

Teachers: Ralf Schneggenburger and Olexiy Kochubey

TAs: Jinyun Wu, Runzhong (Yvonne) Zhang

Week 2 – Techniques to study Neural Circuits

- 1) Propose at least two possibilities to achieve conditional expression of exogenous genes in specific cell types of the mouse brain. For one of these possibilities, assume using wild-type mice, and for the other – assume using transgenic mouse line(s). Please explain the rationale (mechanism) and discuss pluses and minuses of both proposals.
- 2) Please list the viral vector tools that you know which can be used for anterograde and retrograde labeling approaches. Describe the general principle/properties for each tool.
- 3) It is known that lateral amygdala (LA) receives auditory inputs from both the auditory cortex (Au) and the auditory thalamus (MGM). Using a wild-type mouse as a model system and AAV as a tool, propose an experimental design (specific AAV vectors and locations of injections), with which one would specifically label those LA neurons that receive cortical inputs with a red fluorescent protein (tdTomato), and those LA neurons which receive thalamic inputs - with a green fluorescent protein (eGFP). How would you modify your design if you need to label with a blue fluorescent protein (eBFP) only those LA neurons which are innervated by both the Au and MGM (if any)?
- 4) Explain the main advantages of the optogenetic and chemogenetic approaches used to manipulate neuronal activity over extracellular stimulation. Please also compare optogenetics with chemogenetics and discuss the main strength/weakness of both approaches.
- 5) Explain the key principles of extracellular recordings of neuronal activity in a “single unit” mode: how recordings are done, what is sampled and what does it reflect at the single-cell level, and what are the main steps in the data processing?
- 6) Explain the principle of intracellular Ca^{2+} measurements using fluorescent Ca^{2+} -indicators. Derive the steady-state (equilibrium) equation for a Ca^{2+} -bound fraction of fluorescent indicator as a function of free intracellular calcium concentration ($[\text{Ca}^{2+}]_i$).

Explain the meaning of dissociation constant (K_D) of the calcium indicator and how it influences the measurements of transient changes in $[Ca^{2+}]_i$.

7) ***Read and discuss the following paper:***

Mahn, M., Saraf-Sinik, I., Patil, P., Pulin, M., Bitton, E., Karalis, N., Bruentgens, F., Palgi, S., Gat, A., Dine, J., et al. (2021). **Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin.** *Neuron* 109, 1621-1635.e8.

<https://doi.org/10.1016/j.neuron.2021.03.013>.