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stimuli in the environment (eg, the presence of

danger), the body (eg, pain), or, for humans, the
mind (eg, a train of thought). When an emotional state
is prolonged, it can become one’s dominant emotional
state over time, or mood. Mood thus may be inde-
pendent of immediate personal and environmental
circumstances.

Mood and anxiety disorders are the most com-
mon serious disorders of the brain. Mood disorders
generally involve either depression or elation. Anxiety
disorders involve abnormal regulation of a powerful
emotion, fear. In both mood and anxiety disorders the
core symptoms have a major emotional component
and are accompanied by physiological, cognitive, and
behavioral abnormalities.

We discuss disorders of mood and anxiety together
because both involve negative emotional states and
because they appear to involve overlapping neural
circuits that include the amygdala and the anterior
cingulate cortex. There also is evidence for overlap-
ping risk factors between major depressive disorder
and some anxiety disorders. Commonalities of cir-
cuitry and genetic risks, as well as the negative effects
of long-term anxiety on a person’s mood, may explain
the observation that nearly 60% of patients with major
depressive disorder also suffer from an anxiety dis-
order. Anxiety disorder most commonly precedes the
onset of depression.

Because emotions are transient responses to stimuli
that can be reproduced in the laboratory, they have
proven more amenable than moods to neuroscientific
study. Objective measurement of moods is difficult,
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compared with the more stereotypic physiological or
behavioral components of emotional responses (see
Chapter 48), and experimental approaches to regu-
lating mood have had limited success. Good animal
models exist for certain emotions, such as fear and
pleasure, and because many features of these states
appear to be conserved in evolution, the animal mod-
els are relevant to humans (see Chapter 48).

Animal models have allowed detailed investiga-
tion of the neural circuitry, physiology, and biochem-
istry underlying these states. For example, studies
of rodent models of instinctive (unlearned) fear and
learned fear (in which an animal learns to associate a
previously neutral cue with a threat) have elucidated
the “fear circuits” centered in the amygdala and the
hypothalamus. These circuits activate the sympathetic
nervous system to alter heart rate and blood pres-
sure, stimulate secretion of stress hormones, and elicit
species-specific defensive behaviors such as motion-
lessness (“freezing”) in rodents and escape behaviors
in other species. Such basic investigations are provid-
ing testable hypotheses for studies of fear and anxiety
and their disorders in humans.

In contrast, neurobiological investigations of
moods are less advanced. Although much evidence
suggests that animals do have moods, developing
empirical methods of ascertaining what those moods
are and how they match human experience has been
challenging. Most animal models of depression were
not developed to investigate the pathophysiology of
the human disease, but as empirical screens for anti-
depressant drugs. Many of these models are based on
chronic stress; although chronic stress and depressed
mood have many features in common, they are not
identical.

The lack of well-validated animal models of moods
and mood disorders has made it difficult to identify
the neural circuitry responsible for the regulation and
maintenance of moods. Much investigation of mood
circuitry has perforce been carried out in humans using
noninvasive technologies such as neuro-imaging.

The Most Common Disorders of Mood Are
Unipolar Depression and Bipolar Disorder

In the 5th century BC moods were thought to depend
on the balance of four humors—blood, phlegm, yellow
bile, and black bile. An excess of black bile was believed
to cause depression. In fact, the ancient Greek term for
depression, melancholia, means black bile. Although
this explanation of depression seems fanciful today,
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the underlying view that psychological disorders
reflect physical processes is correct.

Only in the past three decades have relatively
precise criteria for mood disorders been developed in
parallel with those for thought and cognitive disorders
(see Chapter 61). Disorders of mood are now classi-
fied based on symptoms, natural history (including
age of onset, course, and outcome), patterns of familial
transmission, and response to treatment. Based on
these factors, one can distinguish between two major
classes of disorders in people who suffer from depres-
sion. Unipolar depression is diagnosed in people who
suffer only from depressive episodes; bipolar disorder
is diagnosed in individuals in whom depression alter-
nates with episodes of mania (Table 63-1).

Another important distinction is that between pri-
mary and secondary mood disorders. Mood disorders
caused by drugs (eg, drugs used to treat hyperten-
sion) or pathophysiological processes that affect the
brain (eg, hypothyroidism) are considered secondary
to another condition. The onset of depression late in
life also may be secondary to pathophysiological proc-
esses such as Parkinson disease or diffuse vascular
disease affecting cerebral vessels. Although such cases
are important, our discussion here focuses on mood
disorders, unipolar and bipolar illnesses, arising as
independent pathophysiological processes.

Unipolar Depression Often Begins Early in Life

The key clinical features of unipolar depression can
be summarized in Hamlet’'s words, “How weary,
stale, flat, and unprofitable seem to me all the uses
of this world!” Untreated, an episode of depression
typically lasts 4 to 12 months. The central feature of
depression is an unpleasant (dysphoric) mood present
most of the day, day in and day out, often accompa-
nied by intense mental anguish, the inability to expe-
rience pleasure (anhedonia), and a generalized loss
of interest in the world. Sadness is most typical, but
anger, irritability, and loss of interest in usual pursuits
can predominate in some patients.

Major depression is distinguished from normal
sadness or grief by its severity, pervasiveness, dura-
tion, and associated symptoms, including physiologi-
cal, behavioral, and cognitive symptoms (Table 63-1).
Physiological symptoms include sleep disturbance,
most often insomnia with early morning awakening,
but occasionally excessive sleeping; loss of appetite
and weight loss, but occasionally excessive eating;
and decreased energy. Behaviorally, some depressed
patients exhibit slowed motor movements, described
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Table 63-1 Symptoms of Mood Disorders

Major Depression

A. Either depressed mood (1) or loss of interest or pleasure (2):

1. Depressed mood most of the day, nearly every day, as indicated by either subjective report (eg, “I feel sad or empty”)

or observation made by others (eg, “He appears tearful”)

2. Markedly diminished interest or pleasure in all, or almost all, activities most of the day, nearly every day (as indicated
by either subjective account or observation made by others)
B. Atleast four of the following symptoms are present nearly every day for at least 2 weeks:
1. Significant weight loss when not dieting, or weight gain (eg, a change of more than 5% of body weight in a month), or

decrease or increase in appetite nearly every day
2. Insomnia or hypersomnia nearly every day

3. Psychomotor agitation or retardation nearly every day (observable by others, not merely subjective feelings of rest-

lessness or being slowed down)
. Fatigue or loss of energy nearly every day

WS

5. Feelings of worthlessness or excessive or inappropriate guilt (which may be delusional) nearly every day (not merely

self-reproach or guilt about being sick)

6. Diminished ability to think or concentrate, or indecisiveness, nearly every day (either by subjective account or as

observed by others)

7. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without a specific plan, or a suicide

attempt or a specific plan for committing suicide

Manic Episode

A. A distinct period of abnormally and persistently elevated, expansive, or irritable mood, lasting at least 1 week (or any

duration if hospitalization is necessary).

B. During the period of mood disturbance three (or more) of the following symptoms have persisted (four if the mood is

only irritable) and have been present to a significant degree:

. Inflated self-esteem or grandiosity

. More talkative than usual or pressure to keep talking

N OO W

. Decreased need for sleep (eg, feels rested after only 3 hours of sleep)

. Flight of ideas or subjective experience that thoughts are racing

. Distractibility (ie, attention too easily drawn to unimportant or irrelevant external stimuli)

. Increase in goal-directed activity (either socially, at work or school, or sexually) or psychomotor agitation

. Excessive involvement in pleasurable activities that have a high potential for painful consequences (eg, engaging in

unrestrained buying sprees, sexual indiscretions, or foolish business investments)

Adapted from the Diagnostic and Statistical Manual of Mental Disorders, 4th ed.

as psychomotor retardation, whereas others can be
extremely agitated. Cognitive symptoms are evident in
both the content of thoughts (hopelessness, thoughts
of worthlessness and of guilt, suicidal thoughts and
urges) and in cognitive processes (difficulty concen-
trating, slow thinking, and poor memory).

In the most severe forms of depression psychotic
symptoms can occur, including delusions (unshakable
false beliefs that cannot be explained by a person’s cul-
ture) and hallucinations. The psychotic symptoms of
depression generally reflect the person’s feelings that he
or she is worthless or bad. A severely depressed person
might, for example, believe that he or she is emitting a
potent odor because he or she is rotting from the inside.

The most serious negative outcome from depres-
sion is suicide. Suicide is the eighth leading cause of

death in the United States, and the third leading cause
of death among young people 15 to 24 years of age.
More than 90% of suicides are associated with mental
illness, with depression being the leading cause.

In the standard classification of psychiatric disor-
ders in the United States—the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-1V) of
the American Psychiatric Association—episodic, pri-
mary, unipolar depression that lasts for at least two
weeks is classified as major depression. Major depres-
sion often begins early in life; approximately one-half
of cases occur in those younger than 25 years of age, but
first episodes are observed across the life span. Those
who have had a first episode in childhood or adoles-
cence have a particularly high likelihood of recur-
rence. Once a second episode has occurred, a pattern of



repeated relapse and remission generally sets in. Some
people do not recover completely from their first acute
episode and have chronic, albeit milder, unremitting
depression that can be punctuated by acute exacerba-
tions. Chronic, somewhat milder depressions lasting
more than 2 years are called dysthymia. Although the
symptoms of dysthymia are less severe than those of
a major depressive episode, the long duration of the
symptoms makes this a very disabling illness.

Bipolar Disorder Includes Episodes of Mania

Bipolar disorder is named for its chief symptom, swings
of mood between mania and depression. Mania is char-
acterized by euphoria or irritability, a marked increase
in energy and a decreased need for sleep, impulsive-
ness, and excessive engagement in goal-directed
behaviors, often with poor judgment characterized by
extreme optimism. For example, a person might go on
spending sprees well beyond his or her means. During
manic episodes self-esteem is inflated, often reaching
delusional proportions; individuals might consider
themselves to be royalty, prophets, or even deities.

Mania also affects cognition. During a manic epi-
sode a person often cannot stick to a topic and might
jump quickly from idea to idea, making comprehen-
sion difficult. Speech is typically rapid and difficult to
interrupt. Psychotic symptoms commonly occur dur-
ing manic episodes and are generally consistent with
the person’s elevated mood. For example, people with
mania can have delusions that they possess special
powers. The symptoms that characterize the depres-
sive episodes in bipolar disorder are indistinguishable
from those in unipolar depressions.

Patients who have had at least one manic episode
are considered to have bipolar disorder, even if they
have not yet experienced a depressive episode. The
onset of manic episodes tends to be relatively rapid,
occurring over a period of a few days to a few weeks.
Bipolar disorder generally begins in young adult-
hood, uncommonly in childhood. Most episodes lack
a clear precipitant, but sleep deprivation can initiate
a manic episode, suggesting a relationship between
neural systems that regulate circadian rhythms and
those that regulate moods. People with bipolar disor-
der have recurrent episodes of the illness, both manias
and depression. However, the rate of cycling between
mania, depression, and normal mood (euthymia) var-
ies widely. Between periods of mania or depression
some people with bipolar disorder are relatively free
of symptoms, but a large fraction have residual symp-
toms. A few patients have severe, chronic symptoms
despite treatment.
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Mood Disorders Are Common and Disabling

The lifetime risk of major depressive disorder in the
United States is 16.2%. Within any 1 year 6.6% of the
population suffers major depression. The prevalence
of depression differs in different countries and cul-
tures, but the nature of the symptoms is remarkably
similar around the world.

In childhood major depression occurs equally in
males and females. After puberty, however, depres-
sion occurs more commonly in females independent
of culture. In the United States the ratio of females to
males with major depression is 1.7:1. Depression is the
leading cause of disability worldwide.

In contrast to the high frequency of unipolar
depression, bipolar disorder is less common, with
a prevalence of 1% that exhibits relatively little vari-
ability from country to country. As with major depres-
sion, the symptoms are the same across countries and
cultures. The risk of bipolar disorder is equivalent in
males and females worldwide.

Both Genetic and Nongenetic Risk Factors Play
an Important Role in Mood Disorders

As with schizophrenia, both bipolar disorder and
major depression run in families with patterns of trans-
mission that are inconsistent with simple Mendelian
(single gene) dominant, recessive, or sex chromosome-
linked modes of inheritance. One way to estimate the
influence of genes on a disease phenotype is to meas-
ure the increased risk that results from relatedness to a
person who has the disease. This increase in risk can be
expressed as a recurrence risk ratio. The recurrence risk
ratio provides a rough measure of the aggregate influ-
ence of genes on a trait but does not provide insight
into how many genes might be involved.

Recurrence risk ratios demonstrate that genes con-
tribute to the risk of unipolar depression but exert a
much stronger influence on the risk of bipolar disor-
der (Table 63-2). As in schizophrenia (see Chapter 62),
the concordance rates among monozygotic twin pairs
(who are genetically identical) are less than 100%. Thus
genes alone do not cause mood disorders but must
interact with developmental or environmental factors
to produce illness.

Overall the genetic risk for mood disorders, like
that for schizophrenia, is genetically complex. Genetic
linkage and association studies suggest there are mul-
tiple pathways of genetic risk for mood disorders, and
thus no single gene will likely prove to be either neces-
sary or sufficient.
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Table 63-2 Recurrence Risk Ratios (A) for Mood Disorders
and Schizophrenia

Disorder Siblings Identical twins
Schizophrenia 9 48
Bipolar disorder 7 60
Major depression 2-3 16

A measures the lifetime risk for a disorder as a multiple of the
general population risk that results from the degree of relatedness
to a person with the disorder. Thus for schizophrenia the base rate
in the population is 1%. Given a sibling with schizophrenia there
is a ninefold increase in risk (which in this case equals a 9% risk).
Given an identical twin with the disorder, the relative risk is 48
times higher than in the general population. Schizophrenia and
bipolar disorder are highly genetically influenced, major depres-
sion more moderately so.

From the point of view of prevention it is impor-
tant to sort out the relative roles of genes and environ-
mental risk factors because the latter can be modified.
Much evidence suggests that stressful and adverse life
events increase the risk of major depression; even here,
however, genes may play a role in two ways because
they shape a person’s temperament. First, tempera-
ment plays a role in the kinds of situations into which
people place themselves; second, genetic factors can
influence the response that people have to adverse
life experiences when they do occur. Such interactions
between genetic and environmental factors complicate
the task of isolating risk factors.

Specific Brain Regions and Circuits Are
Involved in Mood Disorders

Because animal models of mood and mood regulation
are not fully convincing, investigation of the circuitry
involved in mood disorders has relied to a great extent
on structural and functional imaging of humans, and
to a lesser degree on postmortem analyses of human
brains. Neuro-imaging studies of major depression
and bipolar disorder have identified abnormalities
in brain regions thought to be involved in emotion
and cognition (Figure 63-1). Despite progress to date,
imaging has not yet identified specific abnormalities in
a neural system that can be used reliably to diagnose
major depressive or bipolar disorder.

One brain region that has consistently been
implicated in both major depressive and bipolar dis-
orders is the gyrus of the anterior cingulate cortex.

This structure runs parallel to the corpus callosum,
along the medial surface of each cerebral hemisphere
(Figure 63-1). It has two functional subdivisions. A ros-
tral and ventral subdivision is thought to be involved
in emotional processes and autonomic function; it has
extensive connections to the hippocampus, the amy-
gdala, orbital prefrontal cortex, anterior insula, and
nucleus accumbens. A caudal subdivision is thought
to be involved in cognitive processes and the control
of behavior; it connects with the dorsal regions of pre-
frontal cortex, secondary motor cortex, and posterior
cingulate cortex.

Abnormal function in both subdivisions of the
anterior cingulate cortex has been documented in
people with mood disorders (Figure 63-2). However,
abnormal functioning during major depressive epi-
sodes and the depression phase of bipolar disorder has
been most consistently found in the rostral subdivi-
sion, which is concerned with emotion, and especially
in the subgenual region (the region ventral to the genu
of the corpus callosum). Indeed, a decrease in activ-
ity of the subgenual anterior cingulate gyrus following
antidepressant treatment correlates with the success of
the treatment (Figure 63-3).

Neuro-imaging also implicates the amygdala and
hippocampus in mood disorders. The involvement of the
amygdala is not surprising given the wealth of evidence
that this structure is involved in the processing of nega-
tive emotions, including fear (see Chapter 48). Enlarge-
ment of the amygdala has been found in depression,
and increases in the basal level of activity in the amy-
gdala have been observed in depression, bipolar dis-
order, and anxiety disorders. As in many disorders,
the volume of the hippocampus may be reduced in
depression. This change correlates with the duration
of prior episodes of depression and not with the age
of the person, consistent with the idea that protracted
major depression might produce hippocampal atrophy.
Nonetheless, until longitudinal studies are conducted
we cannot be certain whether a small hippocampus is
a risk factor for depression or a result of it.

Despite the findings that we have described, the
use of neuro-imaging to study depression is still in its
early stages. Most studies to date have been restricted
to anatomical measurement of brain structures or to
basal (unstimulated) brain activity in depressed sub-
jects compared with healthy control subjects. Investi-
gators are now beginning to use activation paradigms, in
which brain activity is measured in response to specific
cognitive or emotional stimuli.

Activation paradigms can be a powerful means of
identifying brain circuits associated with specific nor-
mal and disordered function. For example, in healthy



subjects the anterior cingulate cortex is activated by
pain, cognitive conflict, and errors in task perform-
ance. Thus the anterior cingulate cortex may ascertain
whether behavior is successfully proceeding toward
desired goals, and perceived discrepancies between
goals and outcomes could contribute to depression.

Depression and Stress Are Interrelated

In some cases depression follows a stressful experi-
ence; conversely, the experience of depression is itself
stressful. Indeed, depression shares several features
with chronic stress, including changes in appetite,
sleep, and energy. Major depression and chronic stress
may also share biochemical changes, such as persist-
ent activation of the hypothalamic-pituitary-adrenal
(HPA) axis (Figure 63—4).

In depressed individuals daily production of the
glucocorticoid stress hormone cortisol and secretion of

Prefrontal cortex:
Lateral orbital
Medial orbital

Figure 63-1 Brain centers of emotional dysfunction in
patients with depression. Each of these interconnected
structures plays a role in regulating emotion and physiological
and behavioral responses to emotional stimuli. Abnormalities
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corticotrophin-releasing hormone (CRH) and adreno-
corticotropic hormone (ACTH) can all be elevated. A
transient increase in cortisol secretion, as occurs with
acute stress, suppresses the immune system (saving
energy and delaying inflammatory processes that
might inhibit the fight-or-flight response), shifts the
body to a catabolic state (making energy available
to confront the cause of the stress), increases energy
levels, sharpens cognition, and may increase confi-
dence. However, a chronic increase may contribute to
symptoms of depression. For example, people with
Cushing disease (in which pituitary tumors secrete
excess ACTH leading to excess cortisol) often experi-
ence depression and insomnia.

Feedback mechanisms within the HPA axis nor-
mally permit cortisol (or exogenously administered
glucocorticoids) to inhibit CRH and ACTH secretion
and therefore to suppress additional cortisol syn-
thesis and secretion. In approximately one-half of
people with major depression this feedback system

Dorsolateral
prefrontal
cortex

Anterior
cingulate
cortex

in one or more of these regions or in the interconnections
among them are associated with failures of emotion regulation.
(Reproduced, with permission, from Davidson, Putnam, and
Larson 2000.)
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Figure 63-2 Involvement of the anterior cingulate cortex

in depression. The figure summarizes the findings of several
studies using brain imaging. Colored circles show sites of
activation or deactivation before or after treatment of patients
with depression. Black circles indicate pretreatment hyper
activity among patients who responded to treatment; green
circles indicate posttreatment decreased activity in responders;
pink circles indicate hypoactivity in depressed subjects; yellow

Responders

High metabolism
in anterior
cingulate cortex

Figure 63-3 Increased activity in the anterior cingulate
cortex predicts responsiveness to treatment with antide-
pressant drugs. Regional cerebral glucose metabolism was
measured by positron emission tomography (PET) as a proxy
for brain activity. Depressed patients with elevated metabolism

Pre-treatment

O Hypoactivity

@ Hyperactivity
Remission

O Increased activity

@ Decreased activity

Post-treatment
@ Decreased activity

Studies
@ Emotional
@ Cognitive

Treatment response
in an EEG study

circles indicate increased activity with remission of depres-
sion; and the sole brown circle indicates decreased activity
with remission of depression. Studies involving emotional tasks
(blue circles) and cognitive tasks (purple circles) in nonpsy-
chiatric subjects are also shown. The large red area shows the
location of treatment response observed in an electroencepha-
logram (EEG) study of depression. (Adapted, with permission,
from Pizzagalli et al. 2001.)

Non-responders

Z-score

-4

in the rostral anterior cingulate cortex had better responses
to antidepressant treatment than those who did not. Cingu-
late hypermetabolism may represent an adaptive response
to depression that predicts antidepressant response. (Repro-
duced, with permission, from Mayberg et al. 1997).
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Figure 63—-4 The hypothalamic-pituitary-adrenal axis.
Neurons in the paraventricular nucleus of the hypothalamus
synthesize and release corticotropin-releasing factor (CRF),

the key regulatory hormone in this cascade. Secretion of

CRF follows a circadian pattern, and the effects of stress are
superimposed on this circadian pattern. Excitatory fibers from
the amygdala convey information about stress and activate
CRF secretion and biosynthesis; inhibitory fibers descend

from the hippocampus. CRF enters the hypophyseal portal
system and stimulates the corticotrophic cells of the anterior
pituitary. These cells synthesize and release adrenocorticotropic
hormone (ACTH), which enters the systemic circulation and
ultimately stimulates the adrenal cortex to release glucocorti-
coids. In humans the major glucocorticoid is cortisol; in rodents
it is corticosterone. Both cortisol and synthetic glucocorticoids
such as dexamethasone act at the level of the pituitary and
hypothalamus to inhibit further release of ACTH and CRF
respectively. (Adapted, with permission, from Nestler, Hyman,
and Malenka 2009.)
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is impaired; their HPA axis becomes resistant to sup-
pression even by potent synthetic glucocorticoids
such as dexamethasone. Although readily measur-
able disturbances of the HPA axis are not sensitive
or specific enough to be used as a diagnostic test
for depression, the observed abnormalities suggest
strongly that altered stress responses are an impor-
tant component of depression in a large proportion of
people with the illness.

If recurrent depression causes the decrease in hip-
pocampal volumes described above, it may be that
excessive cortisol secretion is the cause. Two theories
have been offered to explain how depression might
lead to hippocampal atrophy. One is that persist-
ently elevated levels of glucocorticoids can damage
mature neurons, perhaps making them more sus-
ceptible to glutamate excitotoxicity (see Chapter 43).
The other is that elevated cortisol levels or some
other aspect of chronic stress suppresses normal
neurogenesis (the formation of new neurons), result-
ing in fewer cells being produced and thus a smaller
hippocampus.

In many animals, as well as humans, new gran-
ule cells within the dentate gyrus of the hippocampus
are produced during adult life. In rodents these new
neurons are incorporated into neural circuits. Stress-
ful or aversive experiences as well as glucocorticoids
inhibit the proliferation of granule cell precursors and
thus suppress normal rates of neurogenesis in the hip-
pocampus. In contrast, antidepressants, including the
selective serotonin reuptake inhibitors, increase the
rate of neurogenesis. Thus depression might cause
hippocampal atrophy by inhibiting neurogenesis and
antidepressants might reverse this effect by treating
the depression (therefore decreasing stress) and pos-
sibly by directly stimulating neurogenesis (by mecha-
nisms that are not yet understood).

These hypothalamic and hippocampal abnormali-
ties may contribute to the symptoms of depression and
influence its course. Hypothalamic CRH secretion is
under the stimulatory control of pathways from the
amygdala and inhibitory pathways from the hippoc-
ampus. Damage to the hippocampus could lead to a
vicious cycle in which loss of inhibitory control of CRH
secretion would lead to greater cortisol release, produc-
ing additional hippocampal atrophy. In fact, depres-
sion can be accompanied by memory impairments
that could be explained by hippocampal dysfunction,
either by itself or in conjunction with disturbances in
executive function involving the prefrontal cortex,
such as failure of attentional mechanisms at the time of
memory encoding.
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Major Depression Can Be Treated Effectively

Three types of treatment are effective for major depres-
sive disorder: antidepressant drugs, cognitive-behavioral
psychotherapy, and electroconvulsive therapy.

Antidepressant Drugs Target Monoaminergic
Neural Systems

The most widely used treatment for depression is anti-
depressant drugs that act initially on the monoaminergic
systems in the nervous system. The monoamines—
serotonin, norepinephrine, and dopamine—are syn-
thesized in small nuclei within the brain stem (see
Figure 46-2). Serotonergic and noradrenergic nuclei
are concentrated in the caudal brain stem (Figures 63-5
and 63-6). Most dopamine in the brain is synthesized
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Figure 63-5 The major serotonergic systems in the brain
arise in the raphe nuclei of the brain stem. Serotonin is syn-
thesized in a group of brain stem nuclei called the raphe nuclei.
These neurons project throughout the neuraxis, ranging from
the forebrain to the spinal cord. The serotonergic projections
are the most massive and diffuse of the monoaminergic sys-
tems, with single serotonergic neurons innervating hundreds of
target neurons. (Adapted, with permission, from Heimer 1995.)

in more rostral nuclei, the substantia nigra and ven-
tral tegmental area of the midbrain (see Figure 46-2E).
Each of the monoaminergic nuclei projects widely
throughout the brain; the serotonergic and noradren-
ergic axons descend into the spinal cord as well. This
widespread connectivity permits monoaminergic
neurons to produce coordinated responses and thus
to influence functions such as arousal, attention, vigi-
lance, motivation, and other cognitive and emotional
states that involve multiple brain regions.

Serotonin, norepinephrine, and dopamine are syn-
thesized from amino acid precursors and either pack-
aged into synaptic vesicles for release (see Chapter 12)
or else metabolized by the enzyme monoamine oxi-
dase (MAOQO), which is associated with the outer leaflet
of mitochondrial membranes. After release these neu-
rotransmitters bind synaptic receptors or are cleared
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bundle
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A. A sagittal view of the brain illustrates the raphe nuclei. In
the brain these nuclei form a fairly continuous collection of cell
groups close to the midline of the brain stem and extending
along its length. In the drawing here they are shown in more
distinct rostral and caudal groups. The rostral raphe nuclei
project to a large number of forebrain structures.

B. This coronal view of the brain illustrates some of the major
structures innervated by serotonergic neurons of the raphe nuclei.
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Figure 63-6 The major noradrenergic projection of the fore-
brain arises in the locus ceruleus. (Adapted, with permission,
from Heimer 1995.)

A. Norepinephrine is synthesized in several brain stem nuclei,
the largest of which is the nucleus locus ceruleus, a pigmented
nucleus located just beneath the floor of the fourth ventricle in
the rostrolateral pons. A lateral midsagittal view demonstrates
the course of the major noradrenergic pathways from the

from the synapse by specific transporters located on
the presynaptic cell membrane.

Serotonin and norepinephrine each have a vari-
ety of receptors on the presynaptic terminals as well
as postsynaptic target cells. There are at least 14 dis-
tinct serotonin receptors in humans, divided into
seven major classes denoted 5-HT, through 5-HT,
(Table 63-3). Norepinephrine receptors can be divided
into two major classes, the o. and B adrenergic recep-
tors, with multiple subtypes (Table 63—4). With the
exception of the 5-HT; receptor, serotonin, norepine-
phrine, and dopamine act on G protein-coupled
receptors that initiate signaling cascades that produce
long-term changes in the response properties of the
postsynaptic neuron. It is thought that antidepressant
drugs are able to alter the responsiveness of the brain
to diverse cognitive and emotional stimuli by directly
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B Targets

Neocortex

Hippocampus

Medial
forebrain
bundle

Pons

Nuclei of
locus ceruleus

locus ceruleus and lateral brain stem tegmentum. Axons from
the locus ceruleus project rostrally into the forebrain and also
into the cerebellum and spinal cord; axons from noradrenergic
nuclei in the lateral brain stem tegmentum project to the spinal
cord, hypothalamus, amygdala, and ventral forebrain.

B. A coronal section shows the major targets of neurons from
the locus ceruleus.

or indirectly influencing G protein-coupled receptors
expressed in large numbers of neurons.

The most widely used antidepressant drugs
fall into several major groupings, each of which
affects the monoaminergic systems in different ways
(Figure 63-7). The monoamine oxidase inhibitors, such as
phenelzine and tranylcypromine, were the first effec-
tive antidepressants. They are highly effective against
both depression and anxiety disorders but are rarely
used today because of their side effects. MAO inhibi-
tors may exert their effects on depression by blocking
the capacity of MAO to break down norepinephrine,
serotonin, or dopamine in presynaptic terminals, thus
making extra neurotransmitter available for packaging
into vesicles and for release.

Two forms of MAOQ, types A and B, are found in
the brain. Type A is also found in the gut and liver,
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Table 63-3 Serotonin Receptors

Receptor G-Protein linkage Locations in the brain

5-HT,, Gi/o Cerebral cortex, hippocampus, septum, amygdala, dorsal raphe
5-HTp Gi/o Substantia nigra, basal ganglia

5-HT,p Gi/o Substantia nigra, striatum, nucleus accumbens, hippocampus
5-HT g Gi/o Cerebral cortex, dorsal raphe, hippocampus

5-HT ¢ Gi/o Cerebral cortex, dorsal raphe, hippocampus

5-HT,, Gg/m Cerebral cortex, basal ganglia

5-HTyp Gy No brain expression

5-HT,c Gq/m Basal ganglia, substantia nigra, hippocampus

5-HT, Ligand-gated channel Cerebral cortex, hippocampus, brain stem, spinal cord

5-HT, G, Striatum, nucleus accumbens, hippocampus

5-HTs, G, Cerebral cortex, hippocampus, cerebellum

5-HTsp Unknown Cerebral cortex, hippocampus, cerebellum

5-HT, G, Cerebral cortex, striatum, olfactory tubercle, hippocampus
5-HT, G, Cerebral cortex, hypothalamus, thalamus

where it catabolizes bioactive amines that are present
in foods. Inhibition of MAO-A permits bioactive
amines such as tyramine to enter the bloodstream
from foods that contain it in high concentrations, such
as aged cheeses. These amines are taken up by sym-
pathetic neurons through transporters, thus displacing

Table 63-4 Norepinephrine Receptors

endogenous monoamines. This process may result in
massive release of norepinephrine and epinephrine,
resulting in severe elevations of blood pressure. The
MAO inhibitors that have been most widely used as
antidepressants inhibit MAO-A and MAO-B nonselec-
tively or MAO-A alone, and thus require that patients

Receptor G-Protein linkage Locations in the brain

Oy p Gg/n Cerebral cortex, hippocampus

O Gyn Cerebral cortex, brain stem

op Gy No brain expression

Oyp Gi/o Cerebral cortex, midbrain, caudal brain stem, spinal cord
Olog Gi/o Diencephalon

Oy Gi/o Cerebral cortex, basal ganglia, cerebellum, hippocampus
B, G, Cerebral cortex, cerebellar nuclei, brain stem, spinal cord
B, G, Hippocampus, piriform cortex, cerebellar cortex

B3 C;s/c;i/o

No brain expression




avoid foods with a high monoamine content. A selec-
tive MAO-B inhibitor, selegiline, which has been used
to treat Parkinson disease, has recently proved effec-
tive in treating depression. But at antidepressant doses,
which are higher than for Parkinson disease treatment,
it loses its selectivity.

The tricyclic antidepressants, such as imipramine,
amitriptyline, and desipramine, inhibit either nor-
epinephrine or serotonin transporters or both. These
drugs are effective against depression and many
anxiety disorders. But they also block many other
neurotransmitter receptors, including the muscarinic
acetylcholine, histamine H-1, and o, noradrenergic
receptors, producing side effects such as dry mouth,
drowsiness, urinary retention, and postural hypo-
tension, thus limiting their use. Some newer drugs,
such as venlafaxine and duloxetine, block both nor-
epinephrine and serotonin but lack the tricyclic struc-
ture and the unwanted receptor interactions of the
older drugs.

The selective serotonin reuptake inhibitors, such as
fluoxetine, sertraline, and paroxetine, are widely used.
As their name implies, they inhibit the uptake of sero-
tonin selectively. They are effective for major depres-
sive disorder, many anxiety disorders, and, in high
doses, for obsessive-compulsive disorder.

In addition to their role in the pharmacologic treat-
ment of mood disorders, the monoamine neurotrans-
mitters may also play a role in pathogenesis. However,
much of the evidence for such a link has come from the
actions of antidepressant drugs themselves. Because
effective treatments may exert their beneficial effects
indirectly, the role of monoamines in pathogenesis
remains quite uncertain.

Interest in the monoamines began in the 1950s
when it was observed that reserpine, an alkaloid
derived from the rauwolfia plant, then used to treat
hypertension, precipitated depression in approxi-
mately 15% of people who received the drug. Reser-
pine depletes the brain of norepinephrine, serotonin,
and dopamine by blocking the ability of presynaptic
neurons to take up these neurotransmitters into synap-
tic vesicles. As a result, the neurotransmitters remain in
the cytoplasm where they are degraded by monoam-
ine oxidase. In a serendipitous discovery, iproniazid, a
drug that was initially developed to treat tuberculosis,
was found to have antidepressant properties. Because
of its side effects, iproniazid itself is no longer in use,
but it proved to be the prototype MAO inhibitor.

Because depression could be induced by reserpine,
which depletes monoamines, and could be amelio-
rated by MAO inhibitors, which protects monoamines
from degradation, the idea emerged that depression
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involved a decrease in the availability of monoamines.
Further support for this idea came from the discovery
of tricyclic antidepressants, which block the uptake of
synaptically released norepinephrine and serotonin,
thereby prolonging the action of these neurotransmit-
ters within the synapse. These observations led to the
hypothesis that depression results from a deficiency of
monoaminergic synaptic transmission and that clini-
cally effective antidepressants work by increasing the
availability of monoamines at synapses.

A major weakness with this simple hypoth-
esis comes from the observation that the inhibitory
actions of antidepressants on monoamine uptake or
on MAO are rapid and occur even with the first dose
of medication, whereas several weeks of treatment are
required to observe a lifting of the depression clini-
cally. Attempts to explain this delay have led to several
ideas. Enhancement of serotonergic or noradrenergic
synaptic transmission stimulates a large number of pre-
and postsynaptic receptors and activates downstream
signaling pathways, some of which activate gene
expression and ultimately protein synthesis. One gen-
eral hypothesis is that, over weeks, newly synthesized
proteins alter the responsiveness of neurons or cause
the remodeling of synaptic connections in a manner
that treats the depression. However, this hypothesis is
not supported by any evidence of the genes and pro-
teins that might be responsible or the cells and circuits
in which they might exert their effects. One recently
discovered mechanism by which antidepressants can
regulate gene expression is by causing covalent modi-
fication of histone proteins and thus the conformation
of chromatin. This type of mechanism might also con-
tribute to the ability of antidepressant responses to
persist even after treatment has been completed.

An additional hypothesis is based on the obser-
vation, described above, that antidepressant drugs
enhance the rate of neurogenesis in the dentate gyrus
of the hippocampus. According to this hypothesis the
therapeutic delay in antidepressant response would
result from the slow time course of development of
new neurons and their incorporation into circuits.
Some experiments suggest that inhibition of neuro-
genesis blocks the action of antidepressants in some
rodent models of stress, but other experiments suggest
that even if hippocampal neurogenesis plays a role in
antidepressant action, it is not absolutely necessary.

The slow onset of existing antidepressant drugs
is not only a scientific puzzle but also a serious clini-
cal problem. While waiting for their symptoms to
improve patients may become demoralized and a
minority may be at increased risk of suicidal thoughts
and acts. The search for rapidly acting antidepressants
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Figure 63-7 (Opposite) Actions of antidepressant drugs at
serotonergic and noradrenergic synapses. The figure shows
the pre- and postsynaptic sides of serotonergic and noradren-
ergic synapses. Serotonin and norepinephrine are synthe-
sized from amino acid precursors by enzymatic cascades.

The neurotransmitters are packaged in synaptic vesicles;

free neurotransmitter within the cytoplasm is metabolized by
monoamine oxidase, an enzyme that is associated with the
abundant mitochondria found in presynaptic terminals. On
release, serotonin and norepinephrine interact with several
types of pre- and postsynaptic receptors (see Tables 63-3

and 63-4). Each neurotransmitter is cleared from the synapse
by a specific transporter. The serotonin and norepinephrine
transporters and monoamine oxidase are targets of antidepres-
sant drugs.

A. Important sites of drug action at serotonergic synapses. Not
all actions described are shown in the figure.

1. Enzymatic Synthesis. p-Chlorophenylalanine can inhibit the
rate-limiting enzyme tryptophan hydroxylase, which initiates
the cascade that converts tryptophan to 5-OH-tryptophan, the
precursor of 5-hydroxytryptophan (5-HT, serotonin).

2. Storage. Reserpine and tetrabenazine interfere with the
transport of serotonin and catecholamines into synaptic vesi-
cles by blocking the vesicular monoamine transporter, VMAT,.
The cytoplasmic serotonin is degraded (see A. 6. below) and
thus the neuron is depleted of neurotransmitter. Reserpine
was used as an antihypertensive drug, but commonly caused
depression as a side effect.

3. Presynaptic Receptors. Agonists at presynaptic receptors
produce negative feedback on neurotransmitter synthesis or
release. The agonist 8-hydroxy-diprolamino-tetraline (8-OH-
DPAT) acts on 5-HT, 4 receptors. The antimigraine triptan drugs
(eg, sumatriptan) are agonists at 5-HT, receptors.

4. Postsynaptic Receptors. The hallucinogen lysergic acid
diethylamide (LSD) is a partial agonist at 5-HT,, receptors on
the postsynaptic serotonergic neurons. Second-generation
antipsychotic drugs, such as risperidone and olanzapine, are
antagonists at 5-HT2, receptors in addition to their ability
to block D, dopamine receptors. The antiemetic compound
ondansetron is an antagonist at 5-HT; receptors, the only
ligand-gated channel among the monoamine receptors. Its key
site of action is in the medulla.

5. Uptake. The selective serotonin reuptake inhibitors, such
as fluoxetine and sertraline, are selective blockers of the serot-
onin transporter. The tricyclic drugs have mixed actions; some,
such as clomipramine, are relatively selective for the serotonin
transporter. Uptake blockers increase synaptic concentra-
tions of serotonin. Amphetamines enter monoamine neurons
through the uptake transporter and interact with the vesicular
transporter on synaptic vesicles to release neurotransmitter
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into the cytoplasm. The neurotransmitter is then pumped out
of the neuron into the synapse through the uptake transporter
acting in reverse.

6. Degradation. Phenelzine and tranylcypromine, both of
which are effective for depression and panic disorder, block
monoamine oxidase A and B (MAO, and MAOg). Moclobemide,
effective against depression, is selective for MAO,; selegiline,
which has been used to treat Parkinson disease, is selective for
MAQg in low doses (5-HIAA, 5-hydroxyindoleacetic acid).

B. Important sites of drug action at noradrenergic synapses.

1. Enzymatic synthesis. The competitive inhibitor
a-methyltyrosine blocks the reaction catalyzed by tyrosine
hydroxylase that converts tyrosine to DOPA. A dithiocarbamate
derivative, FLA 63 (not shown), blocks the reaction that con-
verts DOPA to dopamine.

2. Storage. Reserpine and tetrabenazine interfere with the
transport of norepinephrine, dopamine, and serotonin into syn-
aptic vesicles by blocking the vesicular monoamine transporter
VMAT,. The cytoplasmic neurotransmitter is degraded (see
A. 6. below) and thus the neuron is depleted of neurotransmitter.

3. Presynaptic Receptors. Agonists at presynaptic recep-
tors produce negative feedback on neurotransmitter synthesis
or release. Clonidine is an agonist at o, adrenergic receptors,
inhibiting norepinephrine (NE) release. It has anxiolytic and
sedative effects and is also used to treat attention deficit hyper
activity disorder. Yohimbine is an antagonist at o, adrenergic
receptors; it induces anxiety.

4. Postsynaptic Receptors. Propranolol is an antagonist at
B,-adrenergic receptors that blocks many effects of the sympa-
thetic nervous system. It is used to treat some forms of cardio-
vascular disease but is commonly used to block anxiety during
performance situations. Phenoxybenzamine is an agonist at
a-adrenergic receptors.

5. Uptake. Certain tricyclic antidepressants, such as
desipramine, and newer norepinephrine selective reuptake
inhibitors (NRI) such as reboxetine, selectively block the
norepinephrine transporter, thus increasing synaptic norepine-
phrine. Amphetamines enter monoaminergic neurons through
the uptake transporter and interact with the vesicular trans-
porter on synaptic vesicles to release neurotransmitter into the
cytoplasm. The neurotransmitter is then pumped out of the
neuron into the synapse through the uptake transporter acting
in reverse.

6. Degradation. At the postsynaptic neuron tropolone inhibits
the enzyme catechol-O-methyltransferase (COMT), which inac-
tivates norepinephrine (6a). Normetanephrine (NM) is formed
by the action of COMT on norepinephrine. At the presynaptic
neuron degradation by monoamine oxidase (MAO) is blocked
by the monoamine oxidase inhibitors phenelzine and tranylcy-
promine (6b), as described in Figure 63-5.
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has recently revealed that a single intravenous dose of
ketamine, which blocks NMDA-type glutamate recep-
tors, produces antidepressant effects within hours and
that these effects persist for a week. Ketamine was
developed as a dissociative anesthetic, a drug that dis-
tances a person from the experience of his body and
produces other cognitive disturbances. However, in
adults it may also produce psychotic-like symptoms
and euphoria, and so is an abused street drug. A drug
with such a profile of action is not likely to prove use-
ful as an antidepressant, but it has led to promising
new avenues of research focused on signaling initiated
by NMDA receptors.

Overall, evidence for direct involvement of
monoamines in pathogenesis remains scant. A large
number of genetic studies attempting to link polymor-
phisms in genes that influence serotonergic function
have remained inconclusive.

Psychotherapy Is Effective in the Treatment of
Major Depression

Nonpharmacologic treatments are also effective in the
treatment of major depression. Short-term symptom-
focused psychotherapies have been developed for
depression and tested in clinical trials. The best-studied
psychotherapy used against depression is cognitive-
behavioral therapy, which is effective in the treat-
ment of mild and moderately severe major depression
and in dysthymic disorder. Cognitive-behavioral ther-
apy focuses on identifying and correcting distorted
negative interpretations of events and automatic
negative thinking that may initiate or perpetuate the
depressed mood (see Box 61-1).

An important challenge is to understand what
happens in the brain in response to such specialized
forms of learning as cognitive-behavioral therapy. For
example, such therapies may alter the activity of brain
structures thought to mediate negative emotion, such
as the amygdala and anterior cingulate cortex. The
use of brain imaging techniques to demonstrate such
changes may eventually help identify those patients
who are particularly amenable to cognitive therapy
and track their therapeutic progress, and my even be
useful in training and therapy as a form of biofeedback.

Electroconvulsive Therapy Is Highly Effective
Against Depression

Although it still conjures up negative images in the
popular imagination, electroconvulsive therapy (ECT)
administered with modern anesthesia is medically safe
and remains the single most effective intervention for

the acute treatment of serious major depression. It is
also effective in both the depressed and manic phases
of bipolar disorder. Electroconvulsive therapy is used
when patients with major depression fail to respond
to medication or when the patient is too debilitated to
take medication.

Generally, six to eight treatments are given, most
commonly on an outpatient basis, with unilateral lead
placement. Bilateral placement can be used if unilat-
eral is unsuccessful. Patients are anesthetized, and
electrical stimulation is administered just to the degree
that will produce electroencephalographic evidence
of a generalized seizure. The major side effect is tem-
porary memory impairment, with some retrograde
amnesia. Amnesia is minimized by using unilateral
lead placement and the lowest level of electrical stimu-
lation needed. It is thought that electroconvulsive ther-
apy increases the availability of biogenic amines in the
brain, but its mechanism of action remains uncertain.

Motivated by the desire to improve on the thera-
peutic effects of ECT while diminishing its side effects,
methods based on more focused forms of brain electri-
cal stimulation are being explored. These include deep
brain stimulation (DBS) using implanted electrodes
and transcranial magnetic stimulation (TMS).

Bipolar Disorder Can Be Treated with Lithium
and Several Drugs Initially Developed as
Anticonvulsants

The discovery by John Cade in 1949 that lithium is effec-
tive in the treatment of mania initiated the modern era
of psychopharmacology. In bipolar patients lithium not
only treats acute episodes of mania but can also prevent
recurrences of both mania and depression. It was thus
the first “mood stabilizing” drug. Several drugs ini-
tially developed to treat epilepsy, such as valproic acid,
were later shown to be effective in treating mania and
in preventing recurrences of mania and depression.
The mechanism by which lithium stabilizes mood
is not known. The two most promising ideas are based
on lithium’s ability to block enzymes involved in
intracellular signaling pathways. Many neurotrans-
mitter receptors indirectly activate phospholipase C
through the G protein Gq, (eg, the o,-norepinephrine,
5-HT, serotonin, and several muscarinic acetylcholine
receptors). Phospholipase C hydrolyzes phosphatidyl-
inositol 4,5-bisphosphate (PIP,) to liberate two second
messengers (Figure 63-8). PIP, is normally synthe-
sized from free inositol. Central neurons cannot obtain
free inositol from plasma because of the blood-brain
barrier. They therefore must either recycle inositol,
which requires the generation of inositol phosphates
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Figure 63-8 Lithium action on phosphatidylinositol path-
ways. A variety of neurotransmitter receptors are linked by the
protein G, (see Tables 63-3 and 63-4) to phospholipase Cy,
which hydrolyzes phosphatidylinositol-4,5-biphosphate (PIP,)
to generate two second messengers, diacylglycerol (DAG)
and inositol 1,4,5-triphosphate (IP,). IP; releases Ca?* from
intracellular stores and subsequently is metabolized to forms
that may not participate in neural signal transduction, includ-
ing inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5 P,). These are
all metabolized to produce several inositol monophosphates,
of which all are in turn metabolized by inositol monophosphate

by hydrolysis of phosphatidylinositols, or synthesize
it from glucose-6-phosphate, a product of glycolysis.

Lithium inhibits several inositol phosphatases,
including inositol-monophosphate-phosphatase, which
is critical for the synthesis of the second messengers dia-
cylglycerol (DAG) and inositol 1,4,5-triphosphate (IP;)
(Figure 63-8). As a result, lithium would appear to limit
the ability of neurons to synthesize precursors of second
messengers and therefore dampen the ability of neurons
to fire at abnormally high rates. Alternatively, inositol
depletion might alter gene expression that in turn would
alter the response properties of critical neurons.

The second idea about how lithium stabilizes
mood comes from the observation that lithium inhib-
its glycogen synthase kinase type 3 (GSK3), a critical
enzyme in the Wnt signaling pathway (Figure 63-9).
The Wnt signaling pathway plays important roles in

Inositol

Glucose-6-phosphate

Glucose

phosphatase, an enzyme that is inhibited by therapeutic
concentrations of lithium (Li*). De novo synthesis of inositol
from glucose-6-phosphate also must pass through an inositol
monophosphate intermediate. Thus in the presence of lithium
the monophosphates derived from recycling of second mes-
sengers or from new synthesis cannot be dephosphorylated
to yield free inositol. This should inhibit the ability of cells to
regenerate PIP, and thus disrupt the second-messenger cas-
cade. (Reproduced, with permission, from Nestler, Hyman, and
Malenka 2009.)

brain development (see Chapter 53). How inhibition of
this pathway might treat mania remains unknown.

Valproic acid is an anticonvulsant that also sta-
bilizes mood. It appears to facilitate the actions of
GABA (y-aminobutyric acid), the key inhibitory neu-
rotransmitter in the brain, possibly by increasing
GABA release. The mechanisms by which anticonvul-
sants might treat bipolar disorder and the question
of whether the mechanisms are shared with lithium
remain important but unanswered.

Whatever the molecular mechanisms of lithium
or the anticonvulsants, it seems likely that mood sta-
bilizers dampen the dynamics of mood regulatory
systems. Mood is regulated by the external environ-
ment as well as internal inputs, including the internal
hormonal milieu, immune modulators, and circadian
controls (eg, both the serotonergic and noradrenergic
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Figure 63-9 Lithium affects the Wnt signaling pathway. \Wnt
secretory proteins are involved in cell proliferation and differ
entiation. The Wnt protein was initially discovered as a critical
molecule in Drosophila wing development but has been identi-
fied in the mammalian brain as well. Wnt binds receptors of the
Frizzled family, initiating a signaling cascade to the nucleus that
involves a cytosolic protein Dishevelled (Dsh) and glycogen syn-
thase kinase 3B (GSK-3B). Phosphorylation by GSK-3 causes
the degradation of another protein, B-catenin (left panel).

systems show diurnal variations closely coupled with
the sleep-wake cycle). The coupling of these systems is
complex, involving dynamic interactions that are still
poorly understood. Understanding these interactions
is likely to give insight into the pathological cycle of
bipolar disorder.

Anxiety Disorders Stem from Abnormal
Regulation of Fear

Fear is a complex physiological, behavioral, cognitive,
and, in humans, subjective response to a threaten-
ing stimulus. It evolved as an adaptive response
to real threats and is usually transient. Anxiety is a
longer-lasting response to danger signals that can
arise either from immediate circumstances that signal
well-defined danger or from vague indications of
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GSK-3B is inhibited when Whnt binds Frizzled or when lithium is
present in therapeutic concentrations, thus stabilizing -catenin
(right panel). When the level of B-catenin builds up, the protein
translocates to the nucleus of the cell where it activates gene
expression through a transcription complex TCF/LEF-1. Which
genes might be induced by this pathway to stabilize mood is
unknown. Interestingly, a Dsh knockout mouse exhibits abnor-
mal social behavior and grooming. (Reproduced, with permis-
sion, from Nestler, Hyman, and Malenka 2009.)

ill-defined events that are thought to have adverse
consequences.

Anxiety can be highly adaptive; arousal, vigilance,
and physical preparedness increase the likelihood of
survival in dangerous situations. However, because
many situations lack clear signs of safety, anxiety can
persist. When anxiety persists beyond genuine risk, or
when it produces a response out of proportion to the
possible threat, the result can be distressing and disa-
bling. Anxiety is the core symptom in several common
psychiatric disorders. In the United States 28.5% of the
population suffer from one or more anxiety disorders
over the course of their lifetimes.

Anxiety disorders are distinguished from each
other by the nature, intensity, and time course of symp-
toms, patterns of familial transmission, precipitating
factors, the role of external cues in triggering episodes,
and the constellation of associated symptoms. In some



situations anxiety is not produced by a single eliciting
stimulus but by an accumulation of cues. The currently
recognized anxiety disorders are panic disorder, post-
traumatic stress disorder, generalized anxiety disorder,
social anxiety disorder (also called social phobia), sim-
ple phobias, and obsessive-compulsive disorder.

Panic disorder. The cardinal symptom of panic dis-
order is the unexpected panic attack consisting of a
discrete period of intense fear accompanied by somatic
symptoms such as palpitations, shortness of breath,
sweating, paresthesias, and dizziness, and by a power-
ful fear of losing control or of dying (Table 63-5). Panic
disorder is diagnosed when panic attacks recur and give
rise to anticipatory anxiety about future attacks. People
with panic disorder might restrict their lives progres-
sively to avoid situations or places in which attacks
occur or from which they might not be able escape
should they experience an attack. It is common for
patients to avoid crowds, bridges, and elevators; some
individuals eventually stop leaving home altogether. A
generalized phobic avoidance is called agoraphobia.

Post-traumatic stress disorder. Post-traumatic stress
disorder (PTSD) follows an experience of severe dan-
ger or injury. First recognized in soldiers during World
War I after combat trauma, it also occurs after civilian

Table 63-5 Symptoms of a Panic Attack

A discrete period of intense fear or discomfort in which
four (or more) of the following symptoms develop abruptly
and reach a peak within 10 minutes:

Palpitations, pounding heart, or accelerated heart rate
Sweating

Trembling or shaking

Sensations of shortness of breath or smothering
Feeling of choking

Chest pain or discomfort

Nausea or abdominal distress

Feeling dizzy, unsteady, lightheaded, or faint

Derealization (feelings or unreality) or depersonalization
(being detached from oneself)

Fear of losing control or going crazy
Fear of dying
Paresthesias (numbness or tingling sensations)

Chills or hot flushes
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traumas such as violent assaults or serious accidents.
It is characterized by emotional numbness to ordi-
nary stimuli, punctuated by painful reliving of the
traumatic episode, often initiated by sounds, images,
or odors that trigger highly charged memories of
the circumstances in which the trauma occurred. For
example, a Vietham War veteran with PTSD might
experience intense symptoms after hearing a traffic
helicopter pass overhead (recalling the heavy use of
assault helicopters in that war). It is also characterized
by disturbed sleep that can include nightmares, and by
hyperarousal, such as an exaggerated startle response.

Generalized anxiety disorder. This disorder is character-
ized by chronic (months-long) worry and vigilance that
is not warranted by circumstances. This worry is accom-
panied by physiological disturbances such as heightened
sympathetic nervous system arousal (evidenced by an
increase in heart rate) and by motor tension.

Social anxiety disorder. This disorder is characterized
by a persistent fear of social situations or performance
situations that expose a person to the scrutiny of others.
The patient has an intense fear of acting in a way that
will prove humiliating. Stage fright is a form of social
anxiety that is limited to special circumstances, such as
public speaking. Generalized social anxiety, as its name
implies, involves adverse responses to most social situ-
ations and can therefore prove quite disabling.

Simple phobias consist of intense, excessive fear of
specific stimuli, such as snakes, spiders, or height.

Obsessive-compulsive disorder. Obsessive-compulsive
disorder (OCD) is characterized by obsessions (intrusive,
unwanted thoughts) and compulsions (performance
of highly ritualized behaviors intended to neutralize
the negative thoughts and emotions resulting from the
obsessions). The person experiences the obsessions as
foreign and unwanted. Attempts to resist the urge to per-
form the compulsive acts result in high levels of anxiety.
Typical symptom patterns are repetitive hand washing
to neutralize fears of contamination (sometimes hours a
day to the point of skin damage), or repeatedly checking
the front door to see that it is locked.

Although current classifications of psychiatric
disorders, including DSM-1V, place OCD among the
anxiety disorders, family studies and imaging stud-
ies suggest that the disorder may share risk factors
and dysfunction of striatal circuits with Tourette dis-
order, which is characterized by motor tics (involun-
tary, rapid movements) as well as vocal tics—grunts,
noises, obscenities—and is often accompanied by
obsessive-compulsive symptoms. Additional evidence
for primary problems in striatal circuits, rather than
the amygdala circuits implicated in other anxiety
disorders, comes from the study of Sydenham chorea,
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a movement disorder that can result from acute
rheumatic fever. Interestingly, many patients with
Sydenham chorea experience transient OCD-like
symptoms. Sydenham chorea results from antibodies
developed in response to a streptococcal infection, and
the antibodies have been shown to bind to neurons
in the striatum. OCD can be treated with high doses
of selective serotonin reuptake inhibitor and by psy-
chotherapy aimed at stopping intrusive thoughts and
compulsive rituals.

Anxiety Disorders Have a Genetic Component

Panic disorder, generalized anxiety disorder, phobias,
and OCD all run in families. First-degree relatives of
individuals with panic disorder have a significantly
greater risk of panic disorder than the general popula-
tion or the first-degree relatives of unaffected control
subjects.

Twin studies have concluded that panic disorder,
generalized anxiety disorder, and probably phobias
are explained to a large extent by genes. Twin stud-
ies also suggest overlapping genetic risk factors for
depression and generalized anxiety disorder, which
helps explain the observation that these two disorders
often occur together.

In post-traumatic stress disorder genes appear to
act in two important ways. They influence (1) the risk
of developing the disorder after exposure to traumatic

Elevated plus maze
&
Figure 63-10 The effects of anxiety-reducing drugs can be
tested on rodents in the elevated plus maze. The apparatus
has two intersecting arms, one enclosed and the other open.
A rat or mouse is placed at the intersection and the time spent

on the open or enclosed arms is measured. Rodents normally
prefer the closed arm. Rodents given benzodiazepine drugs,

events and (2) the likelihood of individuals exposing
themselves to dangerous situations.

Animal Models of Fear May Shed Light on Human
Anxiety Disorders

Because many responses to fearful stimuli are conserved
across mammalian species, animal models are poten-
tially relevant to human disorders. In addition, because
stimuli that elicit fear and anxiety can be readily pro-
duced in the laboratory, animal models are amenable
to study. Studies using animal models have focused on
two general classes of fear: innate fear and learned fear.

Studies of innate or instinctual fear exploit the nat-
ural tendencies of rats and mice to avoid open spaces
or other situations that expose them to predators
(Figure 63-10). Studies of learned or conditioned fear
exploit the ability of rodents and other animals to form
powerful associations between previously neutral
cues and temporally linked danger. As described in
Chapter 48, studies using these animal models have led
to the outline of an amygdala-based fear circuitry that
mediates defensive behaviors and appropriate physi-
ologic responses to danger. They have been useful in
designing noninvasive studies of human subjects with
anxiety disorders, and as screens for anxiety-reducing
drugs and genetic mutations that influence fear.

Our growing understanding of fear circuitry has gen-
erated testable hypotheses about the pathophysiology of

% of time spent on open arms

Control Anti-anxiety

drug (Diazepam)

Anxiety-inducing
drug (B-CCE)

such as diazepam, which reduce anxiety in humans, spend
more time in the open arm. Rodents given the benzodiazepine
inverse agonist B-carboline (B-CCE), which strongly induces
anxiety in humans, spend less time in the open arm. (Repro-
duced, with permission, from Nestler, Hyman, and Malenka
2009.)



human anxiety disorders such as post-traumatic stress
disorder. For example, fear conditioning occurs nor-
mally in humans and is usually adaptive. By learn-
ing cues that signify danger and developing efficient
responses, an individual minimizes future risk of
harm. The central abnormality in post-traumatic stress
disorder appears to be fear conditioning that is exces-
sive, such that later minor cues are able to elicit fear
responses. This dysregulated fear response alters other
cognitive, emotional, and physiological responses. By
mechanisms that are not yet well understood, it may
alter basal levels of arousal, leading to exaggerated
startle responses and disordered sleep. Other aspects of
post-traumatic stress disorder, such as emotional numb-
ing, are more difficult to model in experimental animals.

The unexpected panic attack—the hallmark of
panic disorder—may represent a “false alarm” in which
the fear circuitry is activated in the absence of a threat.
Whether such abnormal activation originates from the
fear circuitry itself or elsewhere in the nervous system is
not known. Panic attacks can be produced in susceptible
people by increasing partial pressure of carbon dioxide
(PCO,) in their blood or administering caffeine or drugs,
which increase sympathetic outflow. Although these
observations suggest a low threshold for activating the
fear circuitry in persons with panic disorder, we do not
yet understand the neurophysiologic mechanisms that
trigger spontaneous panic attacks.

Panic attacks can be a source of fear conditioning.
Initially, panic attacks are usually spontaneous, with
no obvious relationship to the immediate context or
environmental stimuli. However, environmental cues
experienced in conjunction with a panic attack can
become fear-associated stimuli. Later, these cues can
trigger severe anticipatory anxiety or even a full panic
attack.

With simple phobias and social anxiety the fear cir-
cuitry may be activated by cues that ordinarily signal
very limited, if any, danger, such as risk of embarrass-
ment. The experience can lead to avoidance of the cues.
A person with a phobia of air travel might limit travel
to surface transportation, and a person with stage fright
might alter career plans to avoid public speaking.

Neuro-imaging Implicates Amygdala-Based Circuits
in Human Fear and Anxiety

The understanding of the neural circuitry underlying
fear and anxiety in animal models has guided neuro-
imaging studies of humans. In healthy subjects the
amygdala is activated in response to stimuli that reli-
ably induce fear, such as faces portraying fear, as well
as during fear conditioning.
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In a functional magnetic resonance imaging (fMRI)
study of normal volunteers the presentation of a face
portraying fear activated the dorsal subregion of the
amygdala; this region contains what is thought to be the
amygdala’s main output nucleus, the central nucleus.
When the same faces were shown only briefly to these
subjects, followed by a neutral face (referred to as back-
ward masking), the subjects did not report awareness of
having seen the fearful face. Yet they exhibited physio-
logical signs of fear (activation of the sympathetic nerv-
ous system). This test paradigm activates the basolateral
subregion of the amygdala (which contains inputs
from the thalamus and cerebral cortex) in healthy sub-
jects similar to that of subjects with anxiety disorders
(Figure 63-11).

Functional neuroimaging has also revealed height-
ened activity in the amygdala in specific anxiety
disorders, including social anxiety disorder and post-
traumatic stress disorder. In individuals with social
anxiety disorder the increase in activity is induced
by images of fearful faces; in individuals with post-
traumatic stress disorder it is induced by narratives
that are reminiscent of their trauma.

Structural imaging has also been used to study
anxiety disorders. The most often replicated structural
finding is diminished hippocampal volume in individ-
uals with depression or post-traumatic stress disorder.
Until longitudinal studies are performed, it is not clear
whether a small hippocampus is a risk factor for post-
traumatic stress disorder or a result of the disorder.

Anxiety Disorders Can Be Treated Effectively with
Medications and Psychotherapy

Cognitive-behavioral therapies designed for specific
anxiety disorders have proved as effective as medica-
tion in the treatment of anxiety disorders. For example,
a person with cue-elicited anxiety, whether a simple
phobia, phobic avoidance resulting from panic disor-
der, or social anxiety disorder, is coached to confront
the phobic stimulus with adequate support and a new
cognitive schema for coping with the fear. For many
patients a combination of medication and cognitive-
behavioral therapy may prove necessary.

Among the medications used for various anxiety
disorders, drugs that were initially developed as anti-
depressants have proven highly efficacious and are
the drugs of choice. The selective serotonin reuptake
inhibitors are most widely used because they are easily
tolerated. Simple phobias are best treated with cognitive-
behavioral therapy rather than medication. The response
of obsessive-compulsive disorder to treatment differs
from those anxiety disorders in which amygdala-based
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Figure 63-11 Amygdala activation in response to a masked
presentation of a fearful stimulus. A human subject observes
projected images while being scanned by magnetic resonance
imaging. When a fearful face is presented for a very brief time
followed by presentation of a neutral face (a protocol called

fear circuitry is thought to be the primary abnormality.
Obsessive-compulsive disorder responds only to sero-
tonin selective drugs at higher doses. Medications are
generally combined with cognitive-behavioral therapy
specially designed to inhibit compulsive behaviors.
Another class of drugs, the benzodiazepines, are
occasionally used for generalized anxiety disorder,
whereas higher doses are used for panic disorder.
However, existing benzodiazepines can cause seda-
tion; indeed, they are also used as hypnotics, and
can degrade cognitive function. Moreover, benzodi-
azepines can cause dependence (as evidenced by wors-
ened, so-called rebound anxiety) and insomnia when
drugs are discontinued. In some individuals they can
produce addiction (see Chapter 49). An advantage of
the benzodiazepines is they react rapidly following a
single dose, in contrast to the antidepressants, which can
take weeks to become effective. Overall, they are sec-
ond-line treatments to the selective serotonin reuptake
inhibitors and other antidepressants, often used tempo-
rarily until the response to antidepressants takes effect.
The benzodiazepines produce their therapeutic
effect by enhancing the inhibitory action of GABA at
GABA , receptors. This receptor is ionotropic and selec-
tive for CI". It is a pentamer, organized like barrel staves
around an aqueous pore (Figure 63-12). Allosteric bind-
ing of benzodiazepine modifies the receptor complex,
increasing the affinity of the GABA binding site for
GABA. As a result, GABA-activated Cl~ channels open
more frequently, enhancing the hyperpolarizing effect

Basolateral region
of the amygdala

backward masking), the subject is not consciously aware of the
fearful face. Under these conditions the basolateral region of the
amygdala predicts individual differences in trait anxiety in healthy
subjects similar to those found in patients with anxiety disor
ders. (Reproduced, with permission, from Etkin et al. 2004.)

of GABA on the neuron. The sedative barbiturate drugs
also bind the GABA , receptor complex, but at a site near
the CI" channel. Barbiturates increase not only the affin-
ity of the receptor for GABA but also channel open time,
creating a greater risk of excessive central nervous sys-
tem depression than is seen with benzodiazepines.

Drug binding sites:

Benzodiazepine
agonists

Benzodiazepine
inverse agonists

Barbiturates

Figure 63-12 The GABA, receptor complex. The GABA,
(y-aminobutyric acid A) receptor is a pentamer arranged to
form a CI~ channel. In addition to the neurotransmitter GABA,
the receptor binds several important drugs, including benzodi-
azepines and barbiturates, at physically separate sites.



An Overall View

Mood and anxiety disorders have long been misunder-
stood, even to the point that affected individuals can
become objects of stigma. Because mood and anxiety
disorders have a far greater impact on disability than
on mortality (despite the risk of suicide), these disor-
ders have too often been given low priority by health-
care systems.

These unfortunate circumstances are beginning
to change. Modern epidemiological and economic
research has documented the enormous burden cre-
ated by these disorders, which tend to begin early in
life and to interfere with learning in young people and
the ability to work in adults. Increased scientific under-
standing has also made a difference.

Although there is still a long way to go before we
understand fully the neural basis of these disorders or
the genetic, developmental, and environmental risk
factors that give rise to them, there is little doubt that
mood and anxiety disorders are real disorders of the
brain. For example, compelling hypotheses concern-
ing the neural circuits underlying anxiety disorders
have been put forth and are being tested, and neuro-
imaging has provided important leads in the study of
mood disorders.

The existing treatments for chronic mood and
anxiety disorders are generally not curative. However,
existing medications and cognitive-behavioral thera-
pies can markedly improve symptoms, even to the
point of remission for many individuals. The study of
mood and anxiety disorders is a challenging frontier
for neural science, but a challenge with very significant
rewards for human health.

Steven E. Hyman
Jonathan D. Cohen
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