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During the past century “mental retarda-
tion” was broadly used to label a variety of 
cognitive impairments that were linked to 

prenatal or early postnatal brain abnormalities. Some 
subgroups with easily identi2able physical features, 
such as Down syndrome, were recognized early on. In 
recent years syndromes that result from genetic anom-
alies but do not express obvious physical features, 
such as fragile X syndrome, have also been delineated.

Common to all of these disorders are mental 
impairments that persist throughout life, hampering 

development and learning, hence the terms “neurode-
velopmental disorder” and “learning disability.” Gen-
erally speaking, even if all mental functions seem to be 
affected, some tend to be more affected than others. This 
differential vulnerability gives interesting clues about 
the different origins and developmental time course of 
speci2c mental functions in normal development.

In this chapter we focus on autism and brie3y con-
sider Down syndrome, fragile X, and other neurode-
velopmental disorders with a known genetic basis. 
Autism is especially interesting because it impairs 
brain functions that are highly sophisticated in human 
beings: social awareness and communication. Autism 
is also an exemplar of many psychiatric disorders: 
there is a striking range in severity of symptoms, an 
impressive heterogeneity of comorbid conditions, and 
no clear cut neuropathology. It is likely that autism will 
ultimately be viewed as a class of disorders each with 
different etiologies that include genetic and environ-
mental factors and their interaction.

Autism Has Characteristic Behavioral Features

Autism has probably always been with us, but it was 
identi2ed and labeled only in 1943 by Leo Kanner and 
by Hans Asperger in 1944. Where were the autistic 
people in the past? Rare historical documents suggest 
that some may have been valued as eccentrics or holy 
fools, but the majority were probably considered to 
suffer constitutional mental de2ciency.

Today clinicians and researchers think of autism 
as a spectrum of disorders with three common  
diagnostic features, each showing a great deal of  
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variability among individuals: impaired social interac-
tion, impaired verbal and nonverbal communication, 
and restricted or circumscribed interests with stere-
otyped behaviors. The label “Asperger syndrome” 
is often used for individuals who exhibit the typical 
features of autism but have high verbal ability and no 
delay in language acquisition.

Autism and related disorders affect approximately 
1% of the population, a far higher frequency than was 
previously recognized. Whether this re3ects a better 
understanding and recognition of the range of disor-
ders that actually belongs in this category or an actual 
increase in incidence is not entirely clear. The possibil-
ity that this increase is due to immunization or any 
simple environmental factor has been largely elimi-
nated. Some studies indicate that the sperm of older 
fathers increases the incidence of autism as it does for 
schizophrenia. Risk also goes up with the age of the 
mother. As we shall see below, up to 10% of children 
with autism carry a genetic defect that results from a 
copy number variation, a mutation that arises in the 
germline.

Classi2cation today is based on the three diag-
nostic criteria described above, which are more 
inclusive than those used in the earliest descriptions 
of the disease. Boys outnumber girls by 4 to 1, and 
by approximately 8 to 1 in cases of autism without 
intellectual disability. Although autism can occur in 
people with a high IQ, more than half the individu-
als with autism suffer from intellectual disability 
(de2ned as an IQ below 70). By de2nition, autism 
should be detectable before the child is 3 years old. 
Autism occurs in all countries and cultures and in 
every socioeconomic group.

Although autism is clearly a disorder that affects 
the brain, there are as yet no diagnostic biological 
markers and therefore diagnosis is based on behavio-
ral criteria. Because behavior is highly changeable dur-
ing development and depends on a number of factors, 
such as age, environment, social context, and availabil-
ity and duration of remedial help, no single behavior 
could ever be diagnostic.

Some parents of an autistic child are aware that 
something is not quite right with their child from 
an early age. Other parents report that their babies 
2rst developed typically and then regressed in their 
development during the second year of life. A pro-
spective study of siblings at genetic risk for autism 
showed that at age 6 months infants at genetic risk 
and later diagnosed autistic did not differ from those 
who were typically developing on measures of social 
interaction, such as gaze to faces, social smile, and 

vocalizations to others. However, differences from 
typically developing children increasingly emerged 
and were signi2cant by 1 year of age. One of the earli-
est signs, near the end of the 2rst year, is that the baby 
does not turn when called by name. Other early signs 
include the lack of preference for people over objects, 
and repetitive use of objects, such as spinning, and 
unusual visual exploration.

Beginning at approximately 18 months of age 
several other signs become clear. Most children with 
autism do not automatically direct their attention to 
the person or object that is the focus of other people’s 
attention. Children with autism often fail to use point-
ing or other gestures to direct the attention of other 
people. They also fail to engage in ordinary make-
believe play. Later, signs of delayed and abnormal lan-
guage development are evident, with echoing of other 
people’s speech (echolalia) and the use of idiosyncratic 
expressions. By the age of 3, typical cases of autism can 
be diagnosed reliably on the basis of this constellation 
of social and communication impairments, and rigid 
and repetitive behavior and interests. In cases where 
there is neither intellectual disability nor language 
delay (Asperger syndrome), diagnosis is typically not 
made until school age.

Like other neurodevelopmental disorders, autism 
is a lifelong disorder. Autism is not progressive, 
however. On the contrary, special educational pro-
grams and professional support often lead to marked 
improvements in behavior with age. The understand-
ing and use of language by people with autism is quite 
variable. Even in individuals of high ability, language 
remains literal and conversational skills are lacking, as 
evident in poor turn-taking and poor understanding of 
irony. Most people with autism continue to 2nd social 
situations dif2cult and are hampered in their ability to 
make friends or sustain lasting relationships.

A preference for routines and restricted behavior 
patterns remains throughout life, although the nature 
of obsessions and interests often undergo marked 
changes. In early childhood an individual may be 
drawn to shiny pieces of metal, in later childhood 
collect light bulbs, and in adulthood obsessively con-
struct a novel dictionary. Hypersensitivity to touch, 
taste, sound, or vision is frequently mentioned in per-
sonal accounts and appears to play a role in restricting 
behavior by creating strong avoidances or preferences. 
Unfortunately, no neurobiological insight into these 
alterations in sensory function has yet emerged. Peo-
ple with autism are commonly susceptible to a variety 
of co-morbid psychiatric problems, particularly anxi-
ety and depression. Nevertheless, reasonably good 
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adaptation is possible when the environment is stable 
and highly structured.

There Is a Strong Genetic Component  
in Autism

Convincing data that autism has a strong genetic 
component come from studies of monozygotic twin 
pairs, who have identical genes. These studies show 
anywhere from 60% to 91% concordance of autism. 
The range is broad in part because some studies con-
sider only the most serious forms of autism, whereas 
others consider the full spectrum of autism-like 
disorders. Dizygotic twins, in contrast, have been 
estimated to have 10–30% concordance when the 
full autism spectrum is considered. If a woman has 
one child with autism, the risk that a second child 
will have autism increases approximately 20-fold. 
Approximately 20% of siblings of a child with autism 
may also have autism. The risk increases if the second 
child is a male or if two prior children have disorders 
on the autism spectrum.

These family studies indicate that autism is not 
generally the result of mutations in a single gene but 
rather variation in many genes, giving rise to a com-
plex pattern of inheritance. As in other polygenic dis-
orders, it is likely that the genes responsible are not the 
same genes in all individuals but that different combi-
nations are drawn from a larger pool of predisposing 
genes. This heterogeneity has made the identi2cation 
of speci2c genes dif2cult.

Despite the dif2culties, genomic regions have 
been implicated on several chromosomes. Of par-
ticular interest are mutations in two genes on the X 
chromosome in two sibling pairs with either autism 
or Asperger syndrome. These genes encode neuroli-
gins, postsynaptic cell adhesion proteins important in 
synapse formation. These observations are intriguing 
because they are X-linked genes and may explain the 
male preponderance. The neuroligin discovery has 
recently been supported by a study of mice harboring 
mutations similar to the human mutations. These mice 
show impaired social interactions and, as a neural cor-
relate, increased inhibitory synaptic transmission.

In addition to conventional mutations in speci2c 
genes, copy number variation has emerged as a poten-
tially important genetic mechanism in autism. Copy 
number variation describes genomic deletions and 
duplications of pieces of a chromosome involving up 
to 100 consecutive genes on a chromosome. These dele-
tions and duplications have recently been appreciated 

as a signi2cant source of genetic variation in humans. 
Although copy number variants are almost always 
inherited, recent studies suggest that 10% of autistic 
patients carry a de novo gene copy number that  neither 
parent carries. These are caused not by more com-
mon conventional mutations of discrete genes but by 
sporadic mutations of genomic structure in the germ-
line in the cells that give rise to sperm and ova. Thus 
copy number variations may play an important role 
in autism (and other disorders) and perhaps explain 
the dif2culties encountered in identifying autism- 
susceptibility genes.

Even though heritability, or the proportion of the 
phenotypic variance due to genetic factors, is very 
high for autism, environmental factors likely also play 
an important role, although no speci2c environmen-
tal factors have been conclusively identi2ed. Infec-
tions by viruses (such as rubella, measles, in3uenza, 
herpes simplex, and cytomegalovirus) may contrib-
ute to the etiology of autism and perhaps represent 
environmental cues. The possibility that a genetic 
defect alters features of brain development by affect-
ing the immune system is receiving greater atten-
tion. There is substantial evidence that mediators of 
immune functions such as cytokines and chemokines 
also play a role in brain development including syn-
aptogenesis. Given the complexity of autism and its 
various forms, it is likely that a variety of etiologies 
will ultimately be discovered, some purely genetic, 
others that depend on genetic risk factors coupled 
with environmental factors, and some purely envi-
ronmental causes.

Autism Has Characteristic Neurological 
Abnormalities

If autism is a developmental disorder of the brain, 
what parts of the nervous system are most severely 
affected? Research in this area is still in its infancy 
and no comprehensive picture of the neuropathology 
of autism is yet available. In fact, for a disorder with 
such a profound impact on the life of an individual, 
the brain, at least at a super2cial level, looks relatively 
normal. However, more detailed quantitative analyses 
have begun to demonstrate consistent alterations in 
the size and time course of development of particular 
brain regions.

The 2rst magnetic resonance imaging (MRI) stud-
ies of autism in the mid-1980s focused on the cerebel-
lum and suggested that hypoplasia of the cerebellar 
vermis was characteristic of autism. These 2ndings, 
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however, have generally not been replicated. Other 
brain regions that have been found to be abnormal 
in autism include the cerebral cortex (although the 
salient portion of the cerebral cortex varies from study 
to study), medial temporal lobe structures such as the 
amygdala and hippocampus, and the corpus callosum 
(Figure 64–1).

The notion that cortical development may be 
altered in autism arose from clinical observations 
that before age 2 the head circumference of children 
with autism is often larger than typically developing  

controls. Approximately 20% of individuals with 
autism have unusually large heads (macrocephaly). 
These data would suggest that a large head and thus 
increased brain size might be a common, although  
by no means universal, feature of autism. There is, 
however, increasing evidence that an abnormal time 
course in development, not the outcome of brain 
development, is diagnostic of autism.

Several research groups have gathered provoca-
tive evidence for precocious growth of the brain, and 
particularly of the frontal lobe, during the 2rst few 
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Figure 64–1 Brain areas implicated in the three core 
de!cits characteristic of autism: impaired social interac-
tion, impaired language and communication, and severely 
restricted interests with repetitive and stereotyped behav-
iors. Areas implicated in social de!cits include the orbitofrontal 
cortex (OFC), the anterior cingulate cortex (ACC), and the amy-
gdala (A). Cortex bordering the superior temporal sulcus (STS) 
has been implicated in mediating the perception that a living 

thing is moving and gaze perception. Face processing involves a 
region of the inferior temporal cortex within the fusiform gyrus 
(FG). Comprehension and expression of language involve a 
number of regions including the inferior frontal region, the stria-
tum, and subcortical areas such as the pontine nuclei (PN). The 
striatum has also been implicated in the mediation of repetitive 
behaviors. A number of imaging and postmortem studies have 
indicated that the cerebellum may also be pathological in autism.
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years of life of autistic children. Most studies show 
that at birth the brains of children with autism are 
either of normal size or perhaps slightly smaller than 
typically developing children and this is true again in 
adulthood. Clearly, the development of the brain is a 
precisely orchestrated process; if one or more brain 
regions develop out of sequence, patterns of brain con-
nectivity and thus brain function could be seriously 
disturbed.

Beyond the cerebral cortex, other brain regions also 
show abnormal development. Perhaps most striking 
is the amygdala, a region of the temporal lobe that is 
involved in the detection of dangers in the environment 
and in modulating some forms of social interaction (see 
Chapter 48). Interestingly, in typically developing boys 
the amygdala develops over an unusually long period, 
increasing in size by nearly 40% between the ages of 8 
and 18 years. The rest of the brain actually decreases 
in size during this same time period by approximately 
10% because of re2nement of connectivity and func-
tion. For boys with autism the amygdala reaches adult 
size by eight years of age. Thus whatever re2nement 
of connectivity takes place in typically developing pre-
adolescent and adolescent children may not occur in 
boys with autism.

Many studies have gone beyond simply evaluating 
the volume of the brain or brain regions and have ana-
lytically broken down a region of the brain into com-
partments representing grey matter and white matter. 
Alterations in white matter volume may actually be a 
more sensitive indicator of pathology in autism than 
grey matter differences. In fact, some researchers 
have proposed that the enlarged brain volume that 
has been reported in young children with autism can 
be accounted for, in large part, by disproportionate 
increases in white matter volume. Thus some studies 
have found a larger volume of white matter in boys 
with autism aged 2 to 3 years compared to controls. 
Interestingly, this difference was not found in ado-
lescence, further evidence of an abnormality of early 
development.

As these studies illustrate, autism is not a disor-
der that affects a single brain region. The amount and 
kind of brain pathology in a particular individual may 
depend on whether the etiology is more genetic or 
environmental. Finally, the pathology of autism may 
not be apparent in the mature size and shape of the 
brain but in the time course of development of both the 
structure and connections of the brain.

The picture of the neuropathology of autism at 
a microscopic level is also not clear. This is in part 
because of the paucity of brains available for analysis. 
To date fewer than 200 brains have been subjected to 

microscopic analysis, and only a small fraction of these 
have undergone quantitative analysis. Another prob-
lem is the co-morbid occurrence of epilepsy. Approxi-
mately 30% of individuals with autism also have 
seizure disorders, and seizures damage the amygdala 
and many of the other brain regions that have been 
implicated in autism.

One reasonably consistent 2nding in autism has 
been the lower number of Purkinje cells in the cer-
ebellum. Gaps in the orderly arrays of Purkinje cells 
are noticeable when using neural stains that mark 
cell bodies. Whether this reduction in cell number is 
because of autism, epilepsy, or the co-occurrence of 
both disorders is not clear. It is also not clear whether 
reduced numbers of Purkinje cells are characteristic of 
autism or a more general 2nding in neurodevelopmen-
tal disorders. Cerebellar alterations have been found 
in cases of idiopathic intellectual disability, Williams 
syndrome, and many other childhood disorders. A few 
cases of alterations of brain stem nuclei that are con-
nected to the cerebellum, such as the olivary complex, 
have also been reported.

Microscopic abnormalities have also been observed 
in the autistic cerebral cortex, including defects in the 
migration of cells into the cortex, such as ectopias, nests 
of cells in white matter that failed to enter the cortex. 
It has also been proposed that the columnar organiza-
tion of the autistic cortex is abnormal. These provoca-
tive 2ndings are awaiting con2rmation in larger studies 
using quantitative strategies. Finally, one study found 
fewer neurons in the mature amygdala of people with 
autism. Because this study was carried out with individ-
uals that did not have co-morbid epilepsy, the change in 
the amygdala looks to be a real component of autistic 
neuropathology. It raises the possibility that autism may 
have a neurodegenerative component to its pathology.

There Are Distinctive Cognitive Abnormalities 
in Autism

Social Communication Is Impaired:  
The Mind Blindness Hypothesis

One cognitive theory of social communication, termed 
theory of mind, postulates that humans have a particu-
larly well-developed ability to attribute mental states 
to others in an intuitive and fully automatic fashion. 
Watching a young man surreptitiously trying to open 
a car door without a key, you instantly understand that 
he believes he can break in while being unobserved, 
and expect him to run away as soon as he realizes 
someone is watching. Thus you explain and predict his 
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behavior by inferring his mental states (desires, inten-
tions, beliefs, knowledge). This so-called mentalizing 
ability is thought to have an identi2able biological 
basis and to depend on a dedicated brain mechanism. 
Further, it is postulated that this mentalizing mecha-
nism is faulty in autism, with profound effects on 
social development.

It is now generally agreed that certain social 
insights typical of humans depend on the capacity to 
mentalize spontaneously. Spontaneous mentalizing 
allows us to appreciate that different people have dif-
ferent thoughts and that thoughts represent internal 
functions of the mind that are different from external 
reality. From an evolutionary point of view, the capac-
ity to mentalize is extremely advantageous. It enables 
us to predict what other people are going to do next 
by “reading” their minds. It helps us to deceive and 
outsmart others, but also to teach and persuade, thus 
facilitating social and cultural learning.

The inability to mentalize, or “mind blindness,” 
was 2rst tested in autism with a simple puppet game, 
the Sally-Anne test. Young children with autism, unlike 
those with Down syndrome and unlike typically devel-
oping four-year-olds, cannot predict where a puppet 
will 2rst look for an object that was moved while the 
puppet was out of the room. They are not able to imag-
ine that the puppet will “think” that the object will be 
where the puppet had left it (Figure 64–2). Many autis-
tic children eventually do learn to pass this task, but  
on average with a 5-year delay. Mentalizing acquired 
so slowly remains effortful and error-prone even in 
adulthood.

At the same time, young children with autism 
show excellent appreciation of physical causes and 
events. For instance, the child who is incapable of 
deceiving a character (by falsely telling him that a box 
is locked), is quite capable of locking the same box to 
prevent the thief from stealing its contents.

Variations of the Sally-Anne test and other mental-
izing tasks have been used with children and adults 
with autism and Asperger syndrome since the mid 
1980s (Figure 64–3). Compared to people with low-
functioning autism, people with Asperger syndrome 
do much better when tested on mentalizing tasks, but 
they still show subtle dif2culties. Whereas they solve 
many of these tests through effortful mentalizing, 
they show a lack of automatic mentalizing. This can 
be assessed by eye gaze anticipation. In contrast, there 
is some evidence that typically developing infants as 
young as 7 months show spontaneous mentalizing, 
and there is wide agreement that this automatic ability 
is well established from the second year of life.

Functional neuroimaging studies have scanned 
the brains of healthy subjects while they are engaged 
in tasks that necessitate thinking about mental states. 
A wide range of tasks using visual and verbal stimuli 
has been used in these studies. The results indicate that 
mentalizing is associated with the activation of a net-
work of speci2c brain regions.

In one positron emission tomography (PET) study 
healthy adults viewed silent animations of geometric 
shapes. In some of the animations the triangles move in 
scripted scenarios designed to evoke mentalizing (for 
example, triangles tricking each other). In other anima-
tions the triangles move randomly and do not evoke 
mentalizing. Comparison of the scans made while 
subjects viewed the two types of animations reveals 
a speci2c network of four brain centers involved in 
mentalizing (Figure 64–4). Con2rming the earlier PET 
study, more recent fMRI studies using the same ani-
mations also showed that in autism this network has 
reduced activation and weaker connectivity between 
its components.

One component of this network, the medial pre-
frontal cortex, is a region thought to be involved in 
monitoring one’s own thoughts. A second component, 
in the temporoparietal region of the superior temporal 
lobe, is known to be activated by eye gaze and biologi-
cal motion. Patients with lesions in this area in the left 
hemisphere are unable to pass the Sally-Anne test. The 
third region involves the amygdala, which is involved 
in the evaluation of social and nonsocial information 
for indications of danger in the environment. The 
fourth region involves the inferior temporal region, 
which is known to be involved in the perception of 
faces. All these components have been implicated in 
brain abnormalities in autistic individuals.

Other Social Mechanisms Contribute to Autism

The mind blindness hypothesis attributes all impair-
ments in social communication to an inability to 
imagine the mental states of others. It has thus been 
in3uential as an example of how a speci2c cognitive 
de2cit that explains a range of behavioral symptoms 
can arise from a neurophysiological or anatomical 
abnormality in speci2c networks of the brain.

The absence of preferential attention to social stim-
uli and mutual attention are widely acknowledged 
as early signs of autism. However, these may be dis-
tinct problems independent of mentalizing, given that 
mutual attention normally appears toward the end of 
the 2rst year when signs of mentalizing are still sparse. 
Researchers have been considering the possibility 
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Figure 64–2 The Sally-Anne test. This !rst test 
of the “theory of mind” begins with a scripted 
performance using two dolls. Sally has a basket; 
Anne has a box. Sally puts a ball into her basket. 
She goes for a walk and leaves the room. While 
Sally is outside, naughty Anne takes the ball out 
of the basket and puts it into her box. Now Sally 
comes back from her walk and wants to play 
with her ball. Where will she look for the ball, the 
basket or the box? The answer, the basket, is obvi-
ous to most typically developing 4-year-olds but 
not to autistic children of the same or even higher 
mental age. (Adapted with permission, from Axel 
Schef"er.)

that a speci2c neural mechanism underlies attention 
to social stimuli, such as faces, voices, and biological 
motion. From birth normal infants prefer to attend to 
agents rather than other stimuli. An absence of this 
preference could lead to an inability to understand 
and interact with others. In favor of this hypothesis, 
researchers found that the gaze of individuals with 
autism is markedly abnormal when watching social 
scenes. One study found that autistic individuals 2xate 

on people’s mouths instead of the normal preference 
for eyes (Figure 64–5).

Imaging experiments have compared brain activ-
ity in autistic and normal subjects while they watch 
agents, their movements, their faces or voices. In 
these studies evidence has been accumulating in sup-
port of the idea that autistic individuals show atypi-
cal perception of eye movements, facial expressions, 
body gestures, and actions. This evidence implicates 
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A  Mentalizing required B  Mentalizing not required

Figure 64–3 Examples of cartoons used 
in imaging studies of “mentalizing.” 
Participants were asked to consider the 
meaning of each picture (silently) and then 
to explain them. In a functional magnetic 
resonance imaging (fMRI) study normal 
adults passively viewed cartoons that 
require mentalizing versus those that 
do not. A characteristic network of brain 
regions is activated in each subject (see 
Figure 64–4). (Reproduced, with permis-
sion, from Gallagher et al. 2000.)

the superior temporal sulcus region, a region of the 
brain that is known to have a role in the perception of 
intention of actions. In addition, frontal and parietal 
attentional brain systems that facilitate orientation to 
social stimuli appear to exert less top-down control in 
autism.

People with Autism Show a Lack of  
Behavioral Flexibility

Repetitive and in3exible behavior in autism may 
re3ect abnormalities in the executive functions of the 
frontal lobe, a wide array of higher cognitive processes 
that includes the ability to disengage from a given task, 
to inhibit inappropriate responses, to plan and man-
age sequences of deliberate actions by staying on task, 
keeping multiple task demands in working memory, 
monitoring performance, and shifting attention from 
one task to another.

Even autistic individuals with normal or supe-
rior IQ have problems in planning, organizing, and 
3exibly switching between behaviors. Both low- and 

high-functioning individuals are stumped when asked 
to suggest different uses of one object such as a hand-
kerchief (used to block a sneeze, to wrap loose objects, 
etc.). Flexible thinking is also poor in patients with 
acquired damage to the frontal lobe. In autism lack of 
3exible thinking appears to relate to a lack of behavio-
ral 3exibility in everyday life.

Dif2culties in executive functioning are char-
acteristic of other neurodevelopmental disorders: 
attention-de2cit/hyperactive disorder, phenylketonu-
ria, Tourette syndrome, dyslexia, and dyspraxia. For 
example, attention de2cit hyperactive disorder is char-
acterized by poor inhibitory control, whereas autism 
is characterized by poor 3exibility, generativity, and 
planning. How the neural mechanisms underlying 
each of these dif2culties differ is as yet unclear.

Some People with Autism Have Special Talents

One of the most fascinating features of autism is the 
existence of so-called “islets of ability”, in at least 10% 
of the cases, in music, art, calculation, or memory.  
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Figure 64–4 The mentalizing system of the brain. Healthy 
volunteers were presented with animated triangles that moved 
in such a way that viewers would attribute mental states to 
them. In the sample frame shown, the larger triangle was seen 
as encouraging the smaller triangle to leave the enclosure. They 
were also presented with animated triangles that moved in a 

more or less random fashion and thus would not elicit mental-
izing. The highlighted areas show differences in the positron 
emission tomography (PET) scans of brain activation when 
these two viewing conditions were compared. (Reproduced, 
with permission, from Castelli et al. 2002.)

Typically developing viewer
Viewer with autism 

Figure 64–5 Individuals with autistic disorder 
often do not look into the eyes of others. Patterns 
of eye movements in individuals with autism were 
studied while the subjects watched clips from the 
!lm “Who’s Afraid of Virginia Wolf?” When looking 
at human faces the subjects tended to look at the 
mouth rather than the eyes, and in scenes of intense 
interaction between people they tended to look 
at irrelevant places rather than at the faces of the 
actors. (Reproduced, with permission, from Klin  
et al. 2002.)



1434  Part IX / Language, Thought, Affect, and Learning

The frequency of superior rote memory for facts related 
to special interests is higher still. Approximately one-
third of individuals with autism have perfect pitch, 
even when not musically trained. It is unknown what 
networks in the brain give rise to these phenomena.

One explanation for islets of ability is that informa-
tion processing is preferentially geared to tiny details 
at the cost of seeing the bigger picture (the “weak cen-
tral coherence” account). A similar idea is that brain 
regions involved in perception are over-functioning 
(the “enhanced perceptual functioning” account), and 
another idea is that there is a preference for processing 
details that suit “systemizing” such as calendar knowl-
edge. Neuropsychological data support both explana-
tions, but decisive experiments still remain to be done. 
The drawing by the gifted artist with high-functioning 
autism in Figure 64–6 shows beautifully detailed city-
scapes, as well as detailed numerical patterns and dates.

Some Neurodevelopmental Disorders Have a 
Known Genetic Basis

It is generally accepted that 10% to 15% of individuals 
with autism have other known genetic diseases. Many 
of these diseases are developmental disorders leading 
to other phenotypes of intellectual or learning disabil-
ity, which may overlap with autism.

Intellectual disability is generally de2ned as meas-
urable intelligence substantially below the population 
mean that is associated with signi2cant limitations in 
adaptive functioning before the age of 18 years. Adap-
tive functioning is de2ned as how well one copes, at a 
given age, with common demands of life and includes 
such things as communication, social and interper-
sonal skills, and self-care.

Intelligence is usually de2ned by the intelli-
gence quotient (or IQ), as determined by a variety of  

Figure 64–6 Strikingly beautiful art work by George 
Widener. He is a highly accomplished and much admired 
outsider artist. In the attention to detail this drawing resembles 
the drawings of other autistic savant artists. The intricate topo-
graphical detail of a symmetrically arranged city, with rivers, 
bridges and tall buildings, is combined with minutely executed 
and seemingly abstruse calendar sequences. Mastery of the 

calendar, and the ability to name the day of the week for any 
given date has often been described for autistic savants. The 
viewer of this drawing can partake in an otherwise very private 
world of space and time, numbers, and patterns. (Reproduced, 
with permission, from the Henry Boxer Gallery, London. www.
outsiderart.co.uk.)

www.outsiderart.co.uk
www.outsiderart.co.uk
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standardized tests, such as the Stanford-Binet or 
Wechsler Scales. These tests, in the general popula-
tion, produce a range of scores that de2ne a bell curve 
with the mean at 100 points. By de2nition an IQ below 
2 standard deviations (below 70 points) is considered 
in the range of intellectual disability. Besides an IQ 
below 70, a person with intellectual disability also 
shows de2cits in adaptive functioning. Like IQ, adap-
tive functioning is measured by standardized tests.

Fragile X Syndrome

Fragile X syndrome is a common form of chromosome 
X-linked intellectual disability. Patients show many 
similarities to autism, such as poor eye contact, a dis-
like of being touched, and repetitive behaviors. Its 
prevalence is approximately one in 4,000 boys and one 
in 8,000 girls. Estimates of the concurrence of autism 
and fragile X syndrome vary widely. In some early 
studies up to 25% of boys with autism were incorrectly 
diagnosed as having the fragile X syndrome. With the 
discovery of the gene for fragile X, diagnostic tests 
based on the genetic abnormality became available, 
lowering the percentage to approximately 3%. How-
ever, among children with fragile X syndrome, nearly 
30% meet standard diagnostic criteria for autism.

The fragile X mutation is quite remarkable. The 
FMR1 gene on the X chromosome includes the nucle-
otide triplet CGG. In normal individuals this triplet is 
repeated in approximately 30 copies. In fragile X syn-
drome patients the number of repeats is more than 200, 
with approximately 800 repeats being most common. 
As we have seen in Chapters 3 and 43, this expansion 
of trinucleotide repeats has since been recognized in 
other genes leading to neurological diseases, such as  
Huntington disease. When the number of CGG repeats 
exceeds 200, the FMR1 gene becomes heavily methyl-
ated, and gene expression is shut off. Consequently, 
the fragile X mental retardation protein (FMRP) is 
lacking.

Lack of functional FMRP is considered responsible 
for fragile X syndrome. FMRP is a selective RNA-binding 
protein that renders messenger RNA dormant by block-
ing translation until protein synthesis is required. It is 
found at the base of dendritic spines together with ribos-
omes, where it regulates local dendritic protein synthesis 
that is needed both for synaptogenesis and for certain 
forms of long-lasting synaptic changes associated with 
learning and memory (see Chapters 66 and 67). Inter-
estingly, a form of long-lasting synaptic change that 
requires local protein synthesis, the long-term depres-
sion of excitatory synaptic transmission, is actually 
enhanced in a mouse model of fragile X syndrome in 

which the gene encoding FMRP has been deleted. Loss 
of FMRP may enhance long-term depression by allow-
ing excess translation of messenger RNAs (mRNAs) 
important for synaptic plasticity.

Indeed, mice lacking FMRP do not require new 
protein synthesis for the induction of long-term  
synaptic depression. An exciting implication of these 
data is that chemical antagonists of the type 5 metabo-
tropic glutamate receptor, mGluR5, activation of which 
is required for this form of long-term depression, may 
lessen the excess protein translation and thus perhaps 
have a therapeutic bene2t.

Rett Syndrome

Another single-gene disorder sometimes confused 
with autism is Rett syndrome, a devastating disorder 
that affects girls primarily. Affected children appear 
normal from birth until 6 to 18 months of age, when 
they regress, losing speech and hand skills that they 
had acquired. Rett syndrome is progressive, and initial 
symptoms are followed by repetitive hand movements, 
a loss of motor control, and intellectual retardation. 
Girls with Rett syndrome can live into adulthood but 
never regain speech or the ability to use their hands. Its 
prevalence is approximately one in 15,000 girls.

Rett syndrome is an X-linked inherited disease 
caused by mutations in the MeCP2 gene, which nor-
mally encodes a transcription factor that binds to 
methylated cytosine bases in DNA, thus regulating 
gene expression and chromatin remodeling. Although 
loss of MeCP2 alters expression of a wide range of 
genes, an important contributing factor to the Rett 
syndrome phenotype may be the result of the reduced 
expression of the gene that codes for brain-derived 
neurotropic factor (BDNF). In mice reduced expres-
sion of this secreted neurotrophic factor leads to a phe-
notype much like the mouse model of Rett syndrome; 
overexpression of BDNF can substantially improve the 
phenotype in MeCP2 mutant mice.

One might think that such a global abnormality 
in gene expression would lead to an even more severe 
phenotype than that of Rett syndrome. It turns out that 
one copy of MeCP2 is essential for survival. Boys who 
have a single X chromosome and thus a single copy of 
MeCP2 die prenatally or soon after birth of encephalop-
athy if they carry a mutant form of MeCP2. Although 
girls carry two X chromosomes, only one is active in 
any given cell. Because the choice of which X chromo-
some is active is random, girls with a MeCP2 mutation 
on one X chromosome are mosaics: Some of their cells 
express the normal protein whereas others express 
the abnormal form. The cells with the normal protein  
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compensate and thus the phenotype develops into the 
Rett syndrome rather than the early lethal disease.

Down Syndrome

Down syndrome is the most common cause of birth 
defects in the United States and a major cause of intel-
lectual disability. Each year approximately 100,000 
infants worldwide are born with Down syndrome—
approximately one in 1,000 births. Approximately 7% 
of children with Down syndrome also have autism.

Besides manifesting a characteristic set of facial 
and physical features, hypotonia, and congenital heart 
defects, Down syndrome is associated with cognitive 
defects and with early-onset Alzheimer disease. Among 
the cognitive de2cits are poor spatial memory and dif-
2culties in converting short-term to long-term memory. 
These memory defects are consistent with the fact that 
in individuals with Down syndrome the hippocampus 
is smaller than in typical development. The de2cits 
are also the opposite of the exceptional short-term and 
long-term memory of many individuals with autism.

What are the speci2c genes that contribute to the 
cognitive symptoms of Down syndrome? Down syn-
drome results from the presence of an extra copy of 
chromosome 21 (trisomy of chromosome 21). Approxi-
mately 88% of these extra chromosomes are maternal 
in origin, 9% are paternal, and 3% occur at mitosis after 
fertilization. Studies of rare cases of partial trisomy of 
chromosome 21 suggest that the entire extra copy of 
the chromosome does not need to be expressed to have 
the full-blown syndrome.

A considerable part of the Down syndrome phe-
notype results from duplication of a 2-Mb region at 
segment 21q22.2 that contains 50 to 70 genes called the 
critical Down region. Examination of 27 transcripts that 
cover 80% of this region reveals several genes of poten-
tial interest for the cognitive de2cit. These include a 
gene for two inwardly rectifying K+ channels (KCNJ6, 
Homo sapiens potassium inwardly rectifying channel, 
subfamily J, member 6, also know as Kir3.2 or GIRK2) 
that are expressed in the developing and adult central 
nervous system, the gene for a kainate-type glutamate 
receptor mGluR5 (GRM5) which regulates a form of 
plasticity implicated in fragile X syndrome, the single-
minded gene 2 (SIM2), and the gene for a dual-functioning 
protein kinase called minibrain kinase (Mnbk).

Prader-Willi and Angelman Syndrome  
and Other Disorders

Few errors that involve an entire chromosome are com-
patible with life. Among the autosomes, in addition 

to Down syndrome, only trisomy 18 and trisomy 13, 
each leading to severe intellectual disability, occur in 
an appreciable frequency, with a prevalence of one in 
3,000 and one in 20,000 live births, respectively. Vari-
ous numerical errors of the sex chromosomes occur but 
usually do not cause a signi2cant degree of delay in 
cognitive development.

The only exception is Turner syndrome, which 
occurs in females missing an X chromosome. Girls 
who carry only the maternal X chromosome display a 
much higher prevalence of social-interaction dif2cul-
ties similar to autism than do girls who carry the pater-
nal X chromosome. This suggests genetic imprinting, 
where maternal and paternal copies of a gene are dif-
ferentially expressed.

With imprinted genes, which represent only a 
small fraction (< 1%) of the genome, only one copy of 
the gene is expressed. In contrast, both the paternal and 
maternal alleles of nonimprinted genes are expressed. 
With paternally imprinted genes only the maternal 
allele is expressed. With maternally imprinted genes 
the opposite is true; only the paternally inherited allele 
is active. For example, with a maternally imprinted 
gene, either of the father’s two alleles can be expressed 
in his children whereas the mother’s alleles are silent. 
However, imprinting is reversible and is erased in the 
germ cells. Thus the same maternal alleles that are 
silenced in a mother’s offspring can be active when 
they are transmitted by her son to his children.

Prader-Willi syndrome and Angelman syndrome, 
two related disorders with intellectual disability and 
possible connections with autism, are classic exam-
ples of imprinting. These two syndromes are usually 
caused by a speci2c deletion of the same region of 
chromosome 15 (Figure 64–7). However, individuals 
with Prader-Willi syndrome inherit the defective chro-
mosome 15 from their father, whereas individuals with 
Angelman syndrome inherit the defective gene from 
their mother (see Chapter 3). Despite involving the 
same genetic mutation, the two syndromes have dif-
ferent symptoms. Prader-Willi syndrome is associated 
with mild intellectual disability, hypogonadism, and a 
hypothalamic abnormality that results in the inability 
to feel satiated from hunger, leading to morbid obesity. 
In contrast, Angelman syndrome is characterized by 
profound intellectual disability and an inappropriately 
happy demeanor with frequent laughing and smiling.

How can the same genetic deletion produce such 
different behavioral and physical changes? The answer 
lies in the differential patterns of imprinting of the pater-
nal and maternal alleles of certain genes in this region 
of chromosome 15. If the paternal chromosome contains 
the deletion, as occurs in Prader-Willi syndrome, only 
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the maternal alleles are present. Thus any maternal alle-
les that are normally turned off because of imprinting 
will not be expressed in the offspring. Similarly, if the 
maternal chromosome contains the deletion, as occurs 
in Angelman syndrome, those genes that are normally 
turned off because of paternal imprinting will not be 
expressed in the offspring. Because different sets of 
genes are imprinted in males and females, individuals 
with Prader-Willi syndrome and Angelman syndrome 
have defects in expression of distinct sets of genes. 
Therefore, despite having similar deletions of chromo-
some 15, individuals with Prader-Willi and Angelman 
syndromes have completely different phenotypes.

Although Prader-Willi syndrome likely involves 
the loss of more than one imprinted gene on chromo-
some 15, the cause of Angelman syndrome has been 
narrowed to a single gene encoding the E3 ubiquitin 
ligase enzyme. Imprinted genes on chromosome 15 
may also predispose for autism, as linkage studies have 
shown some positive signal from the proximal long 

arm of chromosome 15. Indeed, a signi2cant number 
of individuals with autism, perhaps as many as 1%, 
have maternal duplications of a portion of proximal 
chromosome 15 immediately adjacent to the Prader-
Willi/Angelman syndrome region.

Other chromosome deletions that produce cog-
nitive changes do not involve imprinted genes. Such 
deletions simply reduce the normal level of that gene’s 
protein product by approximately 50%, because of the 
loss of one of the two alleles. Half the normal amount 
of some proteins is insuf2cient to support normal cel-
lular function (known as haploinsuf!ciency), resulting 
in a particular behavioral phenotype. Most often these 
deletions involve varying degrees of intellectual dis-
ability and sometimes produce striking neuropsychi-
atric phenotypes.

One such example is Smith-Magenis syndrome, 
which results from the deletion of a single band on the 
short arm of chromosome 17. The syndrome is charac-
terized by mild to moderate intellectual disability and 

Mother’s
alleles

Father’s 
alleles

Prader-Willi Syndrome

Son Son

B  Spontaneous 15q11-13 deletion

Imprinted genes (15q11-13) 

Paternal deletion Maternal deletionNon-imprinted genes

Alleles for both genes 
from each parent expressed

A  Normal

Gene B not expressed

Angelman Syndrome

Gene A not expressed

Normal development

15q11-13
deletion

B ON

A OFF

B OFF

A ON

Mother’s
alleles

Father’s 
alleles

15q11-13
deletion

A

B

Maternal A ON 
(paternally 
imprinted)Paternal B ON

(maternally
imprinted)

Genes A and B expressed

Figure 64–7 Imprinting in Prader-Willi and Angelman 
syndrome. Approximately 70% of Prader-Willi and Angelman 
syndrome patients inherit chromosome 15 from one par-
ent with spontaneous (noninherited) deletions of the q11–13 
interval. This interval contains imprinted genes with alleles 
that are either expressed or not depending on whether the 
chromosome was inherited from the father or mother. If the 
chromosome with the deletion is from the father, Prader-Willi 

syndrome occurs because maternally imprinted genes on the 
corresponding interval of the intact maternal chromosome 
(gene B, for example) are not expressed. If the chromosome 
with the deletion is from the mother, the gene for ubiquitin 
ligase (UBE3A) will not be expressed in offspring because of 
its normal inactivation on the paternal chromosome caused by 
imprinting; loss of expression of this gene leads to Angelman 
syndrome.
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marked hypersomnolence. Smith-Magenis syndrome 
patients engage in a variety of unusual self-mutilations 
that they seem unable to resist, such as onychotilloma-
nia (self-mutilation of the 2nger and toe nails) and pol-
yembolokoilomania (insertion of foreign objects into 
body ori2ces). They also repeat two stereotypic behav-
iors, spasmodically squeezing their upper body (“self 
hug”) and hand licking and page 3ipping (“lick and 
3ip”). What is most remarkable is that although most 
patients with Smith-Magenis syndrome have a 4-Mb 
deletion, four patients have been identi2ed recently 
with a mutation in only one of the genes in this inter-
val, RAI1, which is expressed in neurons. Once the 
function of RAI1 becomes understood, it will be fasci-
nating to consider how haploinsuf2ciency leads to the 
bizarre behaviors of Smith-Magenis syndrome.

Williams syndrome is also a segmental deletion 
but on the long arm of chromosome 7. Although no 
speci2c gene of the 25 to 30 genes within the deletion 
is singly responsible, the phenotype is nevertheless 
intriguing. Williams syndrome patients show speci2c 
dissociations of cognitive function, such as severe de2-
cits in construction of visuospatial relations, yet have 
good language capabilities and do well in face recog-
nition tests. However, the cognitive processes under-
lying these achievements differ from those used by 
typically developing children. Interestingly, Williams 
syndrome patients, regardless of family background 
and ethnicity, share somewhat similar personality 
traits marked by empathy and overfriendliness, mak-
ing this syndrome in many ways the opposite of the 
stereotype of autism.

Probably hundreds of genes can lead to intellec-
tual disability when mutated. Many of them encode 
proteins whose roles are central to brain development 
and function. For example, a form of lissencephaly 
(“smooth brain”), the loss of convolutions and gyri in 
the cerebral cortex, results from the mutation or dele-
tion of the gene LIS1, which encodes a protein that 
normally participates in the regulation of cytoplasmic 
dynein heavy chains, which are essential for axonal 
transport (see Chapters 4 and 53). Intellectual disabil-
ity also results from mutations of at least three genes 
with products that interact with Rho GTPases, leading 
to disruptions in signaling from the cell surface to the 
actin cytoskeleton that presumably alter neurite out-
growth. Mutations in Rab GTPases, which participate 
in vesicle fusion, also can lead to severe intellectual 
disability.

Other gene defects have much more subtle impacts 
on the nervous system and behavior. For example, Tony 
Monaco and co-workers studied an extended family, 
KE, in which a severe speech and language disorder 

is transmitted as an autosomal dominant condition 
because of a mutation in the gene FOXP2, which codes 
for a transcription factor. The FOXP2 mutation causes 
faulty selection and sequencing of 2ne orofacial move-
ments necessary for articulation, resulting in de2cien-
cies in language processing and grammatical skills. 
FOXP2 mutations have also been found in unrelated 
individuals with similar language de2cits. Interest-
ingly, nucleotide substitution rates in the FOXP2 gene 
between species, a measure of evolutionary change, 
are accelerated in primates, suggesting that this gene 
had been a target of natural selection, possibly play-
ing a signi2cant role in the evolution of language in 
humans.

An Overall View

The study of neurodevelopmental disorders via cog-
nitive neuroscience clearly illustrates the power of the 
synthesis of cognitive psychology and neuroscience 
and in fact moves this convergence into new directions. 
In the study of autism, for example, the mind blindness 
hypothesis has shown how cognitive theory can direct 
the search for the neural basis of a developmental dis-
order and how biological studies can open up a new 
window: the biology of social interactions.

A full understanding of the neurobiological basis 
of the many neurodevelopmental disorders that lead 
to intellectual disability will require the convergence of 
neuroscience, other medical disciplines, and functional 
genomics. A bottom-up approach—progressing from 
the identi2cation of genes responsible for cognitive 
or behavioral disorders to an understanding of their 
effects on brain development—will clearly be crucial. 
At the same time, a top-down approach is needed, iden-
tifying the speci2c cognitive pro2le of each disorder 
and de2ning the critical neural circuits involved, using 
tools such as functional and structural brain imaging.

Autism is an example of a genetically complex 
disorder with a wide spectrum of manifestations, 
and the large differences between individual cases 
are often commented upon. Nevertheless, cognitive 
neuroscience has made advances in the dif2cult task 
of phenotyping patients and has helped pinpoint rele-
vant brain regions and abnormal connections between 
them. This knowledge should be helpful in identify-
ing the genetic and environmental risk factors that 
predispose to autism. Other developmental disorders 
that involve learning disabilities, especially those with 
much clearer patterns of inheritance than autism, are 
better suited to a bottom-up approach that begins 
with gene identi2cation. Regardless of the approach, 
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the underlying mechanisms that lead to cognitive and 
behavioral impairment in humans are most likely to 
be uncovered by research that combines cognitive psy-
chology, neuroscience, and molecular genetics.

Uta Frith 
Francesca G. Happé 

David G. Amaral 
Stephen T. Warren
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