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Outlook

. Energy homeostasis and metabolism
a) biological energy sources

b) glucose, its role and regulation

ll. Neural circuits of hunger and satiety
a) bodily signals of energy state

b) sensing of satiety / hunger signals by POMC and AgRP neurons

d

e) role of PVH in regulation of appetite

)

c) balancing function of the ARC (the arcuate nucleus) in feeding control
) local- and long-range inhibition by the AgRP arcuate neurons in feeding behavior
)

f) motivational valency of hunger and satiety imposed by the ARC-PVH circuit



Eating (= energy intake) is one of the most basic needs of any organism
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Energy transformation by biological organisms
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Energy transformation, management and conservation by an organism
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Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 58-4



ATP is the universal molecular energy carrier (,,energy currency")
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Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 58-5



Glucose is an upstream biochemical substrate for generation of ATP

TABLE 58-4 Generation of ATP from the Complete
Oxidation of Glucose*

Glycolysis ﬂ) 2 ATP
Glycolysis — 2 x 1 NADH __9%-Phos. 5 5 aTp
2 x (Pyruvate — acetyl CoA) — 2 NADH

0x. phos. 5 ATP

Citric acid cycle — 2 x 1 GTP "8t . 5 ATp

Citric acid cycle — 2 x 3 =6 NADH

0x. phos. 15 ATP
Citric acid cycle - 2 x 1 =2 FADH,
ox. phos. 3 ATP
Total 30 or 32 ATP per
glucose

(anaerobic lysis, w/o O,)

GLYCOLYSIS
1 Glucose + 2 ADP + 2 P; + 2 NAD*

2 Pyruvate + 2 ATP + 2 NADH + 2 H* + 2 H,0O

CeH 206 +6 0, +300r32ADP+300r32P —
Glucose
6 CO, +6 H,O+30 or 32 ATP + heat

(aerobic oxydation, needs O,)
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Arnold and Finley, J Biol Chem, 2022




Glucose can be strategically preserved in polymerized form until needed

AE = AG + T-AS
—_— —_ —_—
Energy of Energy stored  Energy wasted

ingested glucose as glycogen as heat

TABLE 58-1 Energy of Body Stores
WEIGHT ENERGY DENSITY ENERGY

CHEMICAL (kg) (kcal/g) (kcal)

Glycogen 0.7 1.6* 1,050
Protein 9.8/2=49" 4.3 21,000
Lipid 14 9.4 131,600
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Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 58-1



Gastrointestinal tract (Gl) is a machinery for energy extraction and transformation
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Processing of different types of nutrients in the Gl tract
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Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 45-1



Free glucose level in the blood is tightly regulated

TABLE 51-2 Effects of Nutritional States

AFTER A 24-hr 2 hr AFTER A
PARAMETER FAST MIXED MEAL
Plasma [glucose], 60-80 100-140
mg/dL
mM 3.3-4.4 5.6-7.8

Insulin — peptide hormone leading to:

» insertion of GLUT4 (insulin-dependent)
glucose transporters into the plasma
menbrane of muscle cells and adipocytes

» increase of glucose uptake into the

F cells produce .
pancreatic Blood flows from the muscles and adipocytes
polypeptide. center to the periphery.
ﬁ * modulation of cellular metabolic enzymes
) Y ’ to shift equilibrium towards utilization of

Islet of Langerhans

free excess glucose: more glucose
oxydation (ATP production), or synthesis
of glycogen (muscles, liver), or
lipogenesis (adipocytes)

Pancreas

Glucagon - peptide hormone with the
duot actions opposite to insulin: hydrolysis of
glycogen, increase of blood glucose

Duodenum /\

Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 51-1



Mechanism of glucose sensing and insulin secretion in the pancreatic p-cells
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Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 51-4



Dynamics of glucose metabolism

TABLE 51-2 Effects of Nutritional States

AFTER A 24-hr 2 hr AFTERA
PARAMETER FAST MIXED MEAL
Plasma [glucose],  60-80 100-140
mg/dL
mM 3.3-4.4 5.6-7.8
Plasma [insulin], 3-8 50-150
puU/mL
Plasma [glucagon], 40-80 80-200
pg/mL
Liver T Glycogenolysis 1 Glycogenolysis
T Gluconeogenesis | Gluconeogenesis
T Glycogen
synthesis
Adipose tissue Lipids mobilized Lipids synthesized
for fuel
Muscle Lipids metabolized  Glucose oxidized
Protein degraded or stored as
and amino acids glycogen
exported Protein preserved

Boron and Boulpaep, Medical Physiology 3rd ed.



Metabolic pathways in homeostasis

* anabolic: increased food intake, decrease of energy expenditure, glycogen synthesis, increased body
fat accumulation. Example hormone: insulin

* catabolic: increased metabolic rate, decrease of food intake, glycogenolysis, utilisation of fat stores,
decrease of body weight and fat. Example hormone: glucagon.

Anabolic

Food
intake I—
lf A - . :»\:
E/ exp |ture » ¢ Metaboli te Aglp:;:y
. PhYSICa| ij : g :
Fast cycle Slow cycle
(actual needs) (reserves)

© O
{  Energy balance )

Schwartz et al., Nature 2000



Il. Neural circuits of hunger and satiety

a) bodily signals of energy states

QUESTION: how does the body inform the brain about the energy states?



In addition to glucose and insulin, Gl tract provides other hormones and sensory inputs

Vagus nerve

Gastric EECs Mucosal villi

(when stomach is empty)

Nutrients,

Preproghrelin (117 a.a.)

. N hemical
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Vagal neuron
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Preprocholecystokinin (150 a.a.)
CCK (58 — 8 a.a.),

an anorexigenic factor,
,Satiety” hormone

Zimmerman and Knight, Curr Opin Neurobiol 2020



The story of leptin, an adiposity signal

ob/ob, db/db mouse (since 1950s): Parabiosis experiment: 1% blood circulation shared
extremely obese, infertile diabetic mice when
homozygous for ob or db genetic mutations A B c

OB/ob and ob/ob sibling mice

Leibel, R.L., Int J Obesity 2008; Coleman, D., Diabetologia 1978

A = Ob mouse + Wt mouse
B = Db mouse + Wt mouse
C = Ob mouse + Db mouse

Boron and Boulpaep, Medical Physiology 3rd ed.: Fig. 48-8

Parabiosis results:
—> ob gene product is a soluble factor signaling satiety

= db gene product is receptor for the ob-linked soluble factor



Adiposity
=
signals

ob gene product: leptin (167 a.a.)

Extracellular

Intracellular

The story of leptin, an adiposity signal

db gene product: leptin receptor
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Schwartz et al., Nature 2000



The story of leptin, an adiposity signal

Hyperphagia
feeling hungry, strong
appetite, high food intake

leptin is an anorexigenic peptide

,orexis” from Greek is appetite)

age: 3 years age: 7 years
weight: 42 kg weight: 32 kg

(after leptin therapy)

Neuroscience, 5t ed. by D. Purves — Box 21C



General overview schematic of the feeding control system
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Kandel, Principles of Neural Science, 5th ed., Fig. 49-3
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Hypothalamic nuclei central to feeding control: ARC and PVH

Mouse brain, coronal section

Key for molecules:

POMC: proopiomelanocortin

CART: cocaine-amphetamine-related transcript
AgRP: agouti-related protein

NPY: neuropeptide Y

OXT: oxytocin

MCA4R: MC4 receptor for atMSH (melanocortin receptor)
oMSH: melanocyte stimulating hormone

TRH: thyrotropin-releasing hormone

ACTH: corticotropin

PDYN: prodynorphin
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Il. Neural circuits of hunger and satiety

b) sensing of satiety / hunger signals by POMC and AgRP neurons

QUESTION: how does the brain know about body energy state?



POMC neurons in ARC sense glucose concentration (inhibited by lowering glucose)

(o]

Mice: POMC-GFP (WT) or POMC-mutated Kir6.2 ATP-sensitive K-channels
(see slide #12 for glucose sensing in islet B-cells: the same mechanism!)
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Parton et al., Nature, 2007

— POMC neurons in ARC directly sense glucose concentration (excited by glucose)
—> Mechanism of glucose sensitivity is similar to one in insulin secreting pancreatic -cells



POMC neurons in ARC are depolarized by adiposity signal (leptin)

Mice: POMC-GFP

a Leptin (100 nM .
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Cowley et al., Nature, 2001

— POMC neurons in ARC are depolarized by direct leptin application
— Not a , typical” leptin response (see slide 18); here works via non-specific
depolarizing channels



AgRP neurons in ARC are more active at low energy (fasted) state

wt fed
|0.1
mV
Mice: NPY-sapphire reporter 10s
wt fasted
5 B ,—ns—_-,r —Ns—
+ T = o 1y
> & T ol
2 + + % +
B
8’ £ * * *
See slide 18! i
. - - S0
Here, the effect of leptin is ,,typical” a "
hyperpolarizing, likely via opening K-channels wt wt oblob ob/ob db/db db/db
fed fasted fed fasted fed fasted

mice (n) 6 6 6 6 4 3
total cells 147 149 136 151 95 73

Takahashi and Cone, Endocrinology, 2005

—> Baseline firing of AgRP/NPY neurons is higher in fasted then in fed mice
= This is dependent on intact leptin signaling and is removed by i.p. leptin injection



AgRP neurons in ARC are more active at low energy (fasted) state

Mice: AgRP-ires-Cre, injected Cre-dependent
GCaMP6 vector into ARC

& b \
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= In-vivo imaging confirms increased firing frequency in ARC AgRP neurons after food-
restricted mice (FR) vs ad libitum fed (AL) mice



AgRP neurons in ARC are directly activated by low energy signal (ghrelin)
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Betley et al., Nature, 2015

= In fed mice, ARC AgRP activity increases after i.p. ghrelin injection (1 ug/g body weight)



External signals of the energy states from outside of the ARC nucleus

O Glutamatergic —e

GABAergic — Hormonal inputs
O

= ARC neurons also receive external inputs from glucose and leptin-sensitive neurons



Summary: opposite functions of the AQRP and POMC ARC neurons in feeding control

AgRP respond to: hunger
- food restriction T

- Ghrelin T

- Leptin J

- food intake 4

POMLC respond to: satiety
- Glucose T
Leptin T




Il. Neural circuits of hunger and satiety

c) balancing function of the ARC (the arcuate nucleus)

QUESTION: do these energy state-sensitive neurons control feeding?



Testing the role of AGRP neurons in ARC: chemogenetic stimulation using DREADDs

Mice: AgRP-ires-Cre

: . n [y - !
LITR human synapsin Auayow-baewy WPR }5 polyA = R-TR /C\a@\
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Krashes et al., J Clin Invest, 2011



Testing the role of AQRP neurons in ARC: chemogenetic stimulation using DREADDs
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Krashes et al., J Clin Invest, 2011

= Acute chemogenetic stimulation of AgRP neurons stimulates eating in fed mice
= Also, it acutely stimulates anabolic regime (reduced O, consumption)
— Chronic stimulation leads to a remarkable but reversible weight gain (fat mass)



Testing the role of AGRP neurons in ARC: chemogenetic stimulation using DREADDs

Ad libitum food was removed after CNO injection

No. of ambulatory episodes
along the horizontal plane
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Krashes et al., J Clin Invest, 2011

= Acute stimulation of AgRP neurons stimulated mobility only if food was absent (foraging?)






Testing the role of AQRP neurons in ARC: chemogenetic inhibition using DREADDs

Mice: AgRP-ires-Cre; hM4Di in ARC

Slice patch recording for confirmation

F CNO (10 uM) G .
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o
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=
3
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= Conversely, acute chemogenetic inhibition of AgRP neurons reduced feeding for hours



Testing the role of AGQRP neurons in ARC: optogenetic stimulation using ChR2

Mice: AgRP-ires-Cre
AAV : FLEX : ChR2-tdTomato
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Aponte et al., Nat Neurosci, 2011

— Optogenetic stimulation of AgRP neurons stimulates voracious food intake within minutes
= This behavior dose-depended on the number of stimulated neurons in ARC
= In line with chemogenetic results above, AgRP neurons in ARC are orexigenic



Testing the role of AGQRP neurons in ARC: genetic ablation experiment

Mice: AgRP-ires-Cre; Diphteria
toxin receptor (DTR) in ARC;

hole-bodv Lo, iniecti A AAV DIO DTR
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Wu et al., Nature, 2012

= In contrast, ablation of AgRP neurons stops food intake, leads to weight loss and death



Testing the role of POMC neurons in ARC: chemogenetic stimulation using DREADDs
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Zhan, Zhou et al., J Neurosci, 2013

= Chronic (>3 days) chemogenetic stimulation of POMC neurons in ARC is anorexigenic



Testing the role of POMC neurons in ARC: optogenetic stimulation using ChR2

Mice: POMC-ires-Cre
AAV:FLEX:ChR2-tdTomato (optostimulation for 24 h!)

From
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Aponte et al., Nat Neurosci, 2011

—> Chronic optogenetic stimulation of POMC neurons in ARC has anorexigenic effect



Testing the role of POMC neurons in ARC: genetic ablation experiment

Mice: POMC-Cre
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= In contrast, ablation of ARC POMC neurons in ARC activates anabolic (energy saving) mode



AgRP and POMC neurons: sensors of hunger and satiety states, respectively

AgRP respond in vivo to: hunger POMLC respond in vivo to: satiety

- food restriction T - glucose T
- Ghrelin T - Ghrelin
- Leptin J - Leptin T

food intake ¥

Effects of manipulating activity

Effects of manipulating activity

AgRP stimulation: anabolic
- voracious eating
- searching for food

POMC stimulation: catabolic
- lower appetite
- chronic weight loss

- weight gain

AgRP inhibition: Catabolic POMC inhibition/IOSS: anabOIiC
- low appetite - increased food intake

- weight loss - weight gain (fat)

-  lower metabolism
AgRP loss: anorexia, death



Il. Neural circuits of hunger and satiety

d) local- and long-range inhibition by the AgQRP arcuate neurons

QUESTION: what is the network role of AQRP neurons in feeding control?



AgRP locally and unidirectionally inhibits POMC neurons in the ARC

b
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Atasoy et al., Nature, 2012

= Hunger-sensing GABAergic AgRP neurons locally suppress activity of satiety-sensing
glutamatergic POMC neurons



Co-activation of AQRP and POMC neurons in ARC: AgRP-mediated effect dominates

h AGRP-ChR2; POMC-ChR2 i 60 m— ja

FﬁLaser “5’ 1.21
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Atasoy et al., Nature, 2012

—> AgRP neurons most likely inhibit other tagrets outside the ARC nucleus



AgRP ARC neurons selectively target MC4 receptor expressing PVH neurons

Mice: MC4R-Cre x AgRP-Cre

C
MC4R:GFP  AgRP '
| connected)
ARC PVH
Wm n=25/30
; __|50pA
+ PTX 500 ms
Non- o
@ MC4R (only 20%
ARC PVH connected)
W n=2/10
_, 50 pA
+PTX 500 ms

Garfield et al., Nat Neurosci, 2015

—> AgRP neurons inhibit MC4R* neurons in the PVH
= This effect is likely due to GABA and peptidergic co-transmission



ARC

Mice: AgRP-Cre; ChR2 in ARC

a Antagonist + laser
¥,
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Atasoy et al., Nature, 2012

—> NPY is co-released from AgRP/NPY neurons and contributes to PVH inhibition
—> Effect of AgRP activity on feeding is partially confined to ARC->PVH circuit



ll. Neural circuits of hunger and satiety

e) role of PVH in regulation of appetite

QUESTION: does PVH signal satiety and negatively control feeding?



Possible downstream target: MC4R* neurons synapse in the lateral parabrachial nucleus

Mice: MC4R-Cre; Synaptophysin-mCherry in PVN

LPBN = lateral PBN
(parabrachial nucleus)

|50 pA

n=11/19 500 ms
+ CNQX

Garfield et al., Nat Neurosci, 2015

— MC4R* PVH neurons project to LPBN and excite glutamatergic neurons therein



PVH to LPBN circuit is active at satiety state and has anorexigenic effect
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Garfield et al., Nat Neurosci, 2015

= LPBN-projecting PVH MCR4* neurons fire more at satiety state
— Chemogenetic inhibition of LPBN postsynaptic vGluT2* neurons increases feeding



PVH to LPBN circuit has anorexic effect

Mice: MC4R-Cre; ChR2 in PVN
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Garfield et al., Nat Neurosci, 2015

—> Optogenetic stimulation of PVH MC4R* terminals in LPBN reduces feeding even in
fasted (very hungry) animals



Summary: feeding control circuit from ARC to PBN via PVH

leptin 1
o insulin 1

| b1 glucose t
ghrelin |
orexin |
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Exercise reading to explore the role of PBN->CeA circuit in feeding (malaise part of PBN)

> anorexigenic NTS

LETTER

doi:10.1038/nature12596

Genetic identification of a neural circuit that
suppresses appetite

Matthew E. Carterl’zT, Marta E. Soden“, Larry S. Zweifel>* & Richard D. Palmiter?



Il. Neural circuits of hunger and satiety

f) motivational valency of hunger and satiety imposed by the ARC-PVH circuit

QUESTION: is the activity of hunger- and satiety responsive neurons
perceived as aversive or as rewarding?



AgRP neuronal activity influences preference for flavour (triggers aversion)

Mice: AgRP-Cre; ChR2 in ARC
Non-nutricious gels with different flavours
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Betley et al., Nature, 2015

—> Optogenetic stimulation of ARC AgRP neurons causes negative preference for flavour



Suppression of AGRP activity causes preference for flavour

Mice: AgRP-Cre; Glycine receptor-based iDREADD into ARC
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Betley et al., Nature, 2015

— Chemogenetic inhibition of ARC AgRP neurons causes positive preference for flavour



Suppression of AgRP activity causes conditioned place preference in hungry mice

Mice: AgRP-Cre; Glycine receptor-based iDREADD into ARC
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— Chemogenetic inhibition of ARC AgRP neurons causes positive preference for context
if the animals were food-restricted (FR) during conditioning, not if ad libitum fed (AL)



Activation of MC4R* PVH neurons causes conditioned place preference in hungry mice

Mice: MC4R-Cre; ChR2 into PVH

Real-time place
preference experiment
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Garfield et al., Nat Neurosci, 2015

— Optogenetic stimulation of PVH MC4R* neurons causes positive preference for
context if the animals were food-restricted



AgRP neuron activity is predictive, based of food quality, taste, memory, efc.

Mice: AgRP-ires-Cre, injected GCaMP6 into ARC
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Remember similar anticipatory phenomena observed in thirst (Week 7)! Betley et al., Nature, 2015

= In food-restricted mice, AgRP neurons react immediately on food presentation
= Activity of AgRP neurons is reset if the food is removed or turns out false
—> Decrease of firing frequency predicts food-associated cue after conditioning



Summary: AQRP-POMC-PVH neurons reflect motivational values of hunger and satiety

\ PBelo

anorexigenic (feel sated, can relax)
stimulation -> positive valence

anorexigenic

—} Sensory detection of food

4

Food need: Satiated
Foraging Food quality: Energy poor
Food accessibility: Inaccessible
Response: EIEIN Weak
J- Fast anticipatory
regulation

3V —— OMC

Feeding Slow homeostatic
regulation

orexigenic (feel hunger, need to eat)
stimulation -> negative valence — Hormones, nutrients

inhibition -> positive valence
Chen et al., Cell, 2015

>A

Y



More detailed, but far from complete, schematic circuitry of feeding control (for geeks)
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(171
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Molecular keys:

oMSH: melanocyte stimulating hormone
CART: cocaine-amphetamine-related transcript
POMC: proopiomelanocortin

NPY: neuropeptide Y

AgRP: agouti-related protein

MC4R: MC4 receptor for aMSH

Y1r: NPY receptor 1

CCK: cholecystokinin

SF1: steroidogenic factor 1

Vagus (X), hepatic branch

s facial (VII),
[13,19, 21] PBelo PBN  glossopharyngeal (IX)
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O Glutamatergic —e
O GABAergic —

Sensory inputs @

Hormonal inputs

Anatomical keys:

aBNST: anterior bed nucleus of stria terminalis

ARC: arcuate hypothalamic nucleus

PVH: paraventricular hypothalamic nucleus

3V: 3rd ventricle

CeA: central amygdala (medial, lateral, capsular)

NTS: nucleus of tractus solitarius
PVT: paraventricular thalamus

VMH: ventromedial hypothalamic nucleus
LH: lateral hypothalamic area

VTA: ventral tegmental area

pLC: locus ceruleus posterior

ROb, RMg: raphe obscurus and magnus
PBN: parabrachial nucleus

PBelo: parabrachial outer external lateral
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