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SUMMARY

A key obstacle to understanding neural circuits in
the cerebral cortex is that of unraveling the diversity
of GABAergic interneurons. This diversity poses
general questions for neural circuit analysis: how
are these interneuron cell types generated and
assembled into stereotyped local circuits and how
do they differentially contribute to circuit operations
that underlie cortical functions ranging from per-
ception to cognition? Using genetic engineering in
mice, we have generated and characterized approx-
imately 20 Cre and inducible CreER knockin driver
lines that reliably target major classes and lineages
of GABAergic neurons. More select populations are
captured by intersection of Cre and Flp drivers.
Genetic targeting allows reliable identification,
monitoring, and manipulation of cortical GABAergic
neurons, thereby enabling a systematic and com-
prehensive analysis from cell fate specification,
migration, and connectivity, to their functions in
network dynamics and behavior. As such, this
approach will accelerate the study of GABAergic
circuits throughout the mammalian brain.

INTRODUCTION

The cerebral cortex is the most recently evolved brain region in
vertebrates and supports sophisticated sensory, motor, and
cognitive functions in mammals. Despite its large size and func-
tional diversification, the neocortex may have arisen from the
duplication of stereotyped local circuits with subtle specializa-
tions in different cortical areas and species (Rakic, 2009). A
major obstacle to understanding neural circuits in the cerebral
cortex is the daunting diversity and heterogeneity of inhibitory
interneurons (Markram et al., 2004).

Compared with the more abundant glutamatergic projection
neurons, GABAergic interneurons constitute only approximately
20% of cortical neurons, yet these interneurons are crucial in
regulating the balance, flexibility, and functional architecture of
cortical circuits (Klausberger and Somogyi, 2008; Markram

et al., 2004). GABAergic interneurons consist of a rich array of
cell types with distinct physiological properties, connectivity
patterns, and gene expression profiles. Their diverse intrinsic,
synaptic, and dynamic properties allow interneurons to generate
a rich repertoire of inhibitory outputs (Jonas et al., 2004). Their
distinct connectivity patterns ensure differential recruitment by
appropriate inputs as well as strategic distribution of their
outputs to stereotyped locations (e.g., specific cellular and
subcellular targets) in cortical network (Buzsaki et al., 2004;
Somogyi et al., 1998). GABAergic interneurons also play key
roles in various forms of network oscillations that provide
spatial-temporal frameworks to dynamically organize functional
neural ensembles (Bartos et al., 2007; Buzsaki, 2001; Klaus-
berger and Somogyi, 2008).

The assembly of cortical GABAergic circuits begins during
mid-gestation and continues well into the postnatal period
(Huang et al., 2007). GABAergic neurons are generated mainly
in the medial and caudal ganglionic eminences (MGE and
CGE) of the basal ganglia and the preoptic area (POA) (Batista-
Brito and Fishell, 2009; Gelman and Marin, 2010). MGE and
CGE express different sets of transcription factors and give
rise to distinct classes of interneurons (Gelman and Marin,
2010). Postmitotic GABAergic neurons navigate toward the
developing neocortex through a remarkable process of long-
distance tangential migration (Marin and Rubenstein, 2001).
They subsequently disperse into appropriate cortical areas,
settle in appropriate layers, establish specific connectivity
patterns, and acquire distinct physiological properties (Huang
et al., 2007).

Despite significant progress in past decades, anatomical,
physiological, and developmental studies of cortical GABAergic
circuits have been hindered by the heterogeneity of cell types.
At present, for any given class of interneurons, we often lack
comprehensive knowledge of their connectivity patterns, activity
during relevant behaviors, and function in cortical information
processing. We also have incomplete knowledge as to how
they are specified, assemble into circuits, and contribute to
activity-dependent maturation and plasticity in cortical networks.
Thisisin part because of the difficulty in tracking the development
of interneurons due to the considerable delay between their
generation and maturation into potent inhibitory networks, often
not complete until early adolescence, depending on cortical
areas and species. Individual cell types are the basic units of
circuit assembly and function. To achieve a comprehensive
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Figure 1. Overall Scheme on the Genetic Targeting of GABAergic Neurons

(A) Top: Cortical GABAergic neurons in rodents are largely generated from the medial and caudal ganglionic eminence (MGE, CGE), and preoptic area (POA).
Bottom, postmitotic GABAergic neurons undergo long-distance migration (blue arrow) into the cortex and form circuits with glutamatergic pyramidal neurons that
are generated in the dorsal ventricular zone and migrate radially into the cortex (red arrow).

(B) Mature cortical GABA neurons can be parsed into several major classes according to their preferential axon innervation of specific cellular and subcellular
targets; the expression of several molecular markers tend to correlate, although not exclusively, with these classes.

(C) List of genes that were used for genetic targeting in this study and their approximate temporal expression pattern in developing neocortex.

(D) Design of CreER and Cre gene targeting strategy and list of knockin lines. Asterisks (*) indicate lines with low efficiency CreER induction.

understanding of the cortical GABAergic circuits, it is therefore
necessary to establish experimental systems that allow precise
and reliable identification and manipulation of distinct cell types.

Genetic approaches promise to significantly facilitate the
study of the cortical GABAergic circuitry because they engage
the intrinsic gene regulatory mechanisms that generate and
maintain cell type identity and phenotypes. Using mouse genetic
engineering, we have initiated the first round of a systematic
effort to genetically target cortical GABAergic neurons. Here,
we report the generation and characterization of nearly 20
knockin “driver lines” expressing Cre or inducible CreER recom-
binase. These mouse lines establish reliable experimental
access to major classes and lineages of cortical inhibitory
neurons. We further demonstrate that more specific subpopula-
tions can be targeted using the intersection of Cre and Flp drivers
and by engaging lineage restriction and birth timing mecha-
nisms. These GABA drivers set the stage for a systematic and
comprehensive analysis of cortical GABAergic circuits, from
cell fate specification, connectivity, to their functions in network
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dynamics and behavior. Beyond this, as GABAergic neurons are
basic components of neural circuits throughout the mammalian
brain, these GABA drivers will also prove useful for analyzing
many other brain systems and circuits.

RESULTS

Strategy and Resource

Classification of cortical GABAergic neurons has long been
contentious (Ascoli et al., 2008). A useful criterion is the pattern
of axon projection along with cellular and subcellular targets of
innervation (Figure 1) (Somogyi et al., 1998; Markram et al.,
2004). For the purpose of genetic targeting, we parse cortical
GABAergic populations based on their gene expression.
Although gene expression profiles correlate and likely contribute
to cell phenotype and identity (Nelson et al., 2006; Sugino et al.,
20086), there is often no simple relationship between the expres-
sion of a single gene and a morphologically and functionally
defined cell type. However, current methods of genetic targeting
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restrict our approach to cell types based on expression of one or
two genes. As a first step, we selected over a dozen genes to
target major GABAergic populations and lineages. These
included broadly expressed GABA synthetic enzyme and tran-
scription factors, as well as neuropeptides, enzymes, and
calcium binding proteins with more restricted expression that
correlates with subpopulations (Figure 1).

We used the Cre/loxP binary gene expression system (Dymecki
and Kim, 2007) to target GABAergic neurons. In order to faithfully
engage the genetic mechanisms that specify and maintain cell
identity, we aimed to generate driver lines in which Cre activity
precisely and reliably recapitulates the endogenous gene ex-
pression. We therefore used gene targeting in embryonic stem
(ES) cells to insert Cre coding cassettes either at the translation
initiation codon or immediately after the translation STOP codon
of an endogenous gene (Figure 1 and Table 1; see Figure S1 and
Table S1 available online). We used four reporter alleles, all gener-
ated at the Rosa26 locus, to assay recombination patterns: (1)
RCE-LoxP is a loxP-STOP-loxP-GFP reporter (Miyoshi et al.,
2010), (2) RCE-Frt is an frt-STOP-frt-GFP reporter (Miyoshi
et al., 2010), (3) Ai9 is a loxP-STOP-loxP- tdTomado reporter
(Madisen et al., 2010), and (4) RCE-dual is a loxP-STOP-loxP-
frt-STOP-frt-GFP reporter which expresses GFP upon the inter-
section of Cre and Flp recombination (Miyoshi et al., 2010).

Our current characterizations have focused on neocortex
and hippocampus, but most GABA driver lines also show Cre
activities throughout the brain (Table 2) from the retina to the
spinal cord. A broader characterization of these GABA drivers
in the CNS including atlases of Cre-dependent reporter expres-
sion is presented at the Cre Driver website http://credrivermice.
org. Cre activities in the peripheral nervous system and non-
neuronal tissues have not been examined. These GABA driver
lines are being distributed by the Jackson Laboratory (http://
www.jax.org/).

The Nkx2.1-CreER Driver Confers Genetic Access

to MGE Progenitors

Genetic fate mapping using transcription factors that define
progenitor pools should provide insight into the specification
and development of GABAergic subtypes. Nkx2.1 is the only
known factor specifically expressed within MGE by all progeni-
tors in the ventricular zone (VZ) and subventricular zone (SVZ2)
(Flames et al., 2007; Marin and Rubenstein, 2001). In addition,
Lhx6 and Er81 are expressed in subdomains of MGE and CGE
(Figure 2A) (Flames et al., 2007; Butt et al., 2008). We have gener-
ated inducible CreER drivers targeting these transcription factor
genes (see Tables 1 and 2).

Although several Nkx2.1 transgenic lines have been generated
expressing a constitutive form of Cre (Fogarty et al., 2007; Xu
et al., 2008), they deviate from the spatiotemporal pattern of
endogenous Nkx2.1 to varying degrees, and offer no temporal
control over Cre activity. In contrast, our Nkx2.1-CreER driver
appeared to precisely recapitulate the endogenous expression
and allows temporal regulation of Cre activity, thereby establish-
ing reliable genetic access to the MGE progenitors (Figure 2).
E12 tamoxifen induction resulted in robust labeling of the VZ
and SVZ progenitors in MGE and POA but not lateral ganglionic
eminence (LGE) (Figures 2B and 2C). Low-dose tamoxifen

induction (0.5 mg/30 g body weight) further revealed radial
columns of cells, which likely represent putative progenitor
clones in MGE (Figure 2D). Consistent with previous studies
(Miyoshi et al., 2007), E12 induction gave rise to cortical GABA
neurons expressing parvalbumin (PV), somatostatin (SST), but
not vasoactive intestinal peptide (VIP) (Figures 2J-2L).

Recent studies demonstrate that Nkx2.1 expression continues
beyond mid-gestation and persists in the ventral ridge of SVZ
during late embryonic and postnatal ages (Marin et al., 2000;
Magno et al., 2009). Indeed, we found Nkx2.7-Cre activity in
ventral SVZ beyond E17 (Figures 2E-2G), when the character-
istic eminence of MGE had already fused with the adjacent
LGE. This raised the issue of whether these ventral SVZ cells
derived from earlier MGE or acquired Nkx2.1 expression inde-
pendently. We found that these Nkx2.1* cells continued to incor-
porate BrdU labeling at E17 (administered 4 times every 4 hr) and
thus retained mitotic competence, which is a key indication of
progenitor properties. Using genetic fate mapping, we further
demonstrated that Nkx2.1* progenitors in ventral SVZ derived
from earlier progenitors in MGE (e.g., from E12 MGE progenitors;
Figures 2H and 2I) but not the LGE.

The DIx1- and DIx5-CreER Drivers Show Distinct
Patterns throughout Development

Members of the DIx family of homeobox transcription factors,
Dix1, DIx2, DIx5, and DIx6, are expressed mainly in the SVZ of
embryonic LGE, MGE, and CGE (Eisenstat et al., 1999). Dix
genes continue to express in subsets of GABAergic neurons in
embryonic, postnatal, and mature brains, and have been impli-
cated in regulating their migration, differentiation, survival, and
function (Cobos et al., 2005, 2007; Long et al., 2009). Whether
and how different members control the development and func-
tion of subpopulations of interneurons is not well understood.
Although DIx5/6-Cre and DIx1/2-Cre transgenic mice have
been generated using short enhancer elements (Potter et al.,
2009), these lines do not fully recapitulate endogenous expres-
sion and show ectopic Cre recombination. We generated both
DIx1-CreER and DIx5-CreER knockin drivers, which permit
DIx1* and DIx5" interneurons to be identified and manipulated
throughout development. As DIx1 and DIx5 are expressed
predominantly in the SVZ in putative committed precursors at
mid-gestation (i.e., becoming postmitotic after a limited number
of cell division) (Eisenstat et al., 1999), CreER induction around
this time (e.g., at E12) likely labels cohorts of GABA neurons
with similar birth dates. Our initial characterization with E12
induction suggests that DIx1 and DIx5 may be expressed in at
least partially nonoverlapping populations of progenitors. During
tangential migration at E13, both the E12-induced DIx1 and DIx5
cohorts appeared to take similar routes, via the subventricular
zone, into the cortex (Figures 3A and 3B). By E15, however,
the two cohorts showed very different patterns of migration.
Whereas the DIx1 cohort migrated throughout the marginal
zone (M2), cortical plate (CP), and intermediate zone (12), the
DIx5 cohort migrated predominantly in MZ (Figure 3C-F). In
mature cortex (P21), both cohorts settled in deep cortical layers
despite their different migration routes, with a larger fraction of
DIx5-CreER-labeled neurons situated deeper in layer 6 than
DIx1-CreER-labeled neurons (Figures 3G-3l).
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Table 1. Summary of the Construction and Characterization of GABA Cre Driver Lines

Recomb. Recomb.
Targeting  Specificity  Efficiency
Driver Lines ES Cells Vector Construction 5 Homology Arm with end Primers 3’ Homology Arm with end Primers Efficiency (cortex) (cortex)
Gad2-ires-Cre V6.5 Recombineering 2.5 kb 4.7 kb 15% ~92.2% ~91%
JAX® 010802 5 end: TGATGTAAGAGATGGTCGCC 5’ end: TCACCTCACTCATCAAACTG
3’ end: TTACAAATCTTGTCCGAGGC 3’ end: TGGGAGAGTAGAAGACAATG
SOM-ires-Cre V6.5 Long PCR 2.2 kb 5.2 kb 1% ~92.2% ~93.5%
JAX® 013044 5’ end: GGAGATTACCTGTTCTATGCC 5’ end: AATATTGTTGTCCTAGCCAGAC
3’ end: CTAACAGGATGTGAATGTCTTC 3’ end: TGGACAAGCTCCTAAGTCATC
VIP-ires-Cre V6.5 Recombineering 2.3 kb 4.9 kb 4% ~91.5% ~84.5%
JAX® 010908 5’ end: CTTAGGAAACATAGCTGAAAG 5’ end: GAAGAGGCCTCTGGGCAGAGC
3’ end: GCTCTGCCCAGAGGCCTCTTC 3’ end: GATGCGTGGTGAGGTTCTGTC
CCK-ires-Cre V6.5 Recombineering 5.5 kb 1.8 kb 3% nd nd
JAX® 012706 5’ end: ATGAGCTACAAAGGCGTCCTG 5 end: GAGGAGGTGGAATGAGGAAAC
3’ end: CTACGATGGGTATTCGTAGTC 3’ end: AGAGGGATACGGTCTACCGTG
CR-ires-Cre Bruce4 Long PCR 6.0 kb 2.0 kb 6.2% ~90.8%°  ~71.3%°
JAX® 010774 5 end: GCATTCAACCAAAGCACACTTCTTAGCA 5 end: GAAGGGACAGGGGCTGCTTCTG
3’ end: TTACACGGGGGGCTCACTGCAG 3’ end: CTATTGCTCCAGACGGGCTTC
CRH-ires-Cre  Bruce4  Long PCR 4.8 kb 2.1 kb 37.5% nd nd
JAX® 012704 5 end: TGGCTTACATGCTCCATTGTG 5’ end: GCGCTTGGCCAAAACGATTCTG
3’ end: TCATTTCCCGATAATCTCAATC 3’ end: TGACTTATCTCACTCATTGAG
CST-ires-Cre V6.5 Recombineering 2.0 kb 4.2 kb 30% nd nd
JAX® 010910 5’ end: GCTCTTGGTTCATCCTTCCTTG 5’ end: CCTATGTAGTTATGAGTGACCTT
3’ end: CTTGCACGAGGAGAAGGTTTTCCA 3’ end: TACACAAATCAAAGGGAAATC
Gad2-CreER V6.5 Recombineering 5.0 kb 2.0 kb 8% ~100% High
JAX® 010702 5’ end: TGTGATCCCTGCCTGCCAATG 5’ end: CTCTGCTCTATGGAGACTCCG
3’ end: GGGTTCTGCTAGACTGGCGCT 3’ end: ACAATGTATCGAGATGATCAG
SOM-CreER Bruce4  Long PCR 5.6 kb ~2 kb 0.5% ~100% Very low?
JAX® 010708 5’ end: GCTTATGGAAGAGACACAGAC 5’ end: GCTTATGGAAGAGACACAGAC
3’ end: CTTCCTTGCCTCAGGCAGCCAA 3’ end: CTTCCTTGCCTCAGGCAGCCAA
PV-CreER Bruce4  Recombineering 2.1 kb 4.7 kb ~10% ~100% Very low?®
JAX? 010777 5’ end: TCAGATGGAGCTGAGAGGTAG 5 end: GTGTGTAAAAAGACAAAGCAAC
3’ end: CCTGCAACTGTTTGAGCGGG 3’ end: TCTTCTTAGTGCTGGGTTGAG
CR-CreER Bruce4  Recombineering 4.9 kb 2.6 kb ~60% >70% Medium
JAX® 013730 5’ end: AGCGTCTTCCCTTGGATAAT 5’ end: TGACTGCATCCCAGTTCCTGGAAA
3’ end: GGCGAGCCGCTCCGGAGATC 3’ end: CATCCCCACTGCTAGTGACC
CCK-CreER Bruce4  Recombineering ~2.0 kb ~5.0 kb 50% nd Medium
JAX® 012710 5’ end: CCTCTCTCCTTCTTGCTTGGTAAG 5’ end: GTGGCATGGATGGTGACCTCTGG
3’ end: GGCTATGGGAAGCAAAGGCGAG 3’ end: ACCGTCTCCTGAGAGTCGGCTTGG
nNOS-CreER V6.5 Long PCR ~4 kb 2.1 kb 3.9% ~100%° Medium
JAX® 014541 5" end: ATGACCTGCTTTGACTGCTT 5’ end: TTATCCAAGCCGGCGACATCATTC

3’ end: GGTATCTGTGTCCTTCAGAAG

3’ end: CATGTGGTTGCTGGGGTTTGA
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Table 1. Continued g %
Recomb. Recomb. o} 5
Targeting  Specificity  Efficiency o g
Driver Lines ES Cells Vector Construction 5 Homology Arm with end Primers 3 Homology Arm with end Primers Efficiency (cortex) (cortex) S
Nkx2.1-CreER V6.5 Recombineering 2.0 kb 4.6 kb 2% n.a. High ccab
JAX® 014552 5’ end: GAACAGCAGACAAGCAAAGCC 5’ end: GACGTGAGCAAGAACATGGCC =
3’ end: GATTCGGCGTCGGCTGGAGGAG 3’ end: GCACGGAGCGCTGTCTCCTCG (g
DIx1-CreER V6.5 Recombineering 2.1 kb 5.0 kb 20% n.a. High =
JAX? 014551 5’ end: TTCTGCGCACAGCCTCATGCC 5 end: GTTTCGGATATCAATCTGTGG g
3’ end: CTCTTCTCGCGGGGTCTGGGT 3’ end: CTCTGTGGACTGAGTCAGATG 5]
DIx5-CreER Bruce4  Recombineering 2.0 kb 4.2 kb 1% n.a. High %
JAX® 010705 5’ end: GGATCAGTGTCAAGGAACAGC 5’ end: CGTCTTCCCTGCCCAAGCGTC @
3’ end: AGCTCCCGGGCGGTGGCTGTTC 3’ end: CAGCAGGGAGATGACATCCAC ;
Lhx6-CreER Bruce4  Recombineering 2.0kb 5.0 kb 20% n.a. Very low? 8
JAX? 010776 5’ end: TGCTTACCATGAGTGGTCACG 5 end: TTGCTTCATTAGAGAGACACC 3
3’ end: GCTTCCAGTACATGGGCCCGG 3’ end: CTCTGTGCTCTCAATCTCTGG P
ER81-CreER Bruce4  Recombineering 2.0 kb 5.0 kb 52% n.a. Medium
JAX® 013048 5’ end: GCTCTGATACTGTCCTCTCTC 5 end: AGTCAGCGTGGGAGAAACTG
3’ end: TCTGCTCCTCTTCGCAAATAT 3’ end: CTTGGCTTCAAGGTGTCACTG

Specificity and efficiency of Cre recombination were determined from quantification in the neocortex (see Results). Efficiency in CreER lines (high, medium, low) refers to frequency of recom-
bination after tamoxifen induction. 5’ end primer is in the forward direction, 3’ end primer is in the reverse direction. nd, not determined due to lack of specific antibodies; n.a., not applicable.
Less than 5 cells in cortex in a 50 um sagittal section.

®Based on Cre-dependent AAV expression.

°The nNOS antibody (Zymed)-labeled large type | cells but not small type Il cells in the cortex; using the RCE reporter, all GFP* cells were nNOS*; using the Ai9 reporter, the small RFP™ cells were
nNOS™ (see Results and Figure 8, Figure S7 for details).
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Table 2. Overview of Cre Recombination Patterns in Major Adult Brain Regions in Selected Lines

OB CX HP AMYG  STR SC CB THAL HT BS
Gad2-ires-Cre ++++ ++++ ++++ ++++ ++++ ++++ ++++ Reticular nucleus ++++ ++++
SST-ires-Cre ++ ++ ++ ++ ++ +++ + Reticular nucleus  ++ ++
CCK-ires-Cre/DIx5-Flp ++ ++ ++ ++ - - + - + -
VIP-ires-Cre ++ ++ ++ + = ++ + = ++ (SCN) ++
CR-ires-Cre ++ (AOB)  ++ ++ ++ ++ ++ ++ - + ++
CRH-ires-Cre ++ (AOB) ++ ++ ++ + ++ ++ = ++ (PVN) ++
CST-ires-Cre - ++ ++ - - - - - - -
nNOS-CreER (P21 — P30) ++ (AOB) ++ ++ ++ ++ ++ ++ + ++ +
Nkx2.1-CreER (E13 — P31) + +++ +++ ++ ++ - - - - -
DIx1-CreER
(E12—P22) +++ +++ ++ ++ ++ + - - - -
(P98 —P108) +++ ++ ++ ++ ++ + - - - -
DIx5-CreER
(E12—P22) +++ +++ ++ ++ ++ + = = = =
(P61 —P74) +++ ++ ++ ++ ++ - - - - -
Lhx6-CreER (P28 — P36) - + - - + - - - - -
Ee81-CreER (E13— P28) = + + + + - + - - -

This table gives an overall impression of the recombination patterns in several brain areas. In each area, recombination often occurs in restricted or
highly specific cell populations. In general, recombination pattern tends to recapitulate endogenous mRNA expression assayed by in situ hybridization
(e.g., those in the Allen Brain Atlas). Pattern of recombination were determined in three to five animals (>3 weeks) of each line, and were grouped into
large categories based on visual observation. “++++,” in most or all GABA neurons; “+++,” in many GABA neurons; “++,” in some GABA neurons; “+,”
in a few GABA neurons; “-,” few or no recombination in the sections examined. In CreER lines, recombination pattern is dependent on the time of
tamoxifen administration and the time of analysis; only one or two examples are presented with the time of tamoxifen induction and analysis as indi-
cated in parenthesis (e.g., E13 — P28). Recombination in other CreER lines (e.g., Gad2-, SST-, CR-, CCK-, PV- CreER) occur in a subset of cells of the
corresponding ires-Cre line, depending of tamoxifen dosage and induction age. OB, olfactory bulb; AOB, accessory olfactory bulb; CX, neocortex,
piriform cortex; HP, hippocampus; AMYG, amygdala; SC, superior culiculus; CB, cerebellum; STR, striatum; THAL, thalamus; HT, hypothalamus;
BS, brainstem; SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus.

At later embryonic stages (e.g., E15), induction in DIx7- and
DIx5- drivers gave rise to a very different pattern in the mature
cortex (P21, Figures 3J and 3K). The DIx1 driver mainly labeled
upper layer interneurons. Many of these interneurons showed
bipolar morphology and were reminiscent of CGE-derived pop-
ulations such as VIP or CR positive interneurons. On the other
hand, the DIx5 driver labeled broader populations in all layers,
suggesting that induction occurred not only in SVZ progenitors
but also in migrating cells that had earlier become postmitotic.
This distinction between the Dix7- and DIx5- drivers became
more evident with adult induction (Figures 3L and 3M), indicating
that in the mature cortex DIx1 expression is increasingly
restricted to a small subset of interneurons, whereas DIx5
expression is increasingly more ubiquitous among GABAergic
neurons. Together, our initial characterization of these two driver
lines demonstrated that DIx1 and DIx5 are differentially ex-
pressed in progenitors and developing interneurons at different
developmental stages and thus may play different roles in
GABAergic circuit development and function.

The Gad2-ires-Cre and Gad2-CreER: Pan GABA Drivers

In mammals, GABA is synthesized by two isoforms of glutamic
acid decarboxylases GAD67 and GADG65, encoded by the
Gad1 and Gad2 genes, respectively, and coexpressed in most
brain regions (Soghomonian and Martin, 1998). To establish

genetic access to most or all GABAergic neurons throughout
the brain, we generated both Gad2-ires-Cre and Gad2-CreER
drivers. In the Gad2-ires-Cre driver, Cre is coexpressed with
Gad?2 throughout development in GABAergic neurons and in
certain nonneuronal cells. Because Cre/loxP recombination
converts transient CRE activity to permanent reporter allele acti-
vation, reporter expression is a developmental integration of Cre
activities up to the time of analysis. In all brain regions examined,
Cre-activated RCE reporter expression is almost entirely
restricted to GABAergic neurons and includes almost all
GABAergic neurons (Figure S2). In the barrel cortex, for example,
the fraction of GFP neurons that were GAD67 immunofluores-
cent (i.e., specificity) was 92% + 2.1% and the fraction of
GADG67" cells expressing GFP (i.e., efficiency) was 91% =+
2.9% (n = 300 cells from three mice).

In the Gad2-CreER driver, induction in embryonic or postnatal
animals activated reporter expression in GABAergic neurons
throughout the brain (Figure 4A). In barrel cortex, reporter
expression is entirely restricted to GABAergic neurons and
includes all major subpopulations defined by a variety of molec-
ular markers (e.g., PV, SST, Calretinin, VIP, nNOS; Figures 4B-
4H). Importantly, recombination efficiency can be adjusted by
tamoxifen dosage. With low doses, this driver may provide
a Golgi-like method by randomly labeling single GABA neurons
throughout the brain and may further allow single neuron genetic

1000 Neuron 71, 995-1013, September 22, 2011 ©2011 Elsevier Inc.
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LGE/dCGE

Figure 2. The Nkx2.1-CreER Driver Captures MGE Progenitors

(A) A schematic of the ventricular (VZ) and subventricular (SVZ) zones of ganglionic eminence at mid-gestation and a summary of transcription factor expression

in these regions.

(B) GFP expression in an Nkx2.1-CreER::RCE-LoxP brain 1 day after induced at E12. MGE progenitors and postmitotic GABA neurons are labeled by GFP;
progenitors were colabeled by an NKX2.1 antibody (red) in VZ (arrow). Postmitotic neurons were migrating toward cortex and striatum (Str).

(C) High-dose tamoxifen induction at E12 labeled many MGE progenitors (colabeled by an NKX2.1 antibody in red) and postmitotic neurons.

(D) Low-dose tamoxifen induction at E12 labeled sparser MGE progenitors, which showed radial clone-like organization (arrows) in VZ (colabeled by an NKX2.1

antibody).

(E) A schematic of NKX2.1 expression in the ventral portion of late embryonic SVZ.
(F and G) E17 NKX2.1* cells (red) in the ventral SVZ were colabeled by a BrdU antibody (green), suggesting that they were mitotic. Four pulses of BrdU were

administered every 4 hr at E17.

(H and I) MGE progenitors labeled at E12 (green) contributed to NKX2.1* cells (red) in E17 SVZ.
(J-L) NKX2.1 progenitors labeled at E13 gave rise to major types of cortical interneurons including PV (J) and SST (K) cells but not VIP cells (L) at P31.
Scale bars: 300 pm in (B); 100 um in (C), (D), and (I); 50 um in (F) and (G); 500 um in (H); 50 um in (J)~(L); 25 um in insets of (J) and (K).

manipulation in combination with floxed conditional alleles. With
higher doses, this driver allows manipulation of GABA neurons
with temporal control. Together, the Gad2-ires-Cre and Gad2-
CreER drivers provide robust and flexible genetic tools to manip-
ulate GABAergic neurons throughout the mouse CNS.

The SST-ires-Cre and SST-CreER Drivers Capture
Dendrite-Targeting Interneurons

Somatostatin (SST) is a neuropeptide expressed in a subpopula-
tion of dendrite-targeting interneurons derived from the MGE

Neuron 71, 995-1013, September 22, 2011 ©2011 Elsevier Inc.

(Miyoshi et al., 2007; Xu et al., 2010) including Martinotti cells in
neocortex (Wang et al., 2004) and O-LM cells in hippocampus
(Sik et al., 1995; Figure 5B). Martinotti cells mediate frequency-
dependent disynaptic inhibition among neighboring layer 5 pyra-
midal neurons and control their synchronous spiking (Berger
et al., 2009). O-LM cells modulate pyramidal cell dendrites at
distinct phases of hippocampal network oscillation in a brain-
state-dependent manner (Klausberger et al., 2003). However,
the function of these neurons in behaving animals and the mech-
anism underlying their synaptic specificity are unknown.
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Figure 3. The DIx1- and DIx5-CreER Drivers Preferentially Target Different Subsets of Developing and Mature Cortical Interneurons

(A-1) Migration and distribution patterns of interneurons labeled by the Dix7-CreER or DIx5-CreER driver induced at E12. (A and B) At E13, both cohorts of
interneurons entered the cortex through the SVZ. (C-F) At E15, while the DIx5 cohort migrated predominantly in MZ (D and F), the DIx1 cohort migrated in both MZ
and SVZ and had entered the cortical plate (C and E). (G-I) At P21, both cohorts settled in deep layers of the cortex but with slightly different laminar patterns.
Quantification of laminar distribution of GFP positive neurons (schematic in the upper panel of I) in the somatosensory area of Dix-1-CreER (G) and Dix5-CreER (H)
mice demonstrated that the fraction of DIx5-CreER labeled neurons occupying the deeper part of layer 6 was higher than that of Dix7-CreER-labeled neurons (l).
Results are expressed as the mean + SEM from three animals for each genotype. *p < 0.01, t test.

(J and K) Distribution of interneurons at P21 labeled by the Dix7-CreER or DIx5-CreER driver induced at E15. While the DIx1 driver labeled a small subset, the DIx5
labeled a broad population of interneurons. (L and M) Distribution of interneurons labeled by the Dix7- and DIx5-CreER drivers in adult cortex induced in adult.
While the DIx1 driver labeled a small subset, the DIx5 labeled a broad population of interneurons.

Scale bars: 100 um in (A), (B), (E), (F), (L), (M), 500 pum in (C) and (D), 300 um in (G), (H), (J), and (K).
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Figure 4. The Gad2-CreER Driver

(A) Overview of a P28 brain sagittal section with P20 tamoxifen induction.
(B and C) GFP expression activated by Cre recombination was restricted to GABAergic neurons (Gad67, red) in cortex.

(D-H) GFP-labeled neurons in cortex include major populations of interneurons which are positive for parvalbumin (PV), somatostatin (SST), calretinin (CR),
vasoactive intestinal peptide (VIP) or nNOS. See Figure S1 for recombination patterns of the Gad2-ires-Cre driver.

Scale bars: 500 pm in (A), 25 um in (B) and (C), and 25 pm in (D)—(H).

The SST-ires-Cre driver provides experimental access to
these neurons. In barrel cortex, the fraction of GFP neurons
that showed SST immunofluorescence (i.e., specificity) was
92% =+ 2.08% and the fraction of SST* cells expressing GFP
(i.e., efficiency) was 93.5% + 3.3% (n = 289 cells from three
mice). The dense axon terminals of Martinotti cells which target
the apical tufts of pyramidal cell dendrites are particularly prom-
inent in layer1 (Figure 5A). There is also a notable band of axon
fibers in layer 4, which likely target the apical dendrites of layer
6 pyramidal neurons that terminate in this layer (Figure S3). In
the hippocampus, the labeling of all O-LM cell axons revealed
their striking subcellular specificity. These axons form a promi-
nent band in stratum lacunosum molecular, which contains the
apical tufts of pyramidal neurons with a razor-sharp boarder
with stratum radiatum (Figure 5A). The SST-ires-Cre driver
provides the first robust in vivo system for manipulating SST
interneurons to discover their function and the mechanisms
underlying the subcellular specificity of their axons.

Using the Ai9 reporter (Madisen et al., 2010), we imaged
cortical SST neurons in live mice with synaptic resolution using
2-photon microscopy (Figure S3, Movie S1). This experimental
system allows “online” identification of SST interneurons during
in vivo physiology and imaging experiments, and longitudinal
studies of their development and plasticity.

Neuron 71, 995-1013, September 22, 2011 ©2011 Elsevier Inc.

SST is highly expressed in developing cortical GABA neu-
rons beginning by mid-gestation (Batista-Brito et al., 2008).
Since reporter expression remains restricted to SST neurons
in the mature cortex, this indicates that Cre activity in SST-
ires-Cre driver is specific to the SST population throughout
development. SST neurons can be labeled as early as E13,
soon after they exit the SVZ of MGE (Figures 5E and 5F).
They reach the developing cortex by E14 and mainly migrate
in the marginal zone and subventricular zone (Figures 5E-5G).
By PO, migrating SST neurons in layer 1 appear to have
extended axons and some have entered the cortex trailed by
vertically oriental neurites (Figures 5H and 5I). By P5, most
SST cells are in the cortex, and layer 1 axons are already prom-
inent with conspicuous synaptic boutons (Figures 5J and 5K).
Therefore, the SST-ires-Cre driver provides an experimental
system to examine the developmental history of SST neurons,
including their migration, subcellular synapse targeting, and
maturation.

In the SST-CreER line, tamoxifen-induced recombination is
also restricted to SST neurons but the efficiency is very low as
assayed with both the RCE (Figures 5C and 5D) and Ai9 reporters
(see Discussion). The SST-CreER driver allows imaging and
reconstruction of single cortical SST interneurons (Figures 5C
and 5D).
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Figure 5. The SST-ires-Cre and SST-CreER Drivers

(A) Distribution of SST interneurons in cortex and hippocampus in an adult SST-ires-Cre::RCE-LoxP mouse. Laminar organization in cortex and hippocampus are
indicated. Note the prominent axon track in cortical layer 1 (arrow). In hippocampal CA1, O-LM cells (soma indicated by an arrowhead) innervate the distal
dendrite of pyramidal cells. O-LM cell axons form a prominent and sharp band in the stratum lacunosum moleculare (arrow) (also see Figure S2).

(B) A schematic of distal dendrite-targeting interneurons.

(C and D) Low-frequency recombination in the SST-CreER driver labeled single Martinotti cells (arrow heads) in layer 5 (C) and layer2 (D). Note the characteristic
axon arborization in layer1 (arrows). The background green puncta were nonspecific signals from GFP antibody staining, which were commonly seen when brain
sections contained very small number of GFP-expressing cells.

(E) A schematic showing the migration streams of SST neurons at approximately E13. Marginal zone (M2), cortical plate (CP), intermediate zone (1Z), sub-
ventricular zone (SVZ), and ventricular zone (VZ) are indicated.

(F and G) At E13, the SST-ires-Cre driver-labeled migrating SST neurons soon after they exited MGE. SST neurons entered the cortex mainly through MZ and SVZ.
(H) A schematic of PO cortex depicting SST neurons (green) migrating and entering cortical plate. Pyramidal neurons are in light yellow and radial glia in gray.
(I) At PO, while some SST neurons were still migrating in MZ and 1Z, a significant portion had entered the cortical plate. Many SST neurons showed vertically
oriented neurites, and their layer1 axons (arrow) became discernable.

(J) A schematic of P5 cortex depicting SST neurons (green) which are settling into appropriate cortical layers.

(K) At P5, SST neurons were settling into appropriate cortical layers, and their layer1 axons (arrow) were already prominent. Scale bars: 500 um in (A), 100 umin (C)
and (D), 500 pm in (F), 200 pm in (G), 100 pm in (l) and (K). stratum oriens (s.o), stratum pyramidale (s.p), stratum radiatum (s.r), stratum lacunosum moleculare
(s.Im), dentate gyrus (DG).

Both SST-ires-Cre and SST-CreER drivers are also active A Subtype of Perisomatic Targeting Interneurons Is
in many other brain regions including: olfactory bulb, striatum, Captured by an Intersectional Strategy
reticular nucleus of the thalamus, superior colliculus, brainstem, Inhibition directed toward the soma and proximal dendrites of
as well as in stripes of cerebellar Purkinje cells (Figure S3; pyramidal neurons controls the gain of summed inputs and
Table 2). thereby the spike discharge. It also regulates the phasing and
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DIx5/6-Flp

RCE-dual
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Figure 6. Intersectional Strategy Captures CCK Positive GABA Interneurons

(A and B) Schematics depict CCK and PV basket interneurons that target pyramidal cell (Py) soma and proximal dendrites (A). CCK positive interneuron axon
terminals show distinct molecular profiles compared to those of PV interneurons, including prominent expression of the CB1 receptor and signaling through
distinct postsynaptic GABA, receptors (B).

(C) Intersectional strategy using CCK-ires-Cre, DIx5/6-Flp, and a dual reporter (RCE-dual) to label CCK positive GABAergic interneurons.

(D) GFP reporter expression in the cortex and hippocampus in a CCK-ires-Cre::RCE-LoxP mouse. Note the broad expression presumably including both
pyramidal neurons and GABAergic neurons.

(E) GFP reporter expression in the cortex and hippocampus in a DIx5/6-FIp::RCE-Frt mouse. Most of the GABAergic neurons are labeled with GFP.

(F) CCK positive GABAergic interneurons in cortex and hippocampus are targeted by the intersectional strategy. Note the dense GABAergic axons (arrow) in the
pyramidal cell layer (stratum pyramidale) in hippocampal CA1. Laminar organization in cortex and hippocampus are as indicated.

(G) In hippocampal dentate gyrus, CCK axon terminals (green) segregated from PV axon terminals (red).

(H) CCK GABAergic neurons (star) and axons (green) in neocortex. PV axons were labeled with an antibody (red), and all cell somata were labeled with TOTO-3
(blue). Inset: CCK axon terminals (white arrowheads) segregated from PV axon terminals (yellow arrowheads) around the same cell soma. Scale bars: 300 um in
(D and E), 300 um in (F), 25 um in (G) and (H), 5 um in inset of (H).

synchronization of neural ensembles (Freund and Katona, 2007).  bumin (PV) or the neuropeptide cholecystokinin (CCK) (Fig-
Perisomatic inhibition is mediated by two broad classes of inter-  ure 6A). PV interneurons are characterized by fast and precise
neurons that express either the calcium-binding protein parval-  intrinsic and synaptic properties and are hypothesized to control
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the precise timing of cortical network oscillations (Bartos et al.,
2007). PV-Cre drivers have been generated and are widely
used (Hippenmeyer et al., 2005; Madisen et al., 2010). We gener-
ated an inducible PV-CreER driver, which gave low-frequency
recombination in sparse PV neurons in cerebral cortex and other
brain regions (Figure 1).

In contrast to PV interneurons, CCK interneurons appear to
fine-tune network oscillations and are influenced by subcortical
inputs that carry information about motivation, emotion, and
autonomic states (Freund and Katona, 2007). CCK interneuron
synapses are distinguished from all other inhibitory axon
terminals by their specific and high-level expression of the
cannabinoid type 1 receptors (Katona et al., 1999), which confer
a powerful retrograde modulation of GABA release, depending
on pyramidal cell activity (Wilson and Nicoll, 2001). We gener-
ated both a constitutive CCK-ires-Cre and an inducible CCK-
CreER driver but found that they activated the RCE-LoxP
reporter in both pyramidal neurons and GABA interneurons in
neocortex and hippocampus (Figure 6D; Figures S4A-S4C). It
is likely that CCK or its preprohormone is expressed at low levels
in pyramidal neurons or in pyramidal neuron precursors during
development.

To selectively target CCK™ GABAergic neurons, we used an
intersectional strategy that combines two recombinase activities
from the CCK-ires-Cre and DIx5/6-Flp drivers. DIx5/6-Fip is
atransgenic line expressing the Flp recombinase in most cortical
GABA neurons (Figure 6E; also see Miyoshi et al., 2010). The
CCK-ires-Cre and DIx5/6-Flp intersection was achieved with
the RCE-dual reporter, which can be activated only if both Cre
and Flp are simultaneously or sequentially expressed in the
same cell (Miyoshi et al., 2010). In hippocampus, GABAergic
CCK basket cells are located in both stratum pyramidale and
stratum radiatum and form a conspicuous band of perisomatic
synapses around pyramidal neurons (Figure 6F). In dentate
gyrus, CCK basket axons mainly target the proximal dendrites
of granule cells in the molecular layer (ML) and segregate from
PV basket cell axons, which target granule cell somata (Fig-
ure 6G). However, in the neocortex both CCK and PV basket
cell axons target the same perisomatic regions of pyramidal
neurons. Thus, genetic labeling of CCK* perisomatic synapses
allows them to be distinguished from those formed by PV
interneurons around the same pyramidal neuron (Figure 6H).
Interestingly, PV* and CCK* GABAergic synapses selectively
signal through either a1- or a2-containing GABAa receptors,
which show fast or slow kinetics, respectively (Nyiri et al.,
2001). Genetic access to both PV* and CCK*" GABAergic
synapses may allow study of this exquisite form of synapse
specificity. The intersectional strategy can also be used to
examine the migration, differentiation, and circuit integration of
CCK interneurons.

CCK-ires-Cre and CCK-CreER drivers are also active in other
brain regions including olfactory bulb, amygdala, brainstem, and
a subset of cerebellar Purkinje cells (Figure S4, Table 2).

The VIP-ires-Cre Targets Interneurons that Selectively
Innervate Other Interneurons

Vasoactive intestinal peptide (VIP) is expressed in a subset of
cortical GABAergic neurons that are derived from the caudal
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ganglionic eminence (CGE) and do not overlap with SST or PV
interneurons (Miyoshi et al., 2010). A prominent feature of
some VIP interneurons is their preferential innervation of other
inhibitory interneurons (David et al., 2007; Somogyi et al.,
2003). VIP neurons may also regulate cortical blood flow and
metabolism since its receptors appear to localize to blood
vessels as well as neurons (Cauli and Hamel, 2010).

In the VIP-ires-Cre driver, Cre activity is detected in the
neocortex, hippocampus, olfactory bulb, suprachiasmatic
nuclei, and other discrete midbrain and brainstem regions (Fig-
ure S5). In the upper layers of barrel cortex, the fraction of GFP
neurons that showed VIP immunofluorescence was 91.5% and
the fraction of VIP* cells expressing GFP was 84.5% (n = 213
cells). Most VIP neurons in layer 2/3 typically extend vertically
oriented dendrites (Figures 7A and 7B and Movie S2). In contrast
to SST interneurons (Figure 5A), VIP neurons do not elaborate
significant axon arbors in layer1 (Figures 7A and 7B). In hippo-
campal CA1, VIP neuron axons appear as two distinct bands
in stratum pyramidale and stratum orien (Figure 7A).

Using visual cortical slices from VIP-ires-Cre;Ai9, SST-ires-
Cre;Ai9, and PV-ires-Cre;Ai9 mice, we compared the intrinsic
properties of VIP, SST, and PV interneurons. Consistent with
prior studies on the corresponding neurons in the rat (Cauli
et al., 2000), VIP cells showed the largest input resistance,
broadest action potentials, and exhibited firing patterns with
the most accommodation and the lowest maximal frequency
among the three cell populations (Figure 7F).

VIP expression, like SST, begins during the neonatal period,
and thus the VIP-ires-Cre driver can be used to visualize and
manipulate developing VIP interneurons. At PO, we found that
VIP neurons migrate in the white matter and begin to enter the
cortical plate (data not shown). At P2, many VIP neurons have
entered the cortex and appeared to strictly migrate radially
toward the pia. During this period, they display strikingly homog-
enous morphology with vertically oriented leading neurites
toward the pia and a long trailing process toward the white
matter (Figure 7D). These observations suggest that after reach-
ing the cortex, VIP neurons largely disperse within the interme-
diate zone and attain their laminar positions by radial migration
from IZ into the cortex. Such a highly homogeneous mode of
migration is in sharp contrast to SST neurons, which enter the
cortex in both marginal and intermediate zone and migrate in
multiple modes and directions to reach their laminar positions
(Figures 5H and 5l). The VIP-ires-Cre driver therefore provides
a reliable genetic handle for studying the development and
function of this CGE-derived class of interneuron, including using
optogenetic approaches to explore the in vivo release of VIP and
its physiological impact.

The nNOS-CreER Driver Targets Neurogliaform Cells
and Long Projection GABA Neurons

Nitric oxide (NO) is a signaling molecule in the brain synthesized
by the neuronal isoform of nitric oxide synthase (nNOS). In cere-
bral cortex, nNOS is broadly expressed during development
(Bredt and Snyder, 1994) and is subsequently restricted to
subsets of GABAergic neurons (Kubota et al., 2011). In hippo-
campus, nNOS* neurons include neurogliaform cells (NGFCs)
and ivy cells (Fuentealba et al., 2008). The most unique feature
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Figure 7. The VIP-ires-Cre Driver

(A) Distribution of VIP interneurons in an adult VIP-ires-cre::Ai9 mouse cortex and hippocampus. Tdtomato signals in (A)—(C) were pseudocolored green. Laminar
organization in cortex and hippocampus are as indicated. Note the prominent vertical orientation of neurites in cortex. In hippocampal CA1, the axons of VIP
neurons segregated into distinct lamina in stratum oriens and stratum pyramidale (arrows).

(B and C) Higher magnification view of cortical VIP interneurons. A stacked image is available as Movie S2. Note that VIP interneurons were completely
segregated from PV interneurons (red) in (C).

(D) VIP interneurons in a P2 VIP-ires-cre::RCE-LoxP mouse cortex. Young VIP interneurons migrated up into cortical plate from the subventricular zone with
strikingly homogeneous and vertically oriented neurites. Inset shows higher magnification view of the boxed region.

(E) A schematic depicts VIP neurons in P2 cortex. Pyramidal neurons and radial glias are drawn in light yellow and gray, respectively.

(F) Cortical VIP interneurons (green traces) showed distinct intrinsic properties compared with PV (red traces) and SST interneurons (blue traces), including
membrane resistance (Rm), action potential (AP) threshold, half width, amplitude, maximum firing frequency, and adaptation. Scale bars: 400 pum in (A), 100 pm in
(B), 300 um in (D). See Figure S5 for expression pattern in other brain regions.

of NGFCs, including those in the neocortex, is their regulation of
local neurons through nonsynaptic GABA release and volume
transmission (Olah et al., 2009), which may lead to long-lasting
network hyperpolarization and widespread suppression in local
circuits. NO release from these neurons may also regulate blood
vessels and local hemodynamics (Cauli and Hamel, 2010).

In the neocortex, nNOS™ GABA neurons include two types (Kil-
duff et al., 2011). Whereas type Il cells likely include NGFCs, type
I NNOS™* cells represent another highly unusual population of
GABA neurons. First, type | neurons project long-distance axons
ipsi- and contralaterally within cortex, and to subcortical re-
gions, and are conserved from rodent to primate (Higo et al.,
2009; Tomioka et al., 2005). Second, whereas most cortical

neurons exhibit reduced firing during slow wave sleep (SWS),
type | neurons are selectively activated during SWS. Thus, type
I NNOS™ neurons might be positioned to influence network state
across widespread brain areas and may provide a long-sought
anatomical link for understanding homeostatic sleep regulation
(Kilduff et al., 2011).

In the nNOS-CreER driver, patterns of recombination almost
perfectly matched known nNOS neuron profiles throughout the
brain. However, the extent of labeling varied in the two reporter
lines, as they differ in sensitivity. Whereas the less sensitive
RCE reporter labeled only the type | cells (Figure S7) in cortex,
the more sensitive Ai9 reporter labeled both type | and type I
cells (Figure 8B). The nNOS cells extend thin, highly profuse

Neuron 71, 995-1013, September 22, 2011 ©2011 Elsevier Inc. 1007



Neuron
Genetic Targeting of GABAergic Neurons

Figure 8. The nNOS-CreER Driver

(A) A schematic of nNOS positive GABAergic neurons depicting the neurogliaform (NGFC) cells and long-range projection neurons (LPN) that extend axons
across cortical areas and to the contralateral cortex.

(B) Sagittal view of cortex and hippocampus from a P29 nNOS-CreER;Ai9 mouse induced from P21. TdTomato-labeled nNOS neurons were pseudocolored
green. Cortical NNOS neurons were distributed in all layers and extend highly profuse axons (arrows) throughout the cortex. In hippocampal CA1, NGFC cells
elaborate extremely dense axons in stratum oriens and stratum radiatum but were nearly absent in stratum lacunosum moleculare and stratum pyramidale. In the
dentate gyrus (DG), some nNOS neurons were located in the area of subgranular zone and hilus.

(C and D) Confocal images of superficial (C) and deep (D) cortical layers. nNOS neuron dendrites were indicated by double arrows and axons by arrows. Note the
extremely dense axon networks.

(E) Confocal image of NGFCs in hippocampal CA1. Note the often vertically oriented dendrites (double arrows) and the extremely dense thin axons (arrows).
(F and G) High-magnification confocal images of NNOS axons (arrows) in cortical layer 3 (F) and hippocampal CA1 (G). Movie files from the stacked images of (F)
and (G) are available as Movies S3 and S4, respectively. (f and g) Single optical sections in boxed areas from (F) and (G) show that nANOS axonal boutons (green)
contain GADG65 (red), a GABAergic presynaptic marker. Note the small and closely spaced GAD65 boutons (arrowheads) along green axons.

(H and 1) Nonoverlapping distribution of NNOS and PV axon terminals. In neocortex (H), pyramidal neuron somata (stars) were surrounded by PV axon terminals
(red) but were not approached by nNOS axon terminals (green). Inset: higher magnification view of boxed region; white arrowheads indicate nNOS axon
terminals, and yellow arrowheads indicate PV axon terminals. In hippocampal CA1 (l), PV basket cell axon terminals heavily innervated the perisomatic regions of
pyramidal neurons (stars in stratum pyramidale), whereas nNOS terminals predominantly concentrated around pyramidal cell dendrites in stratum oriens and
stratum radiatum. Inset: higher magnification view of the boxed region; white arrowheads indicate nNOS axon terminals, and yellow arrowheads indicate PV axon
terminals. Scale bars: 300 um in (B), 50 um in (C)—(E), 25 pmin (F)—(l), 5 pm in insets of (H) and (I), 5 um in (f1), (f2), (91), and (g2). See Figure S6 for expression pattern
in other brain regions.

axons with notably small boutons throughout cortical layers
(Figures 8C, 8D, and 8F and Movie S3), but their terminals avoid
the perisomatic regions of pyramidal neurons, which were
surrounded by PV* basket cell axon terminals (Figure 8H). In
the hippocampus, nNOS-CreER efficiently labeled neurons
whose somata were located in the stratum lacunosum molecular
and stratum pyramidale, which likely correspond to NGFCs and
ivy cells (Figures 8B, 8E, 8G, and 8I; Movie S4). These neurons
elaborate extremely dense and thin local axons with very small
boutons that appear to cover entire volume of stratum oriens
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and stratum radiatum. Notably, stratum pyramidale and stratum
lacunosum moleculare, which were targeted by CCK (Figure 6) or
PV (Figure 8l) interneurons and SST (Figure 5) interneurons,
respectively, were devoid of nNOS™ axons (Figures 8B, 8E, 8G,
and 8l). Genetic access to NNOS* GABAergic projection neurons
and NGFCs will facilitate the study of their inputs and outputs,
physiological properties, and in vivo functions.

The nNOS-CreER driver also efficiently labeled nNOS neurons
in olfactory bulb, striatum, amygdala, superioculicullus, and
hypothalamus (Figure S6; Table 2).
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The CRH-ires-Cre Driver
Corticotropin releasing hormone (CRH; also known as cortico-
tropin releasing factor-CRF) is best known for mediating neuro-
endocrine stress response (Korosi and Baram, 2008). CRH and
its receptors are widely expressed in the CNS (Korosi and
Baram, 2008). CRH modulates a wide range of behaviors,
including anxiety, arousal, motor function, learning, and memory
(Korosi and Baram, 2008), and has been implicated in early life
programming (Korosi and Baram, 2009) and depression (Binder
and Nemeroff, 2010). In cerebral cortex, CRH neurons constitute
a significant fraction of GABA interneurons (Kubota et al., 2011).
The CRH-ires-Cre driver appears to target CRH neurons
throughout the brain, including those in the paraventricular nuclei
of hypothalamus, bed nucleus of the stria terminalis, locus co-
eruleus, raphe, and amygdala (Figure S7, Table 2). In superior
culicullus, labeled neurons include bottlebrush cells, which
project their dendritic terminals in monostritified arrays (“bottle-
brush” dendritic endings) and have been implicated in motion
processing (Major et al., 2000). In hippocampus and neocortex,
the subset of targeted interneurons showed no overlap with PV,
SST, and only partial overlap with CR (33% + 5%; n = 816 cells
from two mice). The CRH-ires-Cre driver will facilitate studies of
the function and development of CRH neurons; it will also allow
study of how early life experience and chronic stress alter the
connectivity and function of CRH neurons in distributed neural
circuits that mediate stress responses in the adult brain.

The CR-ires-Cre and CR-CreER Drivers

The calcium binding protein calretinin (CR) is expressed in
a subpopulation of GABAergic neurons throughout the brain. In
cerebral cortex, CR interneurons include layer 1 GABA neurons
and several subpopulations that coexpress SST and VIP (Kubota
et al., 2011). Labeling mediated by CR-ires-Cre and CR-CreER
driver lines largely recapitulate endogenous CR expression
(Table 2; Figure S8). The CR-CreER shows high or modest Cre
activity, depending on brain regions, upon tamoxifen induction
(Figure S8).

The CST-2A-Cre Driver

Cortistatin (CST) is a neuropeptide that shares 11 of its 14 amino
acids with SST (de Lecea, 2008). CST is predominantly ex-
pressed in cerebral cortex, and in subsets of GABA interneurons
with partial overlap to SST. In contrast to SST, CST administra-
tion in brain ventricles enhances EEG synchronization by selec-
tively promoting slow-wave sleep (de Lecea, 2008). Steady-state
levels of CST mRNAs oscillate during the light:dark cycle and are
upregulated upon sleep deprivation. The CST-2A-Cre driver
appears to selectively target this interneuron population. Cre
activity is restricted to a subpopulation of GABA interneurons
in cortex and hippocampus and show a partial overlap with
SST 837% = 7.9% (n = 568 cells from three sections in one
mouse) and PV (15% + 1.5%; n = 573 cells from three sections
in one mouse) interneuron populations.

DISCUSSION

Since Cajal’s study of cortical neurons using the Golgi stain more
than a century ago (Cajal, 1899), a major obstacle to under-
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standing the organization and function of neural circuits in cere-
bral cortex has been the lack of methods allowing precise and
reliable identification and manipulation of specific cell popula-
tions. Genetic targeting is probably the best strategy to system-
atically establish experimental access to cortical cell types
because it engages gene regulatory mechanisms that specify,
maintain, or correlate with cell types. Combined with modern
molecular, optical, and physiological tools, genetic targeting
enables labeling of specific cell populations with markers for
anatomical analysis, expression of genetically encoded indica-
tors to record their activity, and activation or inactivation of these
neurons to examine the consequences in circuit operation and
behavior (Luo et al., 2008).

In past decades, genetic approaches have proved increas-
ingly powerful for elucidating a wide array of neural circuits in
C. elegans (Macosko et al., 2009), Drosophila (Chiang et al.,
2011), zebrafish (McLean and Fetcho, 2008), and mice (Hauben-
sak et al., 2010). For example, genetic analysis of the transcrip-
tional mechanisms that shape neuronal identity and connectivity
in the vertebrate spinal cord has provided an entry point into
targeting distinct neuronal populations of the central pattern
generator networks which control rhythmic movements (Gould-
ing, 2009). However, despite its importance for cognitive func-
tion and neuropsychiatric disorders, no coherent effort has
been made to systematically apply genetic analysis to neural
circuits of the cerebral cortex. Here, we have initiated the first
round of a systematic genetic targeting of cortical GABAergic
neurons by establishing Cre-mediated genetic switches in
different cell populations. Reliable genetic access and the
combinatorial power of the Cre/loxP binary system will integrate
modern physiology, imaging and molecular tools to provide
a systematic analysis of GABAergic neurons; they will further
enable a comprehensive study of the development, connectivity,
function, and plasticity in cortical inhibitory circuitry.

Genetic Targeting Strategies: Transgenesis versus
Knockin

Two main strategies have been used to target cell types in mice
(Huang et al., 2010). In the transgenic approach, including BAC
(bacterial artificial chromosome) transgenics (Gong et al.,
2003), expression of a transgene is driven by promoter elements
contained within the transgenic construct as well as by the gene
regulatory elements near the genomic loci of transgene integra-
tion. The advantages of transgenesis include relatively easier
construction of mouse lines and potentially higher level of
transgene expression due to multiple copies. The main limitation
of this approach is that transgene expression often does not
fully recapitulate that of the endogenous gene and varies among
transgenic lines. Given current knowledge about mammalian
gene regulation and chromatin biology, this should perhaps
come as no surprise. First, cis regulatory elements (enhancers,
repressors, insulators) are often very distant from the trans-
cription start site (Kapranov et al., 2007); thus, even BAC
constructs often do not contain the full complements of regula-
tory elements of the gene of interest. Second, because cis-
regulatory elements can act at a very long distance (Bulger and
Groudine, 2011; Heintzman and Ren, 2009), enhancers and
repressors near the transgene integration site (but that are

1009



unrelated to the promoter elements in the transgene) can influ-
ence transcription, leading to ectopic or suppressed expression.
Third, different transgenic lines will have different expression
patterns due to differential enhancer/repressor influences at
different genomic integration sites. Fourth, transgenes inserted
into a foreign chromatin environment can be silenced or epige-
netically altered in unpredictable ways. Thus, the challenges
often associated with the transgenic strategy are the uncertainty
of the targeted neurons and the effort necessary to ascertain
their identity and property.

Here, we have used the gene knockin strategy to target
GABAergic neurons. Cre cassettes are inserted by homologous
recombination at endogenous gene loci, which are embedded in
their native chromatin environment with largely intact regulatory
elements. The main advantage of this strategy is that Cre expres-
sion precisely and reliably recapitulates the targeted endoge-
nous gene. Indeed, after extensive characterization we found
that recombination patterns in almost all the GABA Cre drivers
often perfectly match the spatial and temporal pattern of the
endogenous gene expression. The disadvantages of gene tar-
geting approach include: (1) the possibility of altering the expres-
sion of the targeted gene, even when a bicistronic cassette (e.g.,
ires or T2A) is inserted after the targeted gene (see below); (2) the
full expression pattern of a gene may include multiple cell types
or brain regions; thus, in some cases the partial expression
pattern may be more desirable (although this issue can some-
times be addressed by using Cre-dependent viral vectors which
can be injected to defined brain regions).

Constitutive versus Inducible GABA Cre Drivers
Extensive characterization of eight constitutive drivers indicated
that this strategy is highly effective. First, Cre activities appear
highly specific and largely match the expression of the targeted
genes. In certain lines and brain regions, recombination patterns
do deviate from that of the endogenous expression in adult brain
(e.g., CCK-ires-Cre, Figure 6D). These most likely result from the
fact that recombination patterns reflect the cumulative expres-
sion history of a gene throughout development. Second, Cre
activity in the bicistronic cassette is quite effective. In nearly all
eight lines, reporter allele is activated in over 90% of the targeted
cell populations in cortex and hippocampus. On the other hand,
we noted that a bicistronic cassette inserted after the STOP
codon could still reduce the expression (e.g., translation) of the
targeted gene (H.T. and Z.J.H., data not shown). This example
and others are a reminder that every genetic manipulation is
also a genetic lesion to the genome, a fact that must be consid-
ered when interpreting results involving genetic targeting.

Our characterization of a dozen inducible drivers confirmed,
again, that CreER activities are highly specific and largely
matched the expression of the targeted gene. On the other
hand, the efficiency of induction varied significantly. While
most lines are highly or moderately efficient, three lines (PV-,
SST-, Lhx6- CreER) were quite inefficient. It is possible that alter-
ation of sequences near the translation initiation codon of these
genes reduced transcription levels, leading to low CreER
activity. Given the success of the bicistronic strategy, it may
be more efficient to insert CreER after the STOP codon of an
endogenous gene. The background CreER activity without
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tamoxifen induction is very low and was only observed occasion-
ally in high-efficiency induction lines.

Traditionally, mRNA in situ hybridization and immunohisto-
chemistry have been used as standards for evaluating the
specificity of genetic targeting. However, both in situ and immu-
nohistochemistry have intrinsic limitations in specificity and
sensitivity, depending on the quality and strength of RNA probes
and antibodies. Because Cre knockin often precisely recapitu-
late endogenous gene expression and Cre-activated reporters
amplify expression levels, we suggest that a well-designed Cre
knockin line provides an independent and sensitive assay for
gene expression and complements mRNA in situ and antibody
labeling.

Genetic Tracking of Interneuron Development Will
Facilitate the Study of Cortical Circuit Assembly

A remarkable feature of the assembly of cortical inhibitory
circuitry is that GABAergic neurons are generated in the embry-
onic ventral telencephalon and acquire their proper areal and
laminar positions through long-distance, multimodal migration
(Marin and Rubenstein, 2001). A major obstacle in studying
GABAergic circuit assembly has been that the development of
different cell types is prolonged, multifaceted, and highly inter-
twined, and there has been no method to track specific cell types
from their origin to their circuit integration. The GABA Cre drivers
begin to provide genetic tools that allow the tracking of the “life
history” of subpopulation of interneurons. Such genetic tracking
will link sequential developmental episodes of defined cell types,
such as migration, synapse formation and plasticity (which are
often studied in separation), within a coherent context of circuit
assembly. Because cell types are the building blocks of circuit
assembly and the units of circuit operation, a cell type-based
analysis of GABAergic neuron development will begin to inte-
grate studies of cortical circuit assembly and function.

GABA Drivers Target Inhibitory Neurons throughout

the Mouse Brain

It is clear that, in addition to the cerebral cortex, the GABA Cre
drivers target diverse and often highly distinct populations of
GABA neurons throughout the CNS. Based on our characteriza-
tion of cortex and hippocampus, it is reasonable to expect that if
the mRNA of a gene is detected in a region of interest (e.g., in the
Allen Brain Atlas), the corresponding Cre driver will be active in
that region (with the exception of the low frequency CreER lines).
In addition, Cre activity likely provides a more sensitive means to
discern gene expression in regions where in situ analysis is either
technically problematic or not sensitive enough to detect the
endogenous gene expression. A more thorough characterization
of GABA drivers in other brain regions will yield enormously valu-
able information regarding the organization of the underlying
neural circuits and significantly accelerate anatomical, func-
tional, and developmental studies of these circuits.

Conclusion and Perspective

Although the current set of GABA drivers successfully target
subpopulations of cortical GABAergic neurons, they have yet to
specifically capture individual anatomically and physiologically
defined subtypes such as Martinotti and neurogliaform cells.
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We envision future progress in several areas, following the foot-
steps of more advanced genetic systems such as Drosophila.
First, expression profiling in GABAergic populations targeted by
current Driver lines will reveal genes expressed in more restricted
populations, providing opportunities for more specific targeting.
Second, intersectional strategies using Cre, Flp, or other recom-
binase drivers will achieve greater specificity not only with
respect to cell types but also to brain regions and temporal
profiles (Dymecki and Kim, 2007). Third, lineal and birth timing
strategies will be more widely used to target specific cell types
(Jensen et al., 2008). Fourth, as more regulatory elements in the
mouse genome are annotated by genomic analysis, targeted
insertion of enhancers at defined genomic loci might achieve tar-
geting of subtypes with exquisite precision (Pfeiffer et al., 2008).

Current application of genetic analysis to neural circuits has
focused on providing experimental access for anatomical and
physiological studies (Luo et al., 2008). Beyond experimental
access, genetic analysis in past decades has further contributed
to discovering the mechanisms and logic underlying biological
processes, such as the genetic control of embryonic patterning
(NUsslein-Volhard and Wieschaus, 1980). Although the link
between genes and cortical circuit function is indirect, it is
increasingly evident that gene regulatory programs orchestrate
many aspects of circuit assembly, from cell fate specification
to synaptic connectivity. Given that the cell type is the basic
unit of neural circuit function as well of gene regulation, a cell
type-targeted genetic analysis will likely contribute to revealing
the logic of cortical circuit assembly and organization. Combined
with genetic etiological models in mice, such cell type-based
approaches may further contribute to understanding the genetic
architecture and pathogenic mechanisms of neurodevelopmen-
tal and psychiatric disorders.

EXPERIMENTAL PROCEDURES

Knockin Vector Construction

General Scheme

Gene targeting vectors were generated using BAC recombineering (Lee et al.,
2001) and, in a few cases, PCR-based cloning approach (Figure S1). For
constitutive Cre lines, either an ires-Cre cassette was inserted immediately
after the STOP codon or a 2A-Cre cassette was inserted in frame just before
the STOP codon of the targeted gene. For inducible lines, CreER was inserted
at the translation initiation site of the targeted gene. If the ATG codon of the tar-
geted gene is in the first coding exon, a CreER-intron-polyA cassette was
used; if the ATG codon is not in the first coding exon, a CreER-polyA cassette
was used. Two to five kb upstream or downstream regions of the targeted loci
were cloned into targeting vector as 5’ and 3’ homologous arms, respectively
(Table 1). All targeting constructs include an frt-Neo-frt cassette and a tyrosine
kinase cassette or Diphtheria toxin cassette for positive and negative selection
in ES cells, respectively. Detailed information on targeting constructs for each
line is available at http://www.credriver.org.

BAC Clones

For each gene of interest, two partially overlapping BAC clones from the
RPCI-238&24 library (made from C57BL/b mice) were chosen from the Mouse
Genome Brower. BAC DNA was transferred from DH10B strain to SW105
strain by electroporation. The identity and integrity of these BAC clones
were verified by a panel of PCR primers and restriction digestions.

Building Vectors and BAC Targeting Vectors

We constructed a series of “building vectors” containing the essential
elements for different strategies of BAC targeting (Table S1; Figure S1A).
These elements were inserted into P451B (gift of Dr. Pentao Liu), a modified
version of PL451 without a loxP site (Liu et al., 2008) in front of the frt-Neo-
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frt cassette. The Neo gene is driven by both the PGK promoter for G418 selec-
tion in ES cells and the EM7 promoter for Kan selection in Escherichia coli. A
BAC targeting vector was generated for each gene by cloning appropriate 5
and 3 homology arms from the gene into a building vector, flanking the
CreER"frt-Neo-frt cassette. For targeting to the ATG initiation codon, we typi-
cally use 300-500 bp DNA fragments immediate upstream and shortly down-
stream for 5’ and 3’ homology arms, respectively.

BAC Recombineering and Generation of Knockin Constructs

We used the PL253 retrieval vector (Liu et al., 2003) as the backbone of our
knockin vectors (Figure S1B). PL253 contains the HSV-TK gene driven by
the MC1 promoter for negative selection in ES cells. This cassette is flanked
by multicloning sites. Knockin cassette was retrieved from the modified BAC
clones into PL253 by recombineering. For recombineering (Figure S1C),
BAC targeting cassettes was excised by restriction digestion, purified to
approximately 100 ng/ul, and electroporated into competent SW105 cells con-
taining the BAC clone of interest (Liu et al., 2003). Targeted BAC clones was
selected for Kan®, and confirmed by a panel of PCR primers and restriction
digestions. A correctly targeted BAC clone was used for generating the
knockin construct by the BAC retrieval method (Liu et al., 2003). The 5'r and
3'r in the retrieval vector was designed such that between 2 and 5 kb DNA
segment flanking the CreER"?-frt-PGK-EM7-Neo-frt cassette in the BAC clone
will be subcloned into PL253. The total length of homology (2-5 kb on either
side) was sufficient for gene targeting in ES cells. The shorter homology arm
was used to design PCR-based screens for targeted ES cells.

Generation of GABA Driver Lines

Targeting vectors were linearized by Notl or Sall and transfected into either
a C57/blacké ES cell line (Bruce4, generously provided by Dr. Collin Stewart)
or a 1298Vj/B6 F1 hybrid ES cell line (V6.5, Open Biosystems; see Table 1).
G418-resistant ES clones were first screened by PCR and then confirmed
by Southern blotting using appropriate probes. PCR primers and conditions
were first tested on targeted BAC clone, which was used as positive control
for ES cell screening. Southern probes were generated by PCR, subcloned,
and tested on wild-type genomic DNA and modified BAC DNA to verify
that they give clear and expected results. Gene targeting rate varied from
approximately 0.5% to over 60%, depending on the targeted loci (Table 1).
For Bruce4 ES cells, positive ES clones were injected into blastocysts
from the albino C57BL/6J-Tyr°® mice to obtain chimeric mice following
standard procedures. Chimeric mice were bred with C57BL/6J-Tyr®® mice
to identify germline transmission. For V6.5 ES cells, positive ES cell clones
were used for tetraploid complementation to obtain male heterozygous mice
following standard procedures. The frt-Neo-frt cassette in the founder line
was removed by breeding with Actin-FLPe transgenic mice (gift of Dr. Susan
Dymecki). All experimental procedures were approved by the Institutional
Animal Care and Use Committee (IACUC) of CSHL in accordance with NIH
guidelines.

Characterization of Cre Driver Lines

Cre drivers were bred with the RCE (Miyoshi et al., 2010) or Ai9 (Madisen et al.,
2010) reporter lines to assay recombination patterns. The offsprings usually
contain a mixed C57BL/6 and 129 genetic background carried from the
various Cre and reporter lines. For intersectional labeling, mice with triple
alleles (CCK-ires-Cre, DIx5/6-Flp and RCE-dual) were obtained by crossing
CCK-ires-Cre::DIx5/6-Flp with RCE-dual. The RCE-dual allele expresses
GFP upon the removal of double STOP cassettes, frt-STOP-frt and loxP-
STOP-loxP. Fifty-micrometer-thick vibratome sections from perfused brains
were immunostained and imaged with confocal microscopy or with fluores-
cent microscopy.

Tamoxifen Induction

Tamoxifen was prepared by dissolving in corn oil (20 mg/ml) at 37°C with
constant agitation. Appropriate amount of tamoxifen was administered
to mice by gavaging or intraperitoneal injection at a dose of 2-5 mg/day for
1-5 days, depending on mice age, body weight, and the experiment (e.g.,
low- or high-frequency induction). Animals were monitored for adverse effects,
and, if these became apparent, treatment was stopped. Seven to 30 days after
the last induction, mice were processed for analysis.
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