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URING THE PAST CENTURY “MENTAL RETARDA-
DTION” was broadly used to label a variety of
cognitive impairments that were linked to
prenatal or early postnatal brain abnormalities. Some
subgroups with easily identifiable physical features,
such as Down syndrome, were recognized early on. In
recent years syndromes that result from genetic anom-
alies but do not express obvious physical features,
such as fragile X syndrome, have also been delineated.
Common to all of these disorders are mental
impairments that persist throughout life, hampering

development and learning, hence the terms “neurode-
velopmental disorder” and “learning disability.” Gen-
erally speaking, even if all mental functions seem to be
affected, some tend to be more affected than others. This
differential vulnerability gives interesting clues about
the different origins and developmental time course of
specific mental functions in normal development.

In this chapter we focus on autism and briefly con-
sider Down syndrome, fragile X, and other neurode-
velopmental disorders with a known genetic basis.
Autism is especially interesting because it impairs
brain functions that are highly sophisticated in human
beings: social awareness and communication. Autism
is also an exemplar of many psychiatric disorders:
there is a striking range in severity of symptoms, an
impressive heterogeneity of comorbid conditions, and
no clear cut neuropathology. It is likely that autism will
ultimately be viewed as a class of disorders each with
different etiologies that include genetic and environ-
mental factors and their interaction.

Autism Has Characteristic Behavioral Features

Autism has probably always been with us, but it was
identified and labeled only in 1943 by Leo Kanner and
by Hans Asperger in 1944. Where were the autistic
people in the past? Rare historical documents suggest
that some may have been valued as eccentrics or holy
fools, but the majority were probably considered to
suffer constitutional mental deficiency.

Today clinicians and researchers think of autism
as a spectrum of disorders with three common
diagnostic features, each showing a great deal of
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variability among individuals: impaired social interac-
tion, impaired verbal and nonverbal communication,
and restricted or circumscribed interests with stere-
otyped behaviors. The label “Asperger syndrome”
is often used for individuals who exhibit the typical
features of autism but have high verbal ability and no
delay in language acquisition.

Autism and related disorders affect approximately
1% of the population, a far higher frequency than was
previously recognized. Whether this reflects a better
understanding and recognition of the range of disor-
ders that actually belongs in this category or an actual
increase in incidence is not entirely clear. The possibil-
ity that this increase is due to immunization or any
simple environmental factor has been largely elimi-
nated. Some studies indicate that the sperm of older
fathers increases the incidence of autism as it does for
schizophrenia. Risk also goes up with the age of the
mother. As we shall see below, up to 10% of children
with autism carry a genetic defect that results from a
copy number variation, a mutation that arises in the
germline.

Classification today is based on the three diag-
nostic criteria described above, which are more
inclusive than those used in the earliest descriptions
of the disease. Boys outnumber girls by 4 to 1, and
by approximately 8 to 1 in cases of autism without
intellectual disability. Although autism can occur in
people with a high IQ, more than half the individu-
als with autism suffer from intellectual disability
(defined as an IQ below 70). By definition, autism
should be detectable before the child is 3 years old.
Autism occurs in all countries and cultures and in
every socioeconomic group.

Although autism is clearly a disorder that affects
the brain, there are as yet no diagnostic biological
markers and therefore diagnosis is based on behavio-
ral criteria. Because behavior is highly changeable dur-
ing development and depends on a number of factors,
such as age, environment, social context, and availabil-
ity and duration of remedial help, no single behavior
could ever be diagnostic.

Some parents of an autistic child are aware that
something is not quite right with their child from
an early age. Other parents report that their babies
first developed typically and then regressed in their
development during the second year of life. A pro-
spective study of siblings at genetic risk for autism
showed that at age 6 months infants at genetic risk
and later diagnosed autistic did not differ from those
who were typically developing on measures of social
interaction, such as gaze to faces, social smile, and

vocalizations to others. However, differences from
typically developing children increasingly emerged
and were significant by 1 year of age. One of the earli-
est signs, near the end of the first year, is that the baby
does not turn when called by name. Other early signs
include the lack of preference for people over objects,
and repetitive use of objects, such as spinning, and
unusual visual exploration.

Beginning at approximately 18 months of age
several other signs become clear. Most children with
autism do not automatically direct their attention to
the person or object that is the focus of other people’s
attention. Children with autism often fail to use point-
ing or other gestures to direct the attention of other
people. They also fail to engage in ordinary make-
believe play. Later, signs of delayed and abnormal lan-
guage development are evident, with echoing of other
people’s speech (echolalia) and the use of idiosyncratic
expressions. By the age of 3, typical cases of autism can
be diagnosed reliably on the basis of this constellation
of social and communication impairments, and rigid
and repetitive behavior and interests. In cases where
there is neither intellectual disability nor language
delay (Asperger syndrome), diagnosis is typically not
made until school age.

Like other neurodevelopmental disorders, autism
is a lifelong disorder. Autism is not progressive,
however. On the contrary, special educational pro-
grams and professional support often lead to marked
improvements in behavior with age. The understand-
ing and use of language by people with autism is quite
variable. Even in individuals of high ability, language
remains literal and conversational skills are lacking, as
evident in poor turn-taking and poor understanding of
irony. Most people with autism continue to find social
situations difficult and are hampered in their ability to
make friends or sustain lasting relationships.

A preference for routines and restricted behavior
patterns remains throughout life, although the nature
of obsessions and interests often undergo marked
changes. In early childhood an individual may be
drawn to shiny pieces of metal, in later childhood
collect light bulbs, and in adulthood obsessively con-
struct a novel dictionary. Hypersensitivity to touch,
taste, sound, or vision is frequently mentioned in per-
sonal accounts and appears to play a role in restricting
behavior by creating strong avoidances or preferences.
Unfortunately, no neurobiological insight into these
alterations in sensory function has yet emerged. Peo-
ple with autism are commonly susceptible to a variety
of co-morbid psychiatric problems, particularly anxi-
ety and depression. Nevertheless, reasonably good
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adaptation is possible when the environment is stable
and highly structured.

There Is a Strong Genetic Component
in Autism

Convincing data that autism has a strong genetic
component come from studies of monozygotic twin
pairs, who have identical genes. These studies show
anywhere from 60% to 91% concordance of autism.
The range is broad in part because some studies con-
sider only the most serious forms of autism, whereas
others consider the full spectrum of autism-like
disorders. Dizygotic twins, in contrast, have been
estimated to have 10-30% concordance when the
full autism spectrum is considered. If a woman has
one child with autism, the risk that a second child
will have autism increases approximately 20-fold.
Approximately 20% of siblings of a child with autism
may also have autism. The risk increases if the second
child is a male or if two prior children have disorders
on the autism spectrum.

These family studies indicate that autism is not
generally the result of mutations in a single gene but
rather variation in many genes, giving rise to a com-
plex pattern of inheritance. As in other polygenic dis-
orders, it is likely that the genes responsible are not the
same genes in all individuals but that different combi-
nations are drawn from a larger pool of predisposing
genes. This heterogeneity has made the identification
of specific genes difficult.

Despite the difficulties, genomic regions have
been implicated on several chromosomes. Of par-
ticular interest are mutations in two genes on the X
chromosome in two sibling pairs with either autism
or Asperger syndrome. These genes encode neuroli-
gins, postsynaptic cell adhesion proteins important in
synapse formation. These observations are intriguing
because they are X-linked genes and may explain the
male preponderance. The neuroligin discovery has
recently been supported by a study of mice harboring
mutations similar to the human mutations. These mice
show impaired social interactions and, as a neural cor-
relate, increased inhibitory synaptic transmission.

In addition to conventional mutations in specific
genes, copy number variation has emerged as a poten-
tially important genetic mechanism in autism. Copy
number variation describes genomic deletions and
duplications of pieces of a chromosome involving up
to 100 consecutive genes on a chromosome. These dele-
tions and duplications have recently been appreciated

as a significant source of genetic variation in humans.
Although copy number variants are almost always
inherited, recent studies suggest that 10% of autistic
patients carry a de novo gene copy number that neither
parent carries. These are caused not by more com-
mon conventional mutations of discrete genes but by
sporadic mutations of genomic structure in the germ-
line in the cells that give rise to sperm and ova. Thus
copy number variations may play an important role
in autism (and other disorders) and perhaps explain
the difficulties encountered in identifying autism-
susceptibility genes.

Even though heritability, or the proportion of the
phenotypic variance due to genetic factors, is very
high for autism, environmental factors likely also play
an important role, although no specific environmen-
tal factors have been conclusively identified. Infec-
tions by viruses (such as rubella, measles, influenza,
herpes simplex, and cytomegalovirus) may contrib-
ute to the etiology of autism and perhaps represent
environmental cues. The possibility that a genetic
defect alters features of brain development by affect-
ing the immune system is receiving greater atten-
tion. There is substantial evidence that mediators of
immune functions such as cytokines and chemokines
also play a role in brain development including syn-
aptogenesis. Given the complexity of autism and its
various forms, it is likely that a variety of etiologies
will ultimately be discovered, some purely genetic,
others that depend on genetic risk factors coupled
with environmental factors, and some purely envi-
ronmental causes.

Autism Has Characteristic Neurological
Abnormalities

If autism is a developmental disorder of the brain,
what parts of the nervous system are most severely
affected? Research in this area is still in its infancy
and no comprehensive picture of the neuropathology
of autism is yet available. In fact, for a disorder with
such a profound impact on the life of an individual,
the brain, at least at a superficial level, looks relatively
normal. However, more detailed quantitative analyses
have begun to demonstrate consistent alterations in
the size and time course of development of particular
brain regions.

The first magnetic resonance imaging (MRI) stud-
ies of autism in the mid-1980s focused on the cerebel-
lum and suggested that hypoplasia of the cerebellar
vermis was characteristic of autism. These findings,
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however, have generally not been replicated. Other
brain regions that have been found to be abnormal
in autism include the cerebral cortex (although the
salient portion of the cerebral cortex varies from study
to study), medial temporal lobe structures such as the
amygdala and hippocampus, and the corpus callosum
(Figure 64-1).

The notion that cortical development may be
altered in autism arose from clinical observations
that before age 2 the head circumference of children
with autism is often larger than typically developing

Cerebellum

Cerebellum

Figure 64-1 Brain areas implicated in the three core
deficits characteristic of autism: impaired social interac-
tion, impaired language and communication, and severely
restricted interests with repetitive and stereotyped behav-
iors. Areas implicated in social deficits include the orbitofrontal
cortex (OFC), the anterior cingulate cortex (ACC), and the amy-
gdala (A). Cortex bordering the superior temporal sulcus (STS)
has been implicated in mediating the perception that a living

controls. Approximately 20% of individuals with
autism have unusually large heads (macrocephaly).
These data would suggest that a large head and thus
increased brain size might be a common, although
by no means universal, feature of autism. There is,
however, increasing evidence that an abnormal time
course in development, not the outcome of brain
development, is diagnostic of autism.

Several research groups have gathered provoca-
tive evidence for precocious growth of the brain, and
particularly of the frontal lobe, during the first few

thing is moving and gaze perception. Face processing involves a
region of the inferior temporal cortex within the fusiform gyrus
(FG). Comprehension and expression of language involve a
number of regions including the inferior frontal region, the stria-
tum, and subcortical areas such as the pontine nuclei (PN). The
striatum has also been implicated in the mediation of repetitive
behaviors. A number of imaging and postmortem studies have
indicated that the cerebellum may also be pathological in autism.
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years of life of autistic children. Most studies show
that at birth the brains of children with autism are
either of normal size or perhaps slightly smaller than
typically developing children and this is true again in
adulthood. Clearly, the development of the brain is a
precisely orchestrated process; if one or more brain
regions develop out of sequence, patterns of brain con-
nectivity and thus brain function could be seriously
disturbed.

Beyond the cerebral cortex, other brain regions also
show abnormal development. Perhaps most striking
is the amygdala, a region of the temporal lobe that is
involved in the detection of dangers in the environment
and in modulating some forms of social interaction (see
Chapter 48). Interestingly, in typically developing boys
the amygdala develops over an unusually long period,
increasing in size by nearly 40% between the ages of 8
and 18 years. The rest of the brain actually decreases
in size during this same time period by approximately
10% because of refinement of connectivity and func-
tion. For boys with autism the amygdala reaches adult
size by eight years of age. Thus whatever refinement
of connectivity takes place in typically developing pre-
adolescent and adolescent children may not occur in
boys with autism.

Many studies have gone beyond simply evaluating
the volume of the brain or brain regions and have ana-
lytically broken down a region of the brain into com-
partments representing grey matter and white matter.
Alterations in white matter volume may actually be a
more sensitive indicator of pathology in autism than
grey matter differences. In fact, some researchers
have proposed that the enlarged brain volume that
has been reported in young children with autism can
be accounted for, in large part, by disproportionate
increases in white matter volume. Thus some studies
have found a larger volume of white matter in boys
with autism aged 2 to 3 years compared to controls.
Interestingly, this difference was not found in ado-
lescence, further evidence of an abnormality of early
development.

As these studies illustrate, autism is not a disor-
der that affects a single brain region. The amount and
kind of brain pathology in a particular individual may
depend on whether the etiology is more genetic or
environmental. Finally, the pathology of autism may
not be apparent in the mature size and shape of the
brain but in the time course of development of both the
structure and connections of the brain.

The picture of the neuropathology of autism at
a microscopic level is also not clear. This is in part
because of the paucity of brains available for analysis.
To date fewer than 200 brains have been subjected to

microscopic analysis, and only a small fraction of these
have undergone quantitative analysis. Another prob-
lem is the co-morbid occurrence of epilepsy. Approxi-
mately 30% of individuals with autism also have
seizure disorders, and seizures damage the amygdala
and many of the other brain regions that have been
implicated in autism.

One reasonably consistent finding in autism has
been the lower number of Purkinje cells in the cer-
ebellum. Gaps in the orderly arrays of Purkinje cells
are noticeable when using neural stains that mark
cell bodies. Whether this reduction in cell number is
because of autism, epilepsy, or the co-occurrence of
both disorders is not clear. It is also not clear whether
reduced numbers of Purkinje cells are characteristic of
autism or a more general finding in neurodevelopmen-
tal disorders. Cerebellar alterations have been found
in cases of idiopathic intellectual disability, Williams
syndrome, and many other childhood disorders. A few
cases of alterations of brain stem nuclei that are con-
nected to the cerebellum, such as the olivary complex,
have also been reported.

Microscopic abnormalities have also been observed
in the autistic cerebral cortex, including defects in the
migration of cells into the cortex, such as ectopias, nests
of cells in white matter that failed to enter the cortex.
It has also been proposed that the columnar organiza-
tion of the autistic cortex is abnormal. These provoca-
tive findings are awaiting confirmation in larger studies
using quantitative strategies. Finally, one study found
fewer neurons in the mature amygdala of people with
autism. Because this study was carried out with individ-
uals that did not have co-morbid epilepsy, the change in
the amygdala looks to be a real component of autistic
neuropathology. It raises the possibility that autism may
have a neurodegenerative component to its pathology.

There Are Distinctive Cognitive Abnormalities
in Autism

Social Communication Is Impaired:
The Mind Blindness Hypothesis

One cognitive theory of social communication, termed
theory of mind, postulates that humans have a particu-
larly well-developed ability to attribute mental states
to others in an intuitive and fully automatic fashion.
Watching a young man surreptitiously trying to open
a car door without a key, you instantly understand that
he believes he can break in while being unobserved,
and expect him to run away as soon as he realizes
someone is watching. Thus you explain and predict his
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behavior by inferring his mental states (desires, inten-
tions, beliefs, knowledge). This so-called mentalizing
ability is thought to have an identifiable biological
basis and to depend on a dedicated brain mechanism.
Further, it is postulated that this mentalizing mecha-
nism is faulty in autism, with profound effects on
social development.

It is now generally agreed that certain social
insights typical of humans depend on the capacity to
mentalize spontaneously. Spontaneous mentalizing
allows us to appreciate that different people have dif-
ferent thoughts and that thoughts represent internal
functions of the mind that are different from external
reality. From an evolutionary point of view, the capac-
ity to mentalize is extremely advantageous. It enables
us to predict what other people are going to do next
by “reading” their minds. It helps us to deceive and
outsmart others, but also to teach and persuade, thus
facilitating social and cultural learning.

The inability to mentalize, or “mind blindness,”
was first tested in autism with a simple puppet game,
the Sally-Anne test. Young children with autism, unlike
those with Down syndrome and unlike typically devel-
oping four-year-olds, cannot predict where a puppet
will first look for an object that was moved while the
puppet was out of the room. They are not able to imag-
ine that the puppet will “think” that the object will be
where the puppet had left it (Figure 64-2). Many autis-
tic children eventually do learn to pass this task, but
on average with a 5-year delay. Mentalizing acquired
so slowly remains effortful and error-prone even in
adulthood.

At the same time, young children with autism
show excellent appreciation of physical causes and
events. For instance, the child who is incapable of
deceiving a character (by falsely telling him that a box
is locked), is quite capable of locking the same box to
prevent the thief from stealing its contents.

Variations of the Sally-Anne test and other mental-
izing tasks have been used with children and adults
with autism and Asperger syndrome since the mid
1980s (Figure 64-3). Compared to people with low-
functioning autism, people with Asperger syndrome
do much better when tested on mentalizing tasks, but
they still show subtle difficulties. Whereas they solve
many of these tests through effortful mentalizing,
they show a lack of automatic mentalizing. This can
be assessed by eye gaze anticipation. In contrast, there
is some evidence that typically developing infants as
young as 7 months show spontaneous mentalizing,
and there is wide agreement that this automatic ability
is well established from the second year of life.

Functional neuroimaging studies have scanned
the brains of healthy subjects while they are engaged
in tasks that necessitate thinking about mental states.
A wide range of tasks using visual and verbal stimuli
has been used in these studies. The results indicate that
mentalizing is associated with the activation of a net-
work of specific brain regions.

In one positron emission tomography (PET) study
healthy adults viewed silent animations of geometric
shapes. In some of the animations the triangles move in
scripted scenarios designed to evoke mentalizing (for
example, triangles tricking each other). In other anima-
tions the triangles move randomly and do not evoke
mentalizing. Comparison of the scans made while
subjects viewed the two types of animations reveals
a specific network of four brain centers involved in
mentalizing (Figure 64—4). Confirming the earlier PET
study, more recent fMRI studies using the same ani-
mations also showed that in autism this network has
reduced activation and weaker connectivity between
its components.

One component of this network, the medial pre-
frontal cortex, is a region thought to be involved in
monitoring one’s own thoughts. A second component,
in the temporoparietal region of the superior temporal
lobe, is known to be activated by eye gaze and biologi-
cal motion. Patients with lesions in this area in the left
hemisphere are unable to pass the Sally-Anne test. The
third region involves the amygdala, which is involved
in the evaluation of social and nonsocial information
for indications of danger in the environment. The
fourth region involves the inferior temporal region,
which is known to be involved in the perception of
faces. All these components have been implicated in
brain abnormalities in autistic individuals.

Other Social Mechanisms Contribute to Autism

The mind blindness hypothesis attributes all impair-
ments in social communication to an inability to
imagine the mental states of others. It has thus been
influential as an example of how a specific cognitive
deficit that explains a range of behavioral symptoms
can arise from a neurophysiological or anatomical
abnormality in specific networks of the brain.

The absence of preferential attention to social stim-
uli and mutual attention are widely acknowledged
as early signs of autism. However, these may be dis-
tinct problems independent of mentalizing, given that
mutual attention normally appears toward the end of
the first year when signs of mentalizing are still sparse.
Researchers have been considering the possibility
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Figure 64-2 The Sally-Anne test. This first test
of the “theory of mind"” begins with a scripted
performance using two dolls. Sally has a basket;
Anne has a box. Sally puts a ball into her basket.
She goes for a walk and leaves the room. While
Sally is outside, naughty Anne takes the ball out
of the basket and puts it into her box. Now Sally
comes back from her walk and wants to play

with her ball. Where will she look for the ball, the
basket or the box? The answer, the basket, is obvi-
ous to most typically developing 4-yearolds but
not to autistic children of the same or even higher
mental age. (Adapted with permission, from Axel
Scheffler.)

that a specific neural mechanism underlies attention
to social stimuli, such as faces, voices, and biological
motion. From birth normal infants prefer to attend to
agents rather than other stimuli. An absence of this
preference could lead to an inability to understand
and interact with others. In favor of this hypothesis,
researchers found that the gaze of individuals with
autism is markedly abnormal when watching social
scenes. One study found that autistic individuals fixate

on people’s mouths instead of the normal preference
for eyes (Figure 64-5).

Imaging experiments have compared brain activ-
ity in autistic and normal subjects while they watch
agents, their movements, their faces or voices. In
these studies evidence has been accumulating in sup-
port of the idea that autistic individuals show atypi-
cal perception of eye movements, facial expressions,
body gestures, and actions. This evidence implicates
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A Mentalizing required

Figure 64-3 Examples of cartoons used
in imaging studies of “mentalizing””
Participants were asked to consider the
meaning of each picture (silently) and then
to explain them. In a functional magnetic
resonance imaging (fMRI) study normal
adults passively viewed cartoons that
require mentalizing versus those that

do not. A characteristic network of brain
regions is activated in each subject (see
Figure 64-4). (Reproduced, with permis-
sion, from Gallagher et al. 2000.)

the superior temporal sulcus region, a region of the
brain that is known to have a role in the perception of
intention of actions. In addition, frontal and parietal
attentional brain systems that facilitate orientation to
social stimuli appear to exert less top-down control in
autism.

People with Autism Show a Lack of
Behavioral Flexibility

Repetitive and inflexible behavior in autism may
reflect abnormalities in the executive functions of the
frontal lobe, a wide array of higher cognitive processes
that includes the ability to disengage from a given task,
to inhibit inappropriate responses, to plan and man-
age sequences of deliberate actions by staying on task,
keeping multiple task demands in working memory,
monitoring performance, and shifting attention from
one task to another.

Even autistic individuals with normal or supe-
rior IQ have problems in planning, organizing, and
flexibly switching between behaviors. Both low- and

B Mentalizing not required

high-functioning individuals are stumped when asked
to suggest different uses of one object such as a hand-
kerchief (used to block a sneeze, to wrap loose objects,
etc.). Flexible thinking is also poor in patients with
acquired damage to the frontal lobe. In autism lack of
flexible thinking appears to relate to a lack of behavio-
ral flexibility in everyday life.

Difficulties in executive functioning are char-
acteristic of other neurodevelopmental disorders:
attention-deficit/hyperactive disorder, phenylketonu-
ria, Tourette syndrome, dyslexia, and dyspraxia. For
example, attention deficit hyperactive disorder is char-
acterized by poor inhibitory control, whereas autism
is characterized by poor flexibility, generativity, and
planning. How the neural mechanisms underlying
each of these difficulties differ is as yet unclear.

Some People with Autism Have Special Talents

One of the most fascinating features of autism is the
existence of so-called “islets of ability”, in at least 10%
of the cases, in music, art, calculation, or memory.
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Figure 64-4 The mentalizing system of the brain. Healthy more or less random fashion and thus would not elicit mental-
volunteers were presented with animated triangles that moved izing. The highlighted areas show differences in the positron

in such a way that viewers would attribute mental states to emission tomography (PET) scans of brain activation when
them. In the sample frame shown, the larger triangle was seen these two viewing conditions were compared. (Reproduced,

as encouraging the smaller triangle to leave the enclosure. They with permission, from Castelli et al. 2002.)
were also presented with animated triangles that moved in a

Figure 64-5 Individuals with autistic disorder
often do not look into the eyes of others. Patterns
of eye movements in individuals with autism were
studied while the subjects watched clips from the
film “Who's Afraid of Virginia Wolf?"” When looking
at human faces the subjects tended to look at the
mouth rather than the eyes, and in scenes of intense
interaction between people they tended to look

at irrelevant places rather than at the faces of the
actors. (Reproduced, with permission, from Klin

et al. 2002.)

Typically developing viewer

mmmms Viewer with autism
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The frequency of superior rote memory for facts related
to special interests is higher still. Approximately one-
third of individuals with autism have perfect pitch,
even when not musically trained. It is unknown what
networks in the brain give rise to these phenomena.
One explanation for islets of ability is that informa-
tion processing is preferentially geared to tiny details
at the cost of seeing the bigger picture (the “weak cen-
tral coherence” account). A similar idea is that brain
regions involved in perception are over-functioning
(the “enhanced perceptual functioning” account), and
another idea is that there is a preference for processing
details that suit “systemizing” such as calendar knowl-
edge. Neuropsychological data support both explana-
tions, but decisive experiments still remain to be done.
The drawing by the gifted artist with high-functioning
autism in Figure 64—6 shows beautifully detailed city-
scapes, as well as detailed numerical patterns and dates.

Some Neurodevelopmental Disorders Have a
Known Genetic Basis

It is generally accepted that 10% to 15% of individuals
with autism have other known genetic diseases. Many
of these diseases are developmental disorders leading
to other phenotypes of intellectual or learning disabil-
ity, which may overlap with autism.

Intellectual disability is generally defined as meas-
urable intelligence substantially below the population
mean that is associated with significant limitations in
adaptive functioning before the age of 18 years. Adap-
tive functioning is defined as how well one copes, at a
given age, with common demands of life and includes
such things as communication, social and interper-
sonal skills, and self-care.

Intelligence is usually defined by the intelli-
gence quotient (or 1Q), as determined by a variety of

Figure 64-6 Strikingly beautiful art work by George
Widener. He is a highly accomplished and much admired
outsider artist. In the attention to detail this drawing resembles
the drawings of other autistic savant artists. The intricate topo-
graphical detail of a symmetrically arranged city, with rivers,
bridges and tall buildings, is combined with minutely executed
and seemingly abstruse calendar sequences. Mastery of the

calendar, and the ability to name the day of the week for any
given date has often been described for autistic savants. The
viewer of this drawing can partake in an otherwise very private
world of space and time, numbers, and patterns. (Reproduced,
with permission, from the Henry Boxer Gallery, London. www.
outsiderart.co.uk.)
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standardized tests, such as the Stanford-Binet or
Wechsler Scales. These tests, in the general popula-
tion, produce a range of scores that define a bell curve
with the mean at 100 points. By definition an IQ below
2 standard deviations (below 70 points) is considered
in the range of intellectual disability. Besides an IQ
below 70, a person with intellectual disability also
shows deficits in adaptive functioning. Like IQ, adap-
tive functioning is measured by standardized tests.

Fragile X Syndrome

Fragile X syndrome is a common form of chromosome
X-linked intellectual disability. Patients show many
similarities to autism, such as poor eye contact, a dis-
like of being touched, and repetitive behaviors. Its
prevalence is approximately one in 4,000 boys and one
in 8,000 girls. Estimates of the concurrence of autism
and fragile X syndrome vary widely. In some early
studies up to 25% of boys with autism were incorrectly
diagnosed as having the fragile X syndrome. With the
discovery of the gene for fragile X, diagnostic tests
based on the genetic abnormality became available,
lowering the percentage to approximately 3%. How-
ever, among children with fragile X syndrome, nearly
30% meet standard diagnostic criteria for autism.

The fragile X mutation is quite remarkable. The
FMR1 gene on the X chromosome includes the nucle-
otide triplet CGG. In normal individuals this triplet is
repeated in approximately 30 copies. In fragile X syn-
drome patients the number of repeats is more than 200,
with approximately 800 repeats being most common.
As we have seen in Chapters 3 and 43, this expansion
of trinucleotide repeats has since been recognized in
other genes leading to neurological diseases, such as
Huntington disease. When the number of CGG repeats
exceeds 200, the FMR1 gene becomes heavily methyl-
ated, and gene expression is shut off. Consequently,
the fragile X mental retardation protein (FMRP) is
lacking.

Lack of functional FMRP is considered responsible
for fragile X syndrome. FMRPis a selective RNA-binding
protein that renders messenger RNA dormant by block-
ing translation until protein synthesis is required. It is
found at the base of dendritic spines together with ribos-
omes, where it regulates local dendritic protein synthesis
that is needed both for synaptogenesis and for certain
forms of long-lasting synaptic changes associated with
learning and memory (see Chapters 66 and 67). Inter-
estingly, a form of long-lasting synaptic change that
requires local protein synthesis, the long-term depres-
sion of excitatory synaptic transmission, is actually
enhanced in a mouse model of fragile X syndrome in

which the gene encoding FMRP has been deleted. Loss
of FMRP may enhance long-term depression by allow-
ing excess translation of messenger RNAs (mRNAs)
important for synaptic plasticity.

Indeed, mice lacking FMRP do not require new
protein synthesis for the induction of long-term
synaptic depression. An exciting implication of these
data is that chemical antagonists of the type 5 metabo-
tropic glutamate receptor, mGluRS5, activation of which
is required for this form of long-term depression, may
lessen the excess protein translation and thus perhaps
have a therapeutic benefit.

Rett Syndrome

Another single-gene disorder sometimes confused
with autism is Rett syndrome, a devastating disorder
that affects girls primarily. Affected children appear
normal from birth until 6 to 18 months of age, when
they regress, losing speech and hand skills that they
had acquired. Rett syndrome is progressive, and initial
symptoms are followed by repetitive hand movements,
a loss of motor control, and intellectual retardation.
Girls with Rett syndrome can live into adulthood but
never regain speech or the ability to use their hands. Its
prevalence is approximately one in 15,000 girls.

Rett syndrome is an X-linked inherited disease
caused by mutations in the MeCP2 gene, which nor-
mally encodes a transcription factor that binds to
methylated cytosine bases in DNA, thus regulating
gene expression and chromatin remodeling. Although
loss of MeCP2 alters expression of a wide range of
genes, an important contributing factor to the Rett
syndrome phenotype may be the result of the reduced
expression of the gene that codes for brain-derived
neurotropic factor (BDNF). In mice reduced expres-
sion of this secreted neurotrophic factor leads to a phe-
notype much like the mouse model of Rett syndrome;
overexpression of BDNF can substantially improve the
phenotype in MeCP2 mutant mice.

One might think that such a global abnormality
in gene expression would lead to an even more severe
phenotype than that of Rett syndrome. It turns out that
one copy of MeCP2 is essential for survival. Boys who
have a single X chromosome and thus a single copy of
MeCP2 die prenatally or soon after birth of encephalop-
athy if they carry a mutant form of MeCP2. Although
girls carry two X chromosomes, only one is active in
any given cell. Because the choice of which X chromo-
some is active is random, girls with a MeCP2 mutation
on one X chromosome are mosaics: Some of their cells
express the normal protein whereas others express
the abnormal form. The cells with the normal protein
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compensate and thus the phenotype develops into the
Rett syndrome rather than the early lethal disease.

Down Syndrome

Down syndrome is the most common cause of birth
defects in the United States and a major cause of intel-
lectual disability. Each year approximately 100,000
infants worldwide are born with Down syndrome—
approximately one in 1,000 births. Approximately 7%
of children with Down syndrome also have autism.

Besides manifesting a characteristic set of facial
and physical features, hypotonia, and congenital heart
defects, Down syndrome is associated with cognitive
defects and with early-onset Alzheimer disease. Among
the cognitive deficits are poor spatial memory and dif-
ficulties in converting short-term to long-term memory.
These memory defects are consistent with the fact that
in individuals with Down syndrome the hippocampus
is smaller than in typical development. The deficits
are also the opposite of the exceptional short-term and
long-term memory of many individuals with autism.

What are the specific genes that contribute to the
cognitive symptoms of Down syndrome? Down syn-
drome results from the presence of an extra copy of
chromosome 21 (trisomy of chromosome 21). Approxi-
mately 88% of these extra chromosomes are maternal
in origin, 9% are paternal, and 3% occur at mitosis after
fertilization. Studies of rare cases of partial trisomy of
chromosome 21 suggest that the entire extra copy of
the chromosome does not need to be expressed to have
the full-blown syndrome.

A considerable part of the Down syndrome phe-
notype results from duplication of a 2-Mb region at
segment 21q22.2 that contains 50 to 70 genes called the
critical Down region. Examination of 27 transcripts that
cover 80% of this region reveals several genes of poten-
tial interest for the cognitive deficit. These include a
gene for two inwardly rectifying K™ channels (KCNJ6,
Homo sapiens potassium inwardly rectifying channel,
subfamily J, member 6, also know as Kir3.2 or GIRK?2)
that are expressed in the developing and adult central
nervous system, the gene for a kainate-type glutamate
receptor mGIluR5 (GRMb5) which regulates a form of
plasticity implicated in fragile X syndrome, the single-
minded gene 2 (SIM2), and the gene for a dual-functioning
protein kinase called minibrain kinase (Mnbk).

Prader-Willi and Angelman Syndrome

and Other Disorders

Few errors that involve an entire chromosome are com-
patible with life. Among the autosomes, in addition

to Down syndrome, only trisomy 18 and trisomy 13,
each leading to severe intellectual disability, occur in
an appreciable frequency, with a prevalence of one in
3,000 and one in 20,000 live births, respectively. Vari-
ous numerical errors of the sex chromosomes occur but
usually do not cause a significant degree of delay in
cognitive development.

The only exception is Turner syndrome, which
occurs in females missing an X chromosome. Girls
who carry only the maternal X chromosome display a
much higher prevalence of social-interaction difficul-
ties similar to autism than do girls who carry the pater-
nal X chromosome. This suggests genetic imprinting,
where maternal and paternal copies of a gene are dif-
ferentially expressed.

With imprinted genes, which represent only a
small fraction (< 1%) of the genome, only one copy of
the gene is expressed. In contrast, both the paternal and
maternal alleles of nonimprinted genes are expressed.
With paternally imprinted genes only the maternal
allele is expressed. With maternally imprinted genes
the opposite is true; only the paternally inherited allele
is active. For example, with a maternally imprinted
gene, either of the father’s two alleles can be expressed
in his children whereas the mother’s alleles are silent.
However, imprinting is reversible and is erased in the
germ cells. Thus the same maternal alleles that are
silenced in a mother’s offspring can be active when
they are transmitted by her son to his children.

Prader-Willi syndrome and Angelman syndrome,
two related disorders with intellectual disability and
possible connections with autism, are classic exam-
ples of imprinting. These two syndromes are usually
caused by a specific deletion of the same region of
chromosome 15 (Figure 64-7). However, individuals
with Prader-Willi syndrome inherit the defective chro-
mosome 15 from their father, whereas individuals with
Angelman syndrome inherit the defective gene from
their mother (see Chapter 3). Despite involving the
same genetic mutation, the two syndromes have dif-
ferent symptoms. Prader-Willi syndrome is associated
with mild intellectual disability, hypogonadism, and a
hypothalamic abnormality that results in the inability
to feel satiated from hunger, leading to morbid obesity.
In contrast, Angelman syndrome is characterized by
profound intellectual disability and an inappropriately
happy demeanor with frequent laughing and smiling.

How can the same genetic deletion produce such
different behavioral and physical changes? The answer
lies in the differential patterns of imprinting of the pater-
nal and maternal alleles of certain genes in this region
of chromosome 15. If the paternal chromosome contains
the deletion, as occurs in Prader-Willi syndrome, only
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the maternal alleles are present. Thus any maternal alle-
les that are normally turned off because of imprinting
will not be expressed in the offspring. Similarly, if the
maternal chromosome contains the deletion, as occurs
in Angelman syndrome, those genes that are normally
turned off because of paternal imprinting will not be
expressed in the offspring. Because different sets of
genes are imprinted in males and females, individuals
with Prader-Willi syndrome and Angelman syndrome
have defects in expression of distinct sets of genes.
Therefore, despite having similar deletions of chromo-
some 15, individuals with Prader-Willi and Angelman
syndromes have completely different phenotypes.
Although Prader-Willi syndrome likely involves
the loss of more than one imprinted gene on chromo-
some 15, the cause of Angelman syndrome has been
narrowed to a single gene encoding the E3 ubiquitin
ligase enzyme. Imprinted genes on chromosome 15
may also predispose for autism, as linkage studies have
shown some positive signal from the proximal long
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Non-imprinted genes

Father’s
alleles

15q11-13 EQ

deletion

Alleles for both genes
from each parent expressed

Paternal deletion

arm of chromosome 15. Indeed, a significant number
of individuals with autism, perhaps as many as 1%,
have maternal duplications of a portion of proximal
chromosome 15 immediately adjacent to the Prader-
Willi/ Angelman syndrome region.

Other chromosome deletions that produce cog-
nitive changes do not involve imprinted genes. Such
deletions simply reduce the normal level of that gene’s
protein product by approximately 50%, because of the
loss of one of the two alleles. Half the normal amount
of some proteins is insufficient to support normal cel-
lular function (known as haploinsufficiency), resulting
in a particular behavioral phenotype. Most often these
deletions involve varying degrees of intellectual dis-
ability and sometimes produce striking neuropsychi-
atric phenotypes.

One such example is Smith-Magenis syndrome,
which results from the deletion of a single band on the
short arm of chromosome 17. The syndrome is charac-
terized by mild to moderate intellectual disability and
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Figure 64-7 Imprinting in Prader-Willi and Angelman
syndrome. Approximately 70% of PraderWilli and Angelman
syndrome patients inherit chromosome 15 from one par

ent with spontaneous (noninherited) deletions of the q11-13
interval. This interval contains imprinted genes with alleles
that are either expressed or not depending on whether the
chromosome was inherited from the father or mother. If the
chromosome with the deletion is from the father, PraderWilli
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syndrome occurs because maternally imprinted genes on the
corresponding interval of the intact maternal chromosome
(gene B, for example) are not expressed. If the chromosome
with the deletion is from the mother, the gene for ubiquitin
ligase (UBE3A) will not be expressed in offspring because of
its normal inactivation on the paternal chromosome caused by
imprinting; loss of expression of this gene leads to Angelman
syndrome.
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marked hypersomnolence. Smith-Magenis syndrome
patients engage in a variety of unusual self-mutilations
that they seem unable to resist, such as onychotilloma-
nia (self-mutilation of the finger and toe nails) and pol-
yembolokoilomania (insertion of foreign objects into
body orifices). They also repeat two stereotypic behav-
iors, spasmodically squeezing their upper body (“self
hug”) and hand licking and page flipping (“lick and
flip”). What is most remarkable is that although most
patients with Smith-Magenis syndrome have a 4-Mb
deletion, four patients have been identified recently
with a mutation in only one of the genes in this inter-
val, RAI1, which is expressed in neurons. Once the
function of RAI1 becomes understood, it will be fasci-
nating to consider how haploinsufficiency leads to the
bizarre behaviors of Smith-Magenis syndrome.

Williams syndrome is also a segmental deletion
but on the long arm of chromosome 7. Although no
specific gene of the 25 to 30 genes within the deletion
is singly responsible, the phenotype is nevertheless
intriguing. Williams syndrome patients show specific
dissociations of cognitive function, such as severe defi-
cits in construction of visuospatial relations, yet have
good language capabilities and do well in face recog-
nition tests. However, the cognitive processes under-
lying these achievements differ from those used by
typically developing children. Interestingly, Williams
syndrome patients, regardless of family background
and ethnicity, share somewhat similar personality
traits marked by empathy and overfriendliness, mak-
ing this syndrome in many ways the opposite of the
stereotype of autism.

Probably hundreds of genes can lead to intellec-
tual disability when mutated. Many of them encode
proteins whose roles are central to brain development
and function. For example, a form of lissencephaly
(“smooth brain”), the loss of convolutions and gyri in
the cerebral cortex, results from the mutation or dele-
tion of the gene LIS1, which encodes a protein that
normally participates in the regulation of cytoplasmic
dynein heavy chains, which are essential for axonal
transport (see Chapters 4 and 53). Intellectual disabil-
ity also results from mutations of at least three genes
with products that interact with Rho GTPases, leading
to disruptions in signaling from the cell surface to the
actin cytoskeleton that presumably alter neurite out-
growth. Mutations in Rab GTPases, which participate
in vesicle fusion, also can lead to severe intellectual
disability.

Other gene defects have much more subtle impacts
on the nervous system and behavior. For example, Tony
Monaco and co-workers studied an extended family,
KE, in which a severe speech and language disorder

is transmitted as an autosomal dominant condition
because of a mutation in the gene FOXP2, which codes
for a transcription factor. The FOXP2 mutation causes
faulty selection and sequencing of fine orofacial move-
ments necessary for articulation, resulting in deficien-
cies in language processing and grammatical skills.
FOXP2 mutations have also been found in unrelated
individuals with similar language deficits. Interest-
ingly, nucleotide substitution rates in the FOXP2 gene
between species, a measure of evolutionary change,
are accelerated in primates, suggesting that this gene
had been a target of natural selection, possibly play-
ing a significant role in the evolution of language in
humans.

An Overall View

The study of neurodevelopmental disorders via cog-
nitive neuroscience clearly illustrates the power of the
synthesis of cognitive psychology and neuroscience
and in fact moves this convergence into new directions.
In the study of autism, for example, the mind blindness
hypothesis has shown how cognitive theory can direct
the search for the neural basis of a developmental dis-
order and how biological studies can open up a new
window: the biology of social interactions.

A full understanding of the neurobiological basis
of the many neurodevelopmental disorders that lead
to intellectual disability will require the convergence of
neuroscience, other medical disciplines, and functional
genomics. A bottom-up approach—progressing from
the identification of genes responsible for cognitive
or behavioral disorders to an understanding of their
effects on brain development—will clearly be crucial.
At the same time, a top-down approach is needed, iden-
tifying the specific cognitive profile of each disorder
and defining the critical neural circuits involved, using
tools such as functional and structural brain imaging.

Autism is an example of a genetically complex
disorder with a wide spectrum of manifestations,
and the large differences between individual cases
are often commented upon. Nevertheless, cognitive
neuroscience has made advances in the difficult task
of phenotyping patients and has helped pinpoint rele-
vant brain regions and abnormal connections between
them. This knowledge should be helpful in identify-
ing the genetic and environmental risk factors that
predispose to autism. Other developmental disorders
that involve learning disabilities, especially those with
much clearer patterns of inheritance than autism, are
better suited to a bottom-up approach that begins
with gene identification. Regardless of the approach,
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the underlying mechanisms that lead to cognitive and
behavioral impairment in humans are most likely to
be uncovered by research that combines cognitive psy-
chology, neuroscience, and molecular genetics.

Uta Frith

Francesca G. Happé
David G. Amaral
Stephen T. Warren
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