-directed USV* mounting (Fig. 3i-k,
Extended Data Fig. 7f, g, Supplementary Video 5). Furthermore, acti-
vation of MPOASRI"VCAT neyrons in female mice evoked male-typical
USV*mounting behaviour towards male mice® and inanimate objects
(Supplementary Video 6). Thus, activation of MPOA®SM™YCAT heurons
triggered a programme of male-typical mounting behaviour in both
male and female mice, independent of target identity. The silencing of
MPOA®® neurons® attenuated USVs evoked by female urine insolitary
male mice® (Fig. 3m-o0), which indicates that these neurons are nec-
essary for such vocalizations—as well as for mounting, as previously
reported® and confirmed here (Extended Data Fig. 9a-e).

Weak optogenetic stimulation of VMHVI®® neurons is known to
promote mounting, whereas strong stimulation promotes attack™.
However, it was not clear whether such mounting is sexual (USV*) or
aggressive (USV"). Audio recordings indicated that weak VMHVI®R!
activation promoted USV-mounting towards both female and castrated
maleintruders, as well as attack (Fig. 4a-k, Extended Data Fig.10b-d,
f-i). These results suggest that mounting evoked by the activation
of VMHVI®*} neurons represents a low-intensity form of aggression.
Nevertheless, the silencing of VMHVI®® neurons strongly suppressed
spontaneous female-directed (sexual) mounting (Extended Data
Fig.9j-m), confirming and extending previous reports of weak inhibi-
tory effects’ ™. These differential effects of gain- versus loss-of-function
manipulations of VMHvI®™® neurons on USV* versus USV- mounting
probably reflect influences on distinct female- and male-responsive
subpopulations®*?* (Extended DataFig.10q, Supplementary Note 3).
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Fig.4 | VMHVI®** neurons promote aggressive mounting and inhibit USV
production. a, Strategy to optogenetically activate VMHvI** neurons in naive
male mice. b, ChR2 expressionin VMHyvI. Scale bar,100 pm.n=18. VMHdm/c,
dorsomedial and central parts of the VMH. c-g, Behaviours towards female
intruders during photostimulation. ChR2 mice, mice injected with
ChR2-coding AAV; control mice, mice injected with EYFP-coding AAV. ChR2,
n=14; control,n=5.c, Fraction of mice displaying USV mounting.
***%Pp<(0.0001.d, Per cent time spent USV mounting. ***P=0.001.e, Per cent
time spentinallmounting. f, Fraction of USV"and USV-mounts. ****P<0.0001.
g,Behaviourraster plots. h-k, Behaviours towards castrated maleintruders.
ChR2,n=18; control,n=6.h, Fraction of mice displaying USV-mounting.i, Per
centtime spent USV mounting.***P=0.0003.j, Per cent time spentin all
mounting. ***P=0.0002.k, Fraction of USV* and USV"mounts. ****P<0.0001.
I, m, Spontaneous USVs towards female intruder during VMHvI®!
photostimulation. I, USV raster plots.m, Number of USV syllables. ChR2,n=14;
control,n=5.*P=0.01.n, Female-urine-evoked USVsinsolitary male mouse
during photostimulation. ChR2, n=14; control,n=7.**P=0.002. 0, Strategy to

Importantly, VMHvI®*® stimulation did not simply fail to evoke USVs,
but instead strongly inhibited the USVs elicited by female intruders or
urine (Fig.41-n). We therefore asked where it is that thisinhibitory effect
is exerted. VMHVI®®! neurons project strongly to the MPOA?. Optoge-
netic stimulation of VMHVI®®! terminals in the MPOA strongly inhib-
ited female-urine-evoked USVs? (Fig. 40-q), as well as female-directed
mounting (Fig. 4r). As VMHVI®™} neurons are largely excitatory'®*, this
inhibitory effect may occurindirectly vialocal interneurons in the MPOA
(Fig. 4u, Extended Data Fig.10q, Supplementary Note 3). However, we
cannotexclude theactivation of collateral targets® viaback-propagation
of spikes. Conversely, optogenetic stimulation of MPOA®R"VCAT termj-
nalsin VMHvl strongly inhibited aggression (Fig. 4 s, t). Thus, activation
of MPOA-projecting VMHVIER (ESR1YMAVPMPOA) and VMHvI-projecting
MPOAESRINVGAT (ESRTAVGATMPOAYMIV) neyrons suppressed female-directed
mountingand male-directed aggression, respectively,implying arecipro-
calinhibitory circuit motifas previously suggested® (Fig. 4u).

We have investigated how same- and opposite-sex-directed male
mounting is controlled in the hypothalamus. We find that these
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optogenetically activate ESR1"MHPMPOA gy on terminals. p-r, Female-urine-
evoked USVs and mounting during terminal stimulation. p, Probability of USVs.
q,Number of USV syllables. ChR2,n=7; control,n=7,**P=0.0065.r, Per cent
time spent mounting during photostimulation, triggered after mount

onset. ChR2,n=5,***P=0.0006.s, Strategy to optogenetically activate
ESRINVGATMPOYMiVI gy on terminals. t, Per cent time spent attacking during
photostimulation, triggered after attack onset. ChR2,n=5,*P=0.034.

u, Summary of perturbation effects. GOF, gain-of-function effect; LOF,
loss-of-function effect only; low and high denote relative stimulation
intensities in optogenetic gain-of-function experiments'2. Function of minor
cell populations (small circles) is hypothetical. More details are provided in
Extended DataFig.10q, Supplementary Note 3.c, f, h, k, Fisher’s test.

d,i, Wilcoxontest.e,j, m,n, q,r,t,Kruskal-Wallis test. Dataare mean +s.e.m.,
except for box plots (see Fig. 2 legend for definitions). All statistical tests are
two-sided and corrected for multiple comparisons when necessary
(Supplementary Table 2).

two forms of mounting are distinct behaviours that are controlled
by different hypothalamic cell populations. Imaging experiments
in each nucleus revealed relatively rare populations of USV*- or
USV -mount-selective cells; most MPOA®™® and VMHVI®® neurons
exhibited mixed selectivity for multiple social behaviours towards
anintruder of a given sex. These data suggest that these two major
populations principally control reproductive and aggressive states,
respectively, whichexplains the causally dominant behavioural effects
of optogenetic stimulation. Nevertheless, the MPOA—as with the
VMHVI***?—also contains a minor subpopulation of neurons (about
9%) (Fig.2g) thatis selectively activated during the opposing state. In
the case of the VMHVI, it seems likely that the female-preferring cells
are required for mating behaviour®® (Extended Data Figs. 91, m, 10q,
Supplementary Note 3). Inthe case of the MPOA, the male-preferring
ESR1* subpopulation could either indirectly promote aggression or
suppress mounting during fighting. Whatever the case, our data
suggest that aggressive and reproductive (sexual) states are repre-
sented by heterogeneous cell populations distributed across multiple



hypothalamic nuclei. More generally, they show that a superficially
similar motor action can be controlled by distinct neural subpopula-
tions that encode opposing motivational states, at the level of the
hypothalamus.
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Methods

No statistical methods were used to predetermine sample size. The
order of male or female intruder experiments were performed in the
random order in imaging experiments, but were not randomized in
functional manipulation experiments. Investigators were blind to
experimental or control groups during functional manipulation experi-
ments and outcome assessment.

Mice

Allexperimental proceduresinvolving the use of live mice or their tissues
were carried out in accordance with NIH guidelines and approved by
the Institute Animal Care and Use Commiittee (IACUC) and the Institute
Biosafety Committee (IBC) at the California Institute of Technology
(Caltech). All C57BL/6N mice used in this study, including wild-type
and transgenic mice, were bred at Caltech. BALB/c male and female
mice were used as intruder mice and bred at Caltech or purchased from
CharlesRiver Laboratories (CRL). BALB/c ovariectomized female mice
and castrated male mice were purchased from CRL. Experimental mice
were used at the age of 2-4 months. Intruder mice were used at the age of
2-6 months and were maintained with three to five cage matestoreduce
their aggression. Esr1* knock-in mice? (Jackson Laboratory stock no.
017911), EsrP” knock-in mice (described in ‘Generation of EsrF? knock-in
mice’) and SIc32al (Vgat)“ knock-in mice® (Jackson Laboratory stock
no. 028862) were backcrossed into the C57BL/6N background (>N10)
andbred at Caltech. Heterozygous EsrI°, EsrI' or double heterozygotes
EsrP™ Vgat™ mice were used for cell-specific targeting experiments,
and were genotyped by PCR analysis using genomic DNA from tail or
ear tissue. All mice were housed in ventilated micro-isolator cages in
atemperature-controlled environment (median temperature 23 °C,
humidity 60%), under a reversed 11-h dark-13-h light cycle, with ad
libitum access to food and water. Mouse cages were changed weekly.

Generation of Esr?” knock-in mice

Esr knock-in mice were generated at the Caltech Genetically Engi-
neered Mouse Services core facility, following standard procedures.
Thetargeting vector was designed in the same way as Esr1¢*. Instead
of Cre recombinase, an F2A sequence and a Flp recombinase® cod-
ing sequence were inserted at the 3’ end of the EsrI coding sequence,
by in-frame homologous recombination. Following electropora-
tion of the targeting construct into 129S6/SvEvTac-derived TC-1
embryonic stem cells, correctly targeted cells were identified by PCR
genotyping using the following primer sets: 5’ arm primers (6.7 kb),
5’-cccatggecactagacactt-3’and 5'-acgtctccgceatgtcagaag-3’; 3’ arm prim-
ers (4kb), 5’-taagggatatttgcctggeec -3’ and 5'-ctcgacgaccaatgacctct -3’.
Positive embryonic stem cells were injected into recipient C57BL/6N
blastocysts to generate chimeric males that were then bred with
C57BL/6N female mice. Mouse genotype was determined by PCR using
genomic DNA templatesisolated fromtail or ear tissue withthe following
primer sets: wild-type allele (0.6 kb) 5’-tggccactcatactagaaagccactg-3’
and 5’-ggaggaaatgaaaatacgtggacacaagtccc-3’; targeted allele (1kb) 5'-
ttgtgeecctctatgacctgete -3’ and 5’- gggtccacgttcttgatgteget -3,

Hormone treatment

To enhance the sexual receptivity of female mice, hormone primed
BALB/cfemale mice were used as intruders in some experiments (Figs. 1,
4r, Extended DataFig. 9c-f,1-0). Ovariectomized female mice received
subcutaneous injections of 10 pg of B-oestradiol-3-benzoate (E8515,
Sigma-Aldrich) in sesame oil (S3547, Sigma-Aldrich) at 48 h, and 500
g progesterone (P0130, Sigma-Aldrich) at 4-6 h before behavioural
experiments®,

Surgery
Surgeries were performed on adult EsrI®, Esr™ or EsrIVgat mice
aged 8-12 weeks. Virusinjection and implantation were performed as

previously described®. In brief, mice were anaesthetized with isoflurane
(0.8-5%) and placed on a stereotaxic frame (David Kopf Instruments).
Then,100-200 nl of virus was injected into the target area using a pulled
glass capillary (World Precision Instruments) and a pressure injector
(Micro4 controller, World Precision Instruments), at aflow rate of 20-50
nl min™. Typically, the injection volumes were 200 nl for MPOA and
100 nl for VMHvVI. For GCaMP viruses, the injection volumes were 150
nlfor fibre photometry experiments and 200 nl for micro-endoscope
experiments, for both MPOA and VMHVI. Stereotaxic injection coordi-
nates were based on the Paxinos and Franklin atlas® (MPOA, anterior-
posterior: —0.1, medial-lateral: £0.45, dorsal-ventral: —-4.75; VMHvI,
anterior-posterior: -1.5, medial-lateral: +0.75, dorsal-ventral: -=5.73).
For optogenetic and fibre photometry experiments, single or dual optic
fibres (optogenetics: diameter 200 pm, N.A., 0.22; fibre photometry:
diameter 400 um, N.A., 0.48; Doric lenses) were subsequently placed
250-300 pmabove the virus injection sites and fixed on the skull with
dental cement (Parkell). Mice were allowed to recover for at least two
weeks before behavioural testing. For micro-endoscope experiments,
virus injection and lens implantation were performed either on the
same day, or one to two weeks apart, respectively. GRIN lenses (Ins-
coipix, diameter 0.6 x 7.3 or 1 x 9 mm) were slowly lowered into the brain
without a cannula, and fixed to the skull with dental cement (Parkell).
Mice were initially checked for epifluorescence signals three to four
weeks after virus injection. To perform such checks, mice were either
anaesthetized withisoflurane and mounted on a stereotaxic frame, or
head-fixed and placed on arunning wheel while awake. A head-mounted
miniaturized micro-endoscope (nVista2 or nVista3, Inscopix) was then
lowered over the implanted lens until GCaMP-expressing fluorescent
neurons were in focus. If fluorescent neurons were not observed, the
micewerereturned to their cages and checked again on aweekly basis.
If GCaMP-expressing neurons were detected, the micro-endoscope was
aligned and a permanent baseplate was attached to the head with dental
cement, as previously described*. To habituate mice to the weight of
the micro-endoscope, a weight-matched dummy micro-endoscope
(Inscopix) was attached to the baseplate, and the mice were allowed
to recover for at least a week before behavioural testing.

Virus

Thefollowing AAVs were used in this study, withinjection titres asindi-
cated. Whenthe original viral titre was high, AAVs were diluted with clean
PBS onthe day of use. AAV2-hSyn-DIO-hm4D-mCherry (3.7 x 102 genome
copies per ml), AAVDJ-hSyn-Con/Fon-hChR2(H134R)-EYFP (2.2 x10%),
AAVDJ-hSyn-Con/Fon-EYFP (2.5 x10%?) AAV2-EF1a-DIO-hChR2(H134R)-
EYFP (2 x10"), AAV5-EF1a-DIO-EYFP (3.2 x10'%), AAVDJ-EF1a-fDIO-hCh
R2(H134R)-EYFP (2 x 102) and AAVDJ-EF1a-fDIO-EYFP (2.1 x 10'?) were
purchased from the UNC vector core. AAVI-hSyn-Flex-GCaMP6 s (5 x 10"
for fibre photometry and 1 x 10" for micro-endoscope imaging) was
purchased from the U. Penn Vector Core. AAV2-hSyn-DIO-mCherry
(2.5 x 10") was purchased from Addgene. AAVDJ-hSyn-S10-stGtAC
R2-FusionRed (5.4 x 102, Addgene plasmid no.105677), and AAV2-E
Fla-Flex-hChR2-V5-F2A-hrGFP™ (1.95 x 10" were packaged at the HHMI
Janelia Research Campus virus facility.

Histology

Following completion of behavioural experiments, histological verifica-
tion of virus expression and implant placement were performed on all
mice. Mice lacking correct virus expression orimplant placement were
excluded from the analysis. Inbrief, mice were perfused transcardially
with 0.9% saline at room temperature, followed by 4% paraformalde-
hyde (PFA) in 1x PBS. Brains were extracted and post-fixed in 4% PFA
overnight at 4 °C, followed by 24 hin 30% sucrose/PBS at 4 °C. Brains
wereembedded in OCT mounting medium, frozenondryice and stored
at-80 °Cforsubsequent sectioning. Brains were sectioned in 50-75-pm
thickness onacryostat (Leica Biosystems). Sections were washed with
1xPBS and mounted on Superfrostslides, thenincubated for 30 min at



room temperature in DAPI/PBS (0.5 pg/ml) for counterstaining, washed
again and coverslipped. Sections were imaged with epifluorescent
microscope (Olympus VS120).

Behavioural tests

Sexual and social experience and housing conditions. For the
experiment in Fig. 1, 8-12-week-old C57BL/6N male mice were indi-
vidually cohoused with a BALB/c female mice for a week, and female
mice were removed from the cages one day before the experiments.
Hormone-primed BALB/c female mice or intact BALB/c male mice were
used asintruders. For all optogenetic (except VMHvl cell body optoge-
netic stimulation; Fig. 4a-m), fibre photometry, micro-endoscope
and chemogenetic experiments, transgenic mice were first separated
from siblings and cohoused with C57BL/6N or BALB/c female mice
for aweek, thenintroduced to several BALB/c male intruders for 15
min for 3 consecutive days, to give them aggression experience. After
sexual and social experience, male mice were always cohoused with
female mice. If female mice became pregnant during the cohousing,
new female mice were provided as cage mates. For VMHVvI cell body
optogenetic stimulation withintruder mice (Fig. 4a-m, Extended Data
Fig.10a-d,f-i), male mice were not sexually and socially experienced
to avoid the development of excessive aggressiveness'>*. Male mice
were separated fromsiblings on the day of surgery and then maintained
under single-housing conditions. Castrated male mice were used as
intruders to reduce baseline aggression of resident mice. Following
the completion of testing with castrated male and female intruders,
resident mice were cohoused with female mice for aweek and then
tested with female urine (Fig. 4n, Extended Data Fig.10e) to evoke USVs.

Behaviour and audio recording. All behavioural experiments were
performed in conventional mouse housing cages (home cage or new
cage) under red lighting, using the previously described behaviour
recording setup®. Both top and front views of the behaviour videos
were acquired at 30 Hz using video recording software, StreamPix7
(Norpix). Audio recordings were collected ata300-kHz sampling rate
using an Avisoft-UltraSoundGate 116H kit with a condenser ultrasound
microphone CM16/CMPA (Avisoft-Bioacoustics), positioned 45 cm
above the arena. Initiation of audio recording was synchronized with
video recording via a signal generated by StreamPix7.

Resident-intruder test. Mouse cages were not cleaned for aminimum
of three days before the behavioural test, to retain the odours of the
resident mouse. Resident mice were introduced to the behaviour re-
cording setup in their home cage, and allowed to rest for at least five
minutes before starting behaviour tests. For the experimentsinFig. 1,
Extended DataFig. 9c-f,1-o, resident mice were allowed to interact with
female intruders for 15 min. For Fig. 1, resident mice were allowed to
interact withmaleintruders for 20 min. When an excessive amount of
aggressionwas observed, tests were terminated at 10 min. For Extended
DataFig.9g-i, resident mice were allowed to interact with male intrud-
ers for 10 min. Behaviour tests were performed during the subjective
dark period of the mouse housing room day-night cycle (from2-8 h
after lights off).

Optogenetic stimulation and inhibition. Before initiating behavioural
experiments, the lightintensity achieved at thetip of the optic fibre was
estimated by connecting an equivalent optic fibre to the patch cable,
and measuring the light intensity at the tip of the fibre using a power
meter. Laser power was controlled by turning an analogue knob on
the laser power supply. Mice were connected to a 473-nm or 455-nm
laser (Shanghai Laser and Optics Century or Changchun New Indus-
tries Optoelectronics Tech) via optical patch cords (diameter 200 pm,
N.A.,0.22, Doriclenses and Thorlabs) and arotary joint (Doric lenses).
Mice were allowed to habituate to the cables after connecting them
for at least 5 min before starting behaviour tests. The experimenter

monitored mouse behaviour via a computer monitor in a room adja-
cent to the behavioural arena, and triggered the laser manually when
animals were engaged in the behaviours of interest. Sham stimulation
(laser off) was interleaved with the light stimulation (laser on) as an
internal control. For optogenetic stimulation, mice were given trains
of photostimulation (10-ms pulse, 20 Hz for 10 or 30 s), with at least a
three-minute interval between trains. For optogeneticinhibition, 10 s of
continuous photostimulation was used. The frequency and duration of
photostimulation were controlled using an Accupulse Generator (World
Precision Instruments) or anIsolated Pulse Stimulator (A-M Systems).

Urine presentation with optogenetic manipulation. For urine pres-
entation experiments (Figs. 3m-o, 4n, p, q, Extended Data Fig. 10e,
k, 1), subject male mice were introduced into a new cage and allowed
to explore for at least five minutes before testing. Group-housed
C57BL/6N female mice were used as urine donors. Just before testing,
the female mouse was lifted by the cervical region and her genital area
was gently wiped withasmall piece of nestlet (compressed cotton fibre
nesting material), to absorb urine seeping from the ano-genital region.
The urine-soaked nestlet was placed in the centre of the cage with the
male mouse for two minutes, and then removed from the cage. Urine
was presented to each male subject mouse approximately six times,
with at least a three-minute interval between presentations. Urine
from different female donors was used every time. The experimenter
monitored the behaviour and vocalizations of the mice throughacom-
puter monitor, and delivered 10-s optogenetic stimulation or inhibition
pulses at one to two seconds after the first USV syllable was detected.
Light stimulation (laser on) and sham stimulation (laser off, same time
period) trials were alternated.

Chemogenetic inhibition. Mice were injected with hM-
4Di-DREADD-mCherry or mCherry (control)-expressing AAVs in MPOA
or VMHVvI. Behavioural tests were performed on two consecutive days.
The number of mice receiving saline or clozapine-N-oxide (CNO) (Enzo
Life Sciences) was counterbalanced across the two days. CNO was dis-
solved in saline. CNO (7.5 mg/kg) or saline (control) was intraperito-
neally injected 60 min before behavioural tests.

Dual-site fibre photometry recording. The fibre photometry setup
was constructed as previously described® with minor modifications.
We prepared two sets of light paths (ch1and ch2, recorded signals were
processed by acommonreal-time processor) to enable measurement
of bulk calcium signals in two brain regions simultaneously. MPOA
and VMHvlrecordings were assigned to chl or ch2 randomly. We used
470-nm LEDs (M470F3, Thorlabs, filtered with 470-10-nm bandpass
filters FB470-10, Thorlabs) for fluorophore excitation, and 405-nm LEDs
forisosbestic excitation (M405FP1, Thorlabs, filtered with 410-10-nm
bandpassfilters FB410-10, Thorlabs). LEDs were modulated at 208 Hz
(470 nm) and 333 Hz (405 nm) for chl,and 263 Hz (470 nm) and 481 Hz
(405 nm) for ch2,and controlled by areal-time processor (RZ5P, Tucker
David Technologies) viaan LED driver (DC4104, Thorlabs). The emission
signal from the isosbestic excitation was used as areference to control
for motion artefacts and photobleaching™?. LEDs were coupled to a
425-nm longpass dichroic mirror (Thorlabs, DMLP425R) via fibre op-
tic patch cables (diameter 400 um, N.A., 0.48; Doric lenses). Emitted
light was collected via the patch cable, coupled to a490-nm longpass
dichroicmirror (DMLP490R, Thorlabs), filtered (FF01-542/27-25, Sem-
rock), collimated through afocusing lens (F671SMA-405, Thorlabs) and
detected by the photodetectors (Model 2151, Newport). Recordings
were acquired using Synapse software (Tucker Davis Technologies).
Once the patch cables were connected to the optic fibre implants on
the head of the mice, the mice were placed in their home cage and al-
lowed to habituate for at least 10 min before starting behavioural test
sessions. Male or female intruders were introduced into the home
cage in arandom order, with a 5-10-min interval between male and
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female intruder sessions. Typically, a session for encountering male
or female intruders lasted 10-20 min. Because MPOA and VMHvI are
highly interconnected®, fluorescent signals from cellsin one nucleus
may be contaminated with afferent terminal signals derived from the
other. Assuchinterconnections are primarily ipsilateral (Extended Data
Fig.2c-f), and activity in a given nucleus is highly correlated across
hemispheres (Extended Data Fig. 2g-i), we avoided this contamination
by recoding signals from contralateral MPOA and VMHVI.

Micro-endoscope imaging. Mice were temporarily head-fixed on a
running wheel before imaging sessions, and the head-mounted dum-
my scope used for habituation was replaced with a micro-endoscope
(nVista2 or nVista3, Inscopix). The mice were placed in their home cages
and allowed to habituate for at least 10 minbefore starting behavioural
testsessions. Shortly before dataacquisition, theimaging parameters
were configured using nVista control software (Inscopix). The field of
view was cropped to the region encompassing the fluorescent neurons.
Ca*"imaging datawere acquired at15Hz,15-20% LED power and 2-3x
gain, depending on the brightness of GCaMP expression. ATTL pulse
from the sync port of the data acquisition box (DAQ, Inscopix) was
used to synchronously trigger StreamPix7 for video recording, and
Avisoft-UltraSoundGate for audio recording, via customized MAT-
LAB scripts. Male or female intruders were introduced into the home
cage inarandom order, with a 5-10-min interval between male and
femaleintruder sessions. Typically, a session for encountering male or
femaleintruders lasted 10-20 min. MPOA and VMHvl imaging was per-
formedinseparate mice. Four GCaMPé6s AAV-injected mice were used
for MPOAS® (total of 583 neurons imaged) and VMHVI®®! (total of 421
neuronsimaged) for micro-endoscope imaging analysis, respectively.

Data analysis

Position tracking. Positions and poses of both resident and intruder
mice were estimated on a frame-by-frame basis from top-view video
using a Python-based custom deep neural network architecture de-
veloped in collaboration with the laboratory of P. Perona at Caltech
(details of this system are available from ref. ). In brief, on each frame
of video this system estimates the pose of each mouse in terms of the
x-y coordinates of seven anatomically defined key points: the nose,
the ears, the back of the neck, the hips and the base of the tail. The pose
estimator was trained using manual annotations of anatomical key
pointsin13,500 frames sampled from 14 h of top-view videos of both
unoperated mice and mice implanted with head-mounted cannulas or
micro-endoscopes. All videos in the training set were of pairs of mice
freelyinteractinginastandard home cage, and 1/3 of training data was
taken from videos in which the resident mouse was implanted with
a head-mounted micro-endoscope or fibre photometry device with
attached cables. For the purposes of this study, the distance between
mice was defined as the distance between the necks of the two mice, as
estimated by the automated tracking software’ (‘tracker’). On held-out
test data, 95% of neck key-point estimates by the tracker fell within a
0.44-cmradius of human-defined ground truth.

Behaviour annotation. Behaviour videos (collected at 30 Hz) were first
processed using a custom automated behaviour classifier system’® to
generate frame-by-frame annotations of attack, mounting and investi-
gation (sniffing) behaviour. Classifier output, videos and spectrograms
of recorded audio were then loaded into a custom, MATLAB-based
behaviour annotationinterface’, and classifier annotations were manu-
ally corrected by trained individuals blind to the experimental design,
to produce a final set of frame-by-frame annotations of attack, USV*
mounting, USV mounting, intromission and investigation (sniffing).
Only one behavioural label was permitted per frame. USV- mounting
was operationally defined as bouts of mounting during which no USV
syllables were detected (see ‘USV detection’),inwhichwe definea ‘bout’
ofbehaviour as a period of consecutive frames that all received positive

annotations for that behaviour. In cases in which a USV* mount transi-
tioned toa USV” mount—for example, during optogenetic manipulation
(Fig.4c-k)—mounting bouts were annotated as USV-mounts beginning
1safterthelast USV syllable. For scoring the latency to the first attack
inFig.1n, thelatency time for the mice that did not show attack within
the testing period was calculated as 20 min.

Decoder analysis on behaviour features. We trained binary decod-
erstodistinguish female- and male-directed mounting, on the basis of
features extracted from videos of interacting mice. Fifty-four videos
containing female- or male-directed interactions were annotated for
USV*or USV-mounting, on the basis of the presence or absence of USVs
inaudio recordings during mounting bouts, as outlined in ‘Behaviour
annotation’. From these, we extracted a total of 10,005 frames (>5.5
min) of female-directed USV* mounting across 162 behaviour bouts,
and 7,527 frames (>4.1 min) of male-directed USV-mounting across 185
behaviour bouts. We used a custom pose estimation system® to track
seven key points onthe bodies of both mice: the nose, ears, base of the
neck, hips and the base of the tail. To classify behaviours, we extracted a
setof 33 features computed from these pose key points, on the basis of
features used inapreviously published behaviour classification tool*®.
These features are defined in Supplementary Table 1. Importantly, fea-
tures were purposefully selected to exclude measurementsrelated to
the size, movements and absolute position of the intruder mouse. This
was acritical step, as otherwise our decoders were able to distinguish
female- and male-directed mounting for ‘trivial’ reasons, such as the
factthatintruder males were larger on average thanintruder females,
andthefactthatintruder malestended to spend more timeinthe corner
rather than the centre of the cage.

For frame-wise classification (Fig. 1b, ¢), the 33 features in Supple-
mentary Table1were computed for each frame of USV*and USV-mount-
ing (at30 Hz), and used to trainabinary support vector machine (SVM)
decoder for mounting type, with decoder performance evaluated using
‘leave-one-out’ cross-validation over the set of 54 behaviour videos. An
equal number of USV*and USV” mounting frames were sampled from
each classtogenerate the trainingset. For classification based on tem-
poralfeatures (Extended DataFig. 1e-g), the 33 featuresin Supplemen-
tary Table1were computed for every 5th frame (for video framerates of
30 Hz) fromthree seconds before to one second after the onset of USV*
or USV-mounting (25 time samples per feature per behaviour bout). All
(33 x25=825) temporal features were then used to train abinary SVM
decoder for mounting type, again using leave-one-out cross-validation
across videos. To account for somejitter in the time-course of mount
initiation, training and test frames were taken to be the annotated start
of mounting, as well as all frames within a +15-frame (500 ms) window
ofthat start time.

USV detection. We created a spectrogram of recorded audio using
the spectrogram function in MATLAB, with a 1024-point symmet-
ric Hann window and 50% overlap between segments. To remove
broad-spectrumbackground sound caused by the movements of mice
inthe homecage, we used a previously published multitapering and flat-
tening approach*® with time half-bandwidth product of six, to produce
acleaned spectrogram of the recorded audio. All spectrograms shown
inthe figures and videos are multitapered and flattened.

To detect USVs from the cleaned audio spectrograms, we used a
supervised classifier (a multilayer perceptron) trained with manual
annotations of USV syllables from 9 sample recordings totalling 17.3
min recording time, and including 1,663 syllables (26% of frames). As
preprocessing before classification, spectrograms were cropped to
the 30-125-kHz frequency range, z-scored and down-sampled by a
factor of 0.5 in frequency space. To better capture temporal struc-
ture in the spectrogram, the mean and s.d. of each frequency bin was
computed within a window of 8,16 and 24 frames (approximately 14,
27 and 41 ms, respectively) around the current frame. Following USV



detection, all classifier output was manually validated in a custom
MATLAB-based annotation interface®, and false positives and false
negatives were corrected.

There were several cases in which BALB/c male intruders emitted
USVs during resident-intruder tests. Because C57BL/6N and BALB/c
USVs differin their acoustic features* (BALB/c USVs syllables are typi-
cally in alower frequency range, and have a simpler structure), their
USVs can often be visually distinguished in the spectrograms. When
BALB/c USV syllables were clearly distinguishable from C57BL/6N USV
syllables, they were removed from analysis. For the USV probability
plots (Figs. 3n, 4p, Extended Data Fig. 10e, I), all the stimulation trials
from all the tested mice were pooled and plotted with an s.e.m. enve-
lope. USV probability traces were smoothed using a moving average
withal-stimebin.

Fibre photometry data analysis. The fibre photometry recordings
yielded two signals from each recording region, one at 405 nm (isos-
bestic Ca®*-independent signal, for motion correction) and the other
at470 nm (Ca*-dependent signal). First, a least-squares linear fit was
applied to the405-nmsignal from eachregiontoalignittothe 470-nm
signal, yielding a fitted 405-nm signal. The motion-corrected 470-nm
signal for each region was obtained as follows: motion-corrected
470-nmsignal = (470-nmsignal - fitted 405-nm signal)/fitted 405-nm
signal. Next, to compare neural activity between MPOA and VMHvI,
all the motion-corrected 470-nm traces obtained on a given experi-
mental day from each region (always including both female and male
intruder trials) were concatenated into a single trace. Concatenated
traces fromeachregionwere then scaled fromzeroto one (scaled fluo-
rescent traces, F,), with pre-intruder activity (mean activity during 35
toSsbeforefirstintruderintroduction, during which the mouse wasin
its home cage with nointruder present) set to zero and the maximum
value of concatenated traces set to one. For computing peri-event
time histograms (PETHSs), t = 0 was set to the onset of a behaviour of
interest (BOI), and the period from -5to -3 s of the onset of the BOl was
used as ‘pre-behaviour baseline’ period. We computed the mean (u)
and standard deviation (o) of F,over a pre-behaviour baseline period.
PETH activity iscomputed as PETH(¢) = (F,(t) —u)/o. AllPETH traces for
agiven BOI from each mouse were averaged and a single PETH trace
was obtained from each individual mouse. PETH traces presented in
the figures show the average across all the recorded mice, except for
Extended Data Fig. 4, which shows the average across the BOl bouts
from one mouse. Only behaviour bouts that were longer than 0.5s,
and separated by >5s from the previous BOIbout, were used for PETH
analysis. For computing maximum activityper, (Extended Data Fig. 3b,
e, g,j,n,r,v), meanvalues during the baseline period and the maximum
value attained within the interval 0-3 s from the onset of the behaviour
were compared. For calculating the area under the curve, the area un-
der the Ca*"-activity curve during the first BOI bout after t =0 zero was
calculated, and divided by the length of the first BOlbout to normalized
to bout length. Because the first investigation bouts of each intruder
have stronger prolonged calcium signals than all other investigation
bouts in both MPOA and VMHVvI, we excluded the period within 30 s
from the beginning of firstinvestigation from most of the analysis. First
investigation bouts were analysed separately from other investigation
bouts (Extended DataFig.3d, e, i, j).

Micro-endoscope trace extraction. Imaging frames were spatially
downsampled by a factor of two in the x and y dimensions. Frames
collected over the course of a single day (always including both fe-
male and male intruder trials) were concatenated into a single stack
andregistered toeach otherto correct for motion artefacts, using the
Inscopix Data Processing software. To extract single cells and their
Ca®*-activity traces from the fluorescent imaging frames, we used the
constrained non-negative matrix factorization for micro-endoscopic
data (CNMF-E)** algorithm. CNMF-E outputs for putative individual

neurons were individually inspected manually, and those that did not
appear to correspond to single neurons were discarded.

Traces were normalized to units of o with respect to the baseline
fluorescence of the neuron before the first trial of resident-intruder
interactions onagiven day of imaging, as previously published®. In brief,
foragiven neuron with extracted calciumtrace Fy(t), we computed the
mean (u) and standard deviation (o) of F,(¢) over a ‘baseline’ period of
30 or more seconds during which the mouse was inits home cage with
nointruder present. Normalized calcium activity was then computed
as F(t) = (Fo(0) - p)/o.

Detection of sex-preferring neurons. InFig. 2f, g, sex-preferring cells
aredefined asactivated atleast two s.d. from baseline by one but not the
othersex duringsocial interaction®. ‘Other’ includes neurons activated
orinhibited by both or neither sexes.

Explained variance in micro-endoscope data. To calculate the vari-
ancein population neuronal activity explained by intruder sex and by
mouse behaviour (Fig. 2h), eachimaging frame (sampled at 15 Hz) was
manually annotated for one of the following behaviours (on the basis of
analysis of synchronous video acquired at 30 Hz): attack, USV" mount,
USV*mount, intromission, face-, body- and genital-directed investiga-
tion towards male or towards female intruders, approach towards a
male or femaleintruder, and periods of nointeractioninthe presence of
amaleor femaleintruder. We then sampled, for eachimaged mouse, an
equal number of imaging frames from each of 14 different behavioural
conditions (seven male-directed and seven female-directed, selected
fromthe behavioural annotations). The totalnumber of frames sampled
varied perimaged mouse, and was set by the behaviour with the fewest
imaged frames for that mouse; frames were uniformly sampled in time
fromthe set of frames during which a given behaviour occurred. Hav-
ing thus defined the set of sampled frames, we constructed for each
neuronalxnvector of cell activity F(¢) on all frames inthe sample set.
Weregressed the observed activity of all neurons against the sex of the
intruder (indicated by a pair of binary vectors) on each of the nframes,
and computed the cross-validated error of the fit. We then computed
the fraction of variance explained by taking the ratio of the coefficient of
determination (R?) of thefit, divided by the coefficient of determination
when F(t) was fitby 14 1x nbinary vectors representing the presence or
absence of each behavioural condition (that is, the maximum explain-
able variance given the behaviour of the mouse). After subtracting out
the signal accounted for by intruder sex, we regressed the residual
activity against theidentity of the behaviour expressed for each frame,
giving variance explained by the female- and male-directed behaviours.
The variance ‘explained by’ intruder sexis simply a correlation, and does
notimply that the variance reflects an encoding of intruder sex per se:
itmay encode sex or some other feature thatis tightly correlated with
intruder sex (for example, motivation to mount or attack for female
versus maleintruders, respectively).

Computation of choice probability. The choice probability of each
neuron was computed as in previous work®, which follows its defi-
nition in studies of decision-making®. In brief, choice probability
estimates the accuracy with which two behavioural conditions canbe
distinguished given the activity of a single neuron. The choice prob-
ability of agiven neuron for a pair of behavioural conditions is found
by constructing a histogram of the activity of that cell (F(¢)) under
each of aselected pair of behavioural conditions, and plotting these
histograms against each other to generate a ‘receiver operating charac-
teristic’ (ROC) curve. The areaunder this ROC curve is then computed
by integration to generate the choice probability value for each unit
with respect to each of the two behavioural conditions. This choice
probability value is bounded from O to 1, with a choice probability
of 0.5 indicating that the activity of the neuron cannot distinguish
between the two conditions.
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The statistical significance of choice probabilities was determined
relative to chance, as in previous work®. For each neuron, we shuf-
fled behavioural bout timings for the two compared conditions, and
computed the choice probability for this shuffled data. Shuffling was
repeated 100 times for each of the 2 behaviours, from which we cal-
culated the mean and s.d. (0) of the ‘shuffled’ choice probabilities.
We considered as significant any observed choice probabilities >2¢
above the shuffled mean, and imposed an additional choice probability
threshold >0.7. This means that a neuron with a choice probability of,
forexample, 0.75 candistinguish between the two behaviours of inter-
estwith 75% accuracy, and that the probability of correctly predicting
which of the two compared behaviours is occurring is significantly
greater than when the activity of the neuronis randomized (shuffled)
withrespect to the actual behavioural annotation for each imaging
frame. InFig. 2k, 1, coloured barsindicate the neurons thatshow astrong
and statistically significant choice probability, and grey bars indicate
cells for which choice probability was not significantly higher than
chance or choice probability < 0.7 for that neuron.

To more confidently distinguish neural representations of behav-
iour from representations of intruder sex, we computed the choice
probability of USV" mounting versus female-directed investigation for
neurons in MPOA and VMHVI. Because the sex of the intruder during
USV* mounting and female-directed investigationis the same, we infer
that neurons showing a ‘preference’ (higher F(t)) for one behaviour over
the other are specifically responding to that behaviour, and not to the
sex of the intruder. We then repeated this analysis for the same set of
neurons ontrials withamaleintruder, contrasting USV-mounting ver-
sus male-directed investigation to identify neurons with a preference
for USV" mounting over investigation. The Venn diagrams in Fig. 2m,
n then show—for allimaged neurons—what percentage of cells had a
statistically significant choice probability (relative to sniff) for USV*
mounting, USV mounting or both behaviours.

Decoding behaviour from neural activity. We trained linear bi-
nary SVM decoders to discriminate female-directed USV* and
male-directed USV- mounting behaviour fromimaged activity of MPOA
or VMHvl neurons. Manual annotations of USV* and USV™ mounting
bouts were used to provide training labels of behaviour type. To decode
mounting type as afunction of time (‘time-evolving decoder’) (Fig. 2q,
u Extended Data Fig. 6q, r, u, v), activity F(¢) for allimaged cellsin a
given mouse was divided into 0.4-s bins from 5s before to10 s after the
onset of mounting. In an effort to remove information aboutintruder
sex from neural activity, for each neuron on each bout we computed
the average activity of the cell in a time window from -5 to -3 s of the
initiation of mounting, and subtracted this average from F(¢) of that
cellin all time bins of the bout. For each time bin, we then trained an
SVM decoder to discriminate USV* from USV™ mounting bouts from
theactivity of neuronsin that bin, using leave-one-out cross-validation
across bouts to evaluate decoder accuracy.

Bar graphs of decoder accuracy (Fig. 2r, vExtended Data Fig. 6s, t, w,
X) were generated using a ‘frame-wise’ decoder trained to discriminate
USV*and USV-mounting fromimaged activity onindividual frames of
abehaviour (sampled at 15 Hz). Following baseline subtraction (per-
formed as for the time-evolving decoder), USV" and USV  mounting
bouts were divided into ‘trials’, by first merging all bouts of a given
behaviourthat were separated by less than five seconds (from the end
ofbout Atothe start of bout B). Frames from single- or multi-bout trials
were thenused totrainalinear binary SYM decoder, using leave-one-out
cross-validation across intruder mice.

For both decoders, equal numbers of USV* and USV™ bouts
(time-evolving decoder) or frames (frame-wise decoder) were used
during decoder training, to ensure chance decoder performance of
50%. ‘Shuffled’ decoder data were generated by training the decoder
onthesame neural data, but with USV*and USV”behaviour annotations
randomly assigned to each behaviour bout. Decoding was repeated

20 times for each intruder and each imaged mouse, and decoder per-
formance reported as the average accuracy across imaged mice. For
significance testing, the mean accuracy of the decoder trained on
shuffled data was computed across mice, and shuffling was repeated
1,000 times. Significance was determined across imaged mice using
the Mann-Whitney Utest between the mean accuracy of the decoders
trained onreal versus shuffled data.

Datadisplay.Inallthebar graphs, dataare expressed asmean s.e.m.
In all the box-and-whisker plots, centre lines indicate medians, box
edgesrepresent the interquartile range and whiskers denote minimal
and maximal values.

Statistical analyses. Data were processed and analysed using MATLAB
and GraphPad PRISM 8 (GraphPad Software). The sample sizes were cho-
senonthe basis of common practice inanimal behaviour experiments.
All data were analysed with two-tailed non-parametric tests. In the
experiments with paired samples, we used the Wilcoxon matched-pairs
signed rank test or Friedman test. In the experiments with non-paired
samples, we used the Mann-Whitney Utest or Kruskal-Wallis test. All
multiple comparisons were corrected with Dunn’s multiple compari-
sons correction. Binary datawere analysed with aFisher’s exact test. The
significance threshold was held at a=0.05, two-tailed (not significant
(NS), P>0.05; *P<0.05; *P< 0.01; **P < 0.001; ***P < 0.0001). Full
statistical analyses corresponding to each dataset are presented in
Supplementary Table 2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data that support the finding of this study are available from the
corresponding author upon request.

Code availability

The custom codes used for pose tracking and behaviour annotation
of the mice® can be found at GitHub (https://neuroethology.github.
io/MARS/). The other code that supports the finding of this study are
available from the corresponding author upon request.
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Extended DataFig.1|Additional information for resident-intruder assay
withfemale or maleintruders.a, Anexample of detected resident (green) and
intruder (red) key points used for mouse pose estimation (top) and example
diagram of the resident ‘axis ratio’ feature (bottom). b, Histograms of values of
four relevant mouse pose features during bouts of female- or male-directed
mounting. Pose features extracted from mountvideo frames only are highly
overlapping for male- versus female-directed mounts. ¢, Distribution of
mounting boutlength. d, Distribution of time spentin close proximity to the
intruder beforeinitiation of mounting. e-g, Decodingintruder sex from
female- versus male-directed mounting fromvideo frames spanning 3 s before
tolsafter mountonset. e, Projection of mouse pose features from mounting
bouts onto the maximally discriminating dimension of the decoder. f, Decoder
accuracy compared with shuffled data. Fifty-four behaviour sessions,
two-sided Mann-Whitney Utest, ****P<0.0001. g, Values of four mouse pose
features relative to onset of female- or male-directed mounting (top row), the
temporalfilter oneachfeature learned by the SVM decoder (middle row), and
histograms of filter output for tested frames of female- versus male-directed

interactions, showing separation of feature values (bottom row). a.u., arbitrary
units. h, i, Details of the behaviours of different resident mice towards male
intruder across three days, corresponding to Fig.1g. h, Number of mice
assigned to each behaviour category. i, Visualization of behaviour changes
acrossthree days. Different coloured circles indicate different resident mice.
Overall, behaviours for each mouse changed from lower intensity categories
(lessaggressive) to higher intensity categories (more aggressive), with
repeated social experience.j, Behaviour rasters towards maleintrudersacross
three days from three mice. Bottom row indicates extracted USV-mountbouts
fromday1toshow that most USV mountsoccurinthe early phase of amale-
malesocialinteraction. k, Two alternative models for encoding of male- versus
female- directed mountingin the hypothalamus. In model 1, the two forms of
mounting share acommon hypothalamic ‘mounting control centre’;in model
2,the two forms of mounting use distinct neural substrates. Circles, squares
and triangles are abstractions representing different cell populations,and do
not correspond to specific nuclei or circuits. Dataare mean+s.e.m.
(Supplementary Table 2).
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Extended DataFig. 2| Control experiment data for dual-site fibre
photometry. a, Schematic of dual-site fibre photometry setup. Calcium
signalsare recorded simultaneously from contralateral MPOA and VMHvI
using EsrI°® male mice. b, Representative scaled calcium signals from MPOA®S®!
and VMHVI®R neurons after exposure to female (top) and male (bottom)
intruders. Vertical shading indicates bouts of annotated social behaviour listed
and colour-coded atright. Downward arrows, intruder introduction; upward
arrows, intruder removal. c-f, Representative datafrom mice injected with
GCaMP6sAAVonlyin MPOA (c,d), orin VMHVI (e, f) and recorded from both
twoareas. c, e, Representative GCaMP6s expression and optic fibre tract. Top,
MPOA; bottom, VMHVI, Scale bars, 100 pum. n=2each.AC, anterior
commissure; f, fornix; BNSTpr, principal division of the bed nucleus of the stria
terminalis; VBNST, ventral BNST; fiber, optic fibre tract. d, f, Representative
GCaMPé6s traces from MPOA®* and VMHVI®** neurons with female and male
intruders. Vertical shading indicates bouts of annotated social behaviour listed

and colour-coded atright. Dataare presented as raw motion corrected 470-nm
traces. Non-injected sites (VMHvlinc, MPOA in e) had few GCaMP-positive
fibres from contralateral injection sites (c, ) and did not show detectable Ca*
signal changes (flatlinesind, f). g-j, Representative datafromrecording
bilateral VMHVI®™! neurons. n=2. g, Schematic of fibre photometry recording
frombilateral VMHvl. h, Ca* traces from female and male trials. Ca* tracesin
rightand left hemispheres are highly correlated.i,j, Distribution of scaled
activity inright (xaxis) versus left (y axis) VMHVI®} neurons across entire trials
with female (i) and male (j) intruders. Activity was fitted toy=ax+b (red line)
using 1-kHz sampling traces and scatter plots display downsampled (30 Hz)
time points. R?, coefficient of determination.Kk, I, Distribution of scaled
activity in MPOAFS®! (x axis) versus VMHVI®®! (y axis) neurons across entire
trials with female (k) and male (I) intruders from the tracesin b. MPOA®™® and
VMHvI®® neural activities are less correlated than bilateral VMHvI®S®!

neural activities.
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Extended DataFig. 3 |See next page for caption.



Extended DataFig. 3 | Dual-site fibre photometry recording during social
interaction. a-j, Average calciumsignalsin MPOA®™ and in VMHvI*®!
neurons aligned to social investigation onset of female (a-e) and male (f-j)
intruders.n=10.Firstinvestigation bouts of each intruder have stronger
calciumsignals thanall other investigation bouts and were analysed separately
(d,e,i,j).a,f,PETHof scaled neural activity normalized to pre-behaviour
period.b, g, Maximum PETH signal during O to 3 s from investigation onset
(shadedgreyareaina, f), compared with mean activity during pre-behaviour
period (-5to-3s).b, ****P<0.0001, **P=0.0025; g, *P=0.0105, ****P< 0.0001.
¢, h,Integrated activity during investigation. ¢, **P=0.0039; h, *P=0.0273.
a.u.,arbitraryunits.d, e, i,j, Average calcium signals during first investigation
ofeachintruder versusall otherinvestigation bouts towards female (d, e) and
male (i,j) intruders.d, i, PETH of scaled neural activity. e, j, Maximum PETH
signalduring O to3 s fromfirstinvestigationonset.e,j, **P=0.002.k, 1, Average
calciumsignals during socialinvestigationin eachregion.k, PETH of scaled
neuralactivity in MPOA®™® and VMHvI®*., n=10. Traces were reproduced and
rescaled fromdataina, ffor comparative purposes.l, Integrated activity

duringinvestigation.**P=0.0098 (MPOA), 0.0059 (VMHvI). m-x, Average
calciumsignals during USV" mounts towards female intruders (m-p, n=10),
USV mounts towards male intruders (q-t, n = 6) or attack towards male
intruders (u-x,n=7).m, q,u, PETH of average scaled neural activity.n,r,v,
Maximum scaled activity during 0-3 s from behaviour onset. n, ****P<0.0001,
**P=0.0014;r,*P=0.0358,***P=0.0009;V,*P=0.0104,***P=0.0007.0,s, W,
Representative PETH traces for each behaviour. Coloured shading marks
behaviouralepisodes. p, t, X, Integrated activity in during behaviours. p,
**P=0.002; x,**P=0.0469.mand q traces werereproduced and rescaled from
datainFig.2c.y, Average calciumsignals during USV* mount, USV mount and
attack.y, PETH of scaled activity in MPOA®® and VMHVI**"neurons. USV*
mount, n=10; USV mount, n=6; attack, n=7.Traces were reproduced and
rescaled fromdatainm, qandu.z, Integrated activity during each behaviour.
**P=0.0092,0.0097,0.0097 (left toright).b, e, g,j, 1, n,r, v, z, Kruskal-Wallis
test; ¢, h, p, t,x, Wilcoxon test. Dataare mean +s.e.m. except for box plots (see
Fig.2legend). All statistical tests are two-sided and corrected for multiple
comparisons when necessary (Supplementary Table 2).
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Extended DataFig. 4 |Neural activity patternsinrare mice that exhibit
USV' mounting towards male intruders resemble those observed during
USV'mount towards female intruders. a-e, Calciumactivity and USV data
from asexually and socially experienced mouse (no. 629) that showed USV*
mounting towards both female and male intruders. Female, 21bouts; male, 30
bouts.a, b, PETH traces aligned at onset of USV* mount towards female (a) or
male (b) intruders. ¢, Integrated activity during mounting bouts.
***+p<0.0001.d, e, Quantification of USVs from mouse no. 629 towards female
ormaleintruders.d, Distribution of USVs aligned at onset of USV* mount.e,
Number of USV syllables during 0 to 5s from onset of USV* mount. This mouse
did notdisplay any attack behaviour towards male mice, but preferred females
tomalesinatriadicinteraction test (Supplementary Note 2). f-k, Calcium

Time relative to mount onset (sec)

Female Male

activity datafrom one mouse (no. 634) which showed USV* mounting towards
males when sexually and socially naive, and later USV-mounting after it
obtained sexual and social experience.f,g, PETH traces from naive mouse
aligned atonset of USV" mount. h, Integrated activity during mounting bouts
fromdatainf, g. Female, 27 bouts; male, 9 bouts, ****P<0.0001, **P=0.0039.1,
j,PETHtraces fromthe same mouse after social and sexual experience, aligned
atonset of USV" mounting towards female or USV-mounting towards male
intruders. k, Integrated activity during mounting bouts fromtracesini,j
Female, 107 bouts; male, 7 bouts, ****P<0.0001. ¢, h, k, Wilcoxon test; e, Mann-
Whitney Utest. Dataare mean £s.e.m. except forbox plots (see Fig. 2 legend).
Allstatistical tests are two-sided and corrected for multiple comparisons when
necessary (Supplementary Table 2).
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compared to pre-intruder baseline period. Coloured pointsindicate cells with
>20, compared to pre-intruder baseline period. Red lines, y=x. R?, coefficient
of determination. Dashed lines, 20. m-p, Proportion of cells excited (>20)
during female- (m, 0) or male- (n, p) directed behaviours. The correlations of
the neural activity during the behaviours directed towards the same sex (i-1)
are higher than the correlations during the behaviours directed towards the
differentsex (a-h).

Extended DataFig. 5| Correlation of ESR1" neural activity during male-
versus female-, male- versus male-, or female- versus female-directed
behavioursin MPOA and VMHVvL. a-1, Average calcium response per neuronin
MPOA™® (a, b, e,f,i,j) or VMHVI®*R! (¢, d, g, h, k, 1) populations during
female-directed behaviours (USV* mounting or investigation, y axis) versus
male-directed behaviours (USV-mounting or investigation, x axis) (a-h),
female-directed USV* mounting (y axis) versus investigation (x axis) (i, k) or
male-directed USV-mounting (y axis) versus investigation (x-axis) (j, k),
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Extended DataFig. 6 | Neuronal population representations of social
behavioursin MPOA and VMHVL. a, b, Representative calcium activity rasters
of MPOA®®! (a) and VMHVI®®! (b) neurons during social interaction with a
female (left) or male (right) intruder, sorted by mean activity level during the
displayed period. Behaviours of the resident mice are indicated above the
neural activity rasters. Arrows, intruder introduction. c-f,Response strength
ofbehaviour-tuned populations, during their preferred behaviour (coloured
bars) and non-preferred behaviour (grey bars). Behaviour-tuned populations
aredefined by choice probability for female-directed mount versus
investigation (c,d, from Fig. 2k, |, left) and for male-directed mount versus
investigation (e, f, from Fig. 2k, |, right). ¢, n =41 (inv-tuned), 53 (mount-tuned);
d,n=61(inv), 12 (mount); e,n=38 (inv), 63 (mount); f n=21(inv), 24 (mount),
****p<(0.0001, ***P=0.0005.g-n, Average calciumresponse per neuronduring
female-directed USV* mounting (y axis) versus male attack (x axis) (g-j), and

male-directed USV mounting (y axis) versus male attack (x axis) (k-n), relative
toactivityimmediately before behaviourinitiation.g, h, k, I, Scatter plots.1i,j,
m, n, Proportion of cells excited (>20) during each behaviour. o, p, Average
response strength of mount responsive neurons (>2grelative to activity
immediately before mountinitiation). USV* mount-responsive neurons (green
+greydotsinFig.20,s),n=68 (MPOA), 8 (VMHvVI); USV"mount-responsive (blue
+grey dotsinFig.20,s), n=35(MPOA), 22 (VMHVI), ***P=0.0001. q-Xx, Accuracy
oftime-evolving (q, r, u, v) or frame-wise (s, t, w, x) decoders predicting USV*
mounting from attack (q-t) and USV" mounting from attack (u-x), trained on
neural activity. n=4,***P<0.0001, *P=0.026.c-f, Wilcoxontest; 0, p,s, t, w, X,
Mann-Whitney Utest. Dataare mean +s.e.m. except for box plots (see Fig.2
legend). All statistical tests are two-sided and corrected for multiple
comparisons whennecessary (Supplementary Table 2).
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Extended DataFig.7|Stimulation of MPOA™®"VAT neurons triggers
mounting and USVs towards male and female intruders. a-i, Quantification
of behaviour parameters towards male intruders (a-h) or under solitary
conditions (i) with different laser intensities.a-f, h, i, ChR2 withintensity A, B,
off,n=7;C,n=6; control,n=7;g, ChR2with intensity Band off,n=6; Aand C,
n=6;control,onn=5,off n=4.Datawithintensity B (0.5-1.5mW) are
reproduced from Fig. 3 for comparative purposes.b, Left toright, *P=0.0418,
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*P=0.0102,0.0112.i,**P=0.0096,0.0045. j, Representative behaviour raster
plots towards maleintruders from ChR2 and control mice without (top) and
with (bottom) photostimulation with laserintensity B (0.5-1.5 mW).k-q,
Quantification of behaviour parameters towards female intruders with laser
intensity B (0.5-1.5mW).ChR2,n=6; control,n=7.1,*P=0.0127.m,
**P=0.0034.0,**P=0.0025.p,**P=0.0001.b-i (ChR2),I-p, Kruskal-Wallis
test; b-i (control), Wilcoxon test; k, Fisher’s test. Data are mean + s.e.m. except
forbox plots (see Fig. 2legend). All statistical tests are two-sided and corrected
for multiple comparisons when necessary (Supplementary Table 2).
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Extended DataFig. 8| Comparisonbetween features of naturally occurring
and optogenetically evoked USVs. a-d, Example spectrograms from male-
femaleinteraction (natural USVs, a, b) and male-maleinteraction during
MPOAFSRINVEAT gptogenetic stimulation (evoked USVs, ¢, d). e, f, Example
syllables extracted from naturally occurring USVs recorded during male-
femaleinteractions (pink), and from evoked USVs recorded during male-male
interactions with MPOA optogenetic stimulation (blue). Syllable were first
classified into short (duration <60 ms, e) or long (=60 ms, f), then further
manually classified into total of 12 categories according to previous criteria**.
All12 syllable types were observed amongboth natural and evoked USVs. g-m,

Comparison of acoustic features between USVs evoked by female urine or
optogenetic stimulation of MPOA in solitary males. g, Schematic of the
acoustic parameters of USVs (Methods). IS, inter syllable interval. h-m,
Histograms of acoustic features. Optogenetically evoked USVsinsolitary
males (blue, 3 mice), natural USVs evoked by female urine (black, S mice).
Asteriskindicates significant difference between the distributions of the
feature from natural versus evoked USVs. Kolmogorov-Smirnov test, i,
*P<0.0001. Number of syllables used in the analysis, ISI, natural n =844,
evoked n=263;other features, natural n=868, evoked n=285. Dataare
mean ts.e.m. (Supplementary Table 2).
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