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The difficulty of faithfully recapitulating malarial protein complexes in heterolo-
gous expression systems has long impeded structural study for much of the
Plasmodium falciparum proteome. However, recent advances in single-particle
cryo electron microscopy (cryoEM) now enable structure determination at
atomic resolution with significantly reduced requirements for both sample quan-
tity and purity. Combined with recent developments in gene editing, these
advances open the door to structure determination and structural proteomics
of macromolecular complexes enriched directly from P. falciparum parasites.
Furthermore, the combination of cryoEM with the rapidly emerging use of
in situ cryo electron tomography (cryoET) to directly visualize ultrastructures
and protein complexes in the native cellular context will yield exciting new
insights into the molecular machinery underpinning malaria parasite biology
and pathogenesis.

The malaria parasite Plasmodium falciparum poses specific challenges to
structural studies

Malaria (see Glossary) exacts a devastating toll on global public health, with an estimated 3.8 bil-
lion people, half the world’s population, currently at risk [1]. The recent rise of drug-resistant malaria
parasites poses an urgent need to identify new targets for the development of antimalarial treat-
ments with novel modes of action [2—7]. Furthermore, a large number of the biological pathways
driving parasite biology and pathogenesis remain enigmatic. For instance, the molecular mecha-
nisms by which parasite effector proteins are trafficked to key subcellular compartments such
as the host cell membrane are largely unknown. The limited insight into these mechanisms hinders
understanding of malaria parasite biology and impacts efforts to combat the pathogen.

Structure determination plays an important role in addressing these unknowns, often revealing
previously unidentified interactions and pathways, and subsequently providing key insights into
both the functions and molecular mechanisms of potential therapeutic targets. Unfortunately,
there are several difficulties in recapitulating the proper folding and assembly of malarial protein
complexes in heterologous systems that have precluded structural and biochemical study of
many important P. falciparum protein complexes using conventional approaches. For example,
the P. falciparum genome is exceptionally AT rich, with an average AT content of 80.6% and a
heavily skewed codon usage bias, making cloning into heterologous expression
systems challenging [8,9]. Although this challenge is now mitigated with the use of codon optimi-
zation algorithms [10], much of the proteome is highly aggregation-prone, littered with low-
complexity regions and extensive charged-residue repeats, posing a major obstacle to
heterologous expression of many P. falciparum proteins [11,12].

As evidenced by the severe paucity of high-resolution P. falciparum structures in the Protein Data
Bank (PDB) relative to other organisms, these obstacles have hampered structural studies of the
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P. falciparum proteome using conventional methods such as X-ray crystallography (XRC) and nu-
clear magnetic resonance (NMR) which depend heavily on the production of large amounts of
highly purified protein via recombinant overexpression [13-16] (discussed further below).
These challenges have hindered efforts to build a better understanding of novel malaria parasite
biology. Consequently, many of the molecular mechanisms underlying the ability of the parasite to
hijack human erythrocytes have remained enigmatic (Box 1).

Fortunately, the explosion of recent and ongoing advances in determining the structures [17-33]
and dynamics [34-38] of macromolecular complexes using cryoEM have set in motion a paradigm
shift in structural biology. This shift has particularly significant implications for the structural study of
previously intractable biological systems such as P. falciparum, as there are no known
homologs outside the Plasmodium genus for up to one-third of the proteome [39], and only 5%
of the proteome has been structurally characterized'. In comparison, high-resolution structural
information is available for more than 23% of the human proteome'. In this review we first discuss
how cryoEM has enabled structure determination of previously intractable, recombinantly
expressed P. falciparum proteins. We then highlight how several key advantages of the cryoEM
technique have been leveraged to enable structure determination of endogenously expressed
protein complexes enriched directly from native malaria parasites. Looking forward, we envisage
an integrated view of malarial protein complexes in their native cellular contexts by combining
high-resolution single-particle cryoEM structures with in situ cryo electron tomography
(cryoET) imaging of protein complexes at subnanometer resolution in intact parasites.

CryoEM enables structure determination of previously intractable P. falciparum
protein complexes overexpressed in recombinant systems

CryoEM is now routinely used to determine high-resolution structures of challenging proteins and
complexes that were refractory to structure determination using XRC because they could only be
produced in small quantities, even when recombinantly overexpressed [40]. Indeed, the amounts
of protein required to achieve an atomic-resolution structure using cryoEM can be up to 3-4
orders of magnitude less than those typically required for XRC. Recently, cryoEM coupled with het-
erologous expression has enabled structure determination of key P. falciparum protein
complexes that play important roles in antimalarial drug resistance and parasite invasion (Box 1).

For instance, a 3.2 A single-particle cryoEM structure of the P. falciparum chloroquine resistance
transporter (PfCRT), a drug/metabolite transporter [41] that is responsible for conferring resis-
tance to the antimalarial drugs chloroquine and piperaquine [42,43], was determined using
PfCRT expressed recombinantly in HEK293 cells and bound to a PICRT-specific antigen-binding
fragment to overcome current cryoEM size limitations [44]. The structure reveals a cluster of
mutations in the central cavity that transports physiological substrates across the digestive
vacuole (DV) membrane (Figure 1A and Box 1). These mutations are known to affect the binding
and export of chloroquine or piperaquine from the DV by PfCRT, and the study provides a struc-
tural framework for understanding the molecular basis of parasite resistance to these drugs [44].

In addition, two recent cryoEM studies of proteins on the merozoite surface have helped to
expand our understanding of merozoite invasion [45-47] (Box 1). The family of merozoite surface
proteins (MSPs) form a fibrillar coat on the surface of the parasite and play roles in invasion. The
most abundant MSP — PAMSP1 — binds the erythrocyte surface proteins glycophorin A and band
3, and is crucial for successful invasion [48-51]. CryoEM was used to determine a 3.1 A structure
of recombinantly expressed PIMSP1 monomer (Figure 1B), as well as two homodimeric forms
and five other subtly different monomeric confirmations, highlighting the flexibility of the
PMMSP1 structure [45]. PAMSP1 interacts with many other MSPs and erythrocyte proteins, and
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Glossary

Amphipathic: a molecule that has both
hydrophilic and hydrophobic properties.
Apicomplexa: a phylum of unicellular
parasites.

Apicoplast: an organelle found in most
apicomplexan parasites that has four
membranes and is the site of many
metabolic pathways.

Codon usage bias: the use of specific
codons during mRNA translation versus
other synonymous codons.
Cryo-electron tomography
(cryoET): a technique in which a series
of 2D images, known as a tilt series, is
collected from a sample as it is tilted.
Cryo-focused ion beam (cryo-FIB)
milling: the process of ablating frozen
cell material using the ion beamin a
cryo-FIB scanning electron microscope
(cryo-FIB-SEM)) for the purpose of
creating a thin cross-section of the cell
for cryoET imaging.

Effector proteins: proteins of a
pathogen that modulate the function
and metabolism of the host cell.
Immunogenic epitopes: molecular
pattemns of a pathogen that can elicit an
immune response.

Lamella: a thin cross-section of a
frozen cell created in a cryo-FIB-SEM for
cryoET imaging.

Malaria: a disease caused by the
pathogen Plasmodium that is
characterized by intense cyclic fevers.
Merozoite: the invasive, asexual form
of Plasmodium in the blood stage that
infects erythrocytes.

Micrograph: an image taken using a
microscope.

Recombinant or heterologous
expression: expression of protein(s) in
model organisms such as Escherichia
coli, Saccharomyces cerevisiae, insect,
or mammalian cell lines rather than in the
source organism, often at much higher
expression levels (known as
overexpression).

Sporozoites: these develop from
sexual reproduction in the mosquito
midgut and are injected into a human
host during a mosquito blood-feed.
Structural proteomics: uses structure
determination to identify specific
proteins in a complex mixture of
proteins.

Tilt series: a series of 2D images taken
of an object or area of interest from arrange
of angles during cryoET data collection.
Tomogram: a 3D reconstruction of a
slice or section through a 3D object,
reconstructed from a tilt series.
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Box 1. Malaria life cycle and erythrocyte invasion

Malaria is a disease caused by single-cell, eukaryotic parasites from the genus Plasmodium. Of the human-infecting species of Plasmodium, P. falciparum is associated
with the most severe forms of the disease and the highest mortality. The definitive host of P. falciparum is the Anopheles mosquito which transmits parasites to the hu-
man host during a blood feed. Within a newly infected human, parasites traverse to the liver, where they rapidly replicate before egressing into the bloodstream to initiate
the asexual replication cycle that occurs within erythrocytes (red blood cells, RBCs; Figure ). All the clinical manifestations of malaria are associated with the asexual,
intraerythrocytic replication of the parasites, highlighting the need to study the asexual lifecycle. Within the erythrocyte, the parasite feeds on host cell hemoglobin to
support its own growth before replicating into 16-32 daughter parasites, known as merozoites (Figure |A). The merozoites egress from the erythrocyte, remaining briefly
extracellular while merozoite surface proteins interact with receptors on a new erythrocyte host (Figure IB). After finding its new host cell, the merozoite reorients such
that its apical end is in contact with the erythrocyte, and then the parasite forces itself into the host cell (Figure IC). After entering the erythrocyte, the cycle begins again:
the parasite exports hundreds of proteins into the host to create its niche (Figure ID) and imports hemoglobin to consume and prepare for a new round of replication. A
subset of asexual parasites exit this replication cycle to develop into gametocytes that are taken up into a new mosquito host for sexual development and propagation to
anew human host.
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Figure |. Malaria life cycle and erythrocyte invasion. Abbreviations: DV, digestive vacuole; PV, parasitophorous vacuole; PVM, PV membrane; PTEX, Plasmodium
translocon of exported proteins; RBCs, red blood cells; PSAC, plasmodial surface anion channel .

its inherent flexibility may underlie the diversity of these interactions [48-50,52-56]. Importantly,
the cryoEM structure enabled mapping of immunogenic epitopes [57-59] for PAMSP1,
which is a candidate for vaccine development.

Following initial interaction with the erythrocyte, the binding of surface-exposed reticulocyte-bind-
ing protein homolog 5 (PfRN5), in complex with the proteins cysteine-rich protective antigen
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Figure 1. Plasmodium falciparum cryo electron microscopy (cryoEM) protein structures from recombinant expression systems. (A) Surface representation
of PFCRT cryoEM structure (PDB ID: 6UKJ)' [44]. Substituted amino acids in cavity, resulting from genetic mutations that enable chloroquine (CQ) and piperaquine (PPQ)
binding, are colored light blue. (B) CryoEM structure of the PAMSP1 dimer [45]. The left protomer shows reconstruction of the six different monomer conformations found in
sample, with arrows indicating flexibility (EMD-11150-55)". The right protomer is shown as a cylindrical representation of the atomic model (PDB ID: 6ZBJ). The asterisk
indicates the interface between two protomers which is highlighted in light pink. (C) CryoEM reconstruction of the Rh5-CyRPA-Ripr-basigin complex (EMD-9192)" [46].
Cylindrical representation for Rh5 (light pink), CyRPA (coral), and Ripr (salmon); the basigin binding site is indicated with an arrow (PDB ID: 6MPV)'. Representations for
all reconstructions and models were created in ChimeraX [101]. Abbreviations: CRT, chloroquine resistance transporter; DV, digestive vacuole; MSP, merozoite surface
protein; Rh5, reticulocyte-binding protein homolog 5; Ripr, Rh5-interacting protein.

(PfCyRPA) and Rh5-interacting protein (PfRipr), to the erythrocyte membrane protein basigin is
required for successful invasion [54,60,61]. Furthermore, the complex is likely involved in the for-
mation of a pore between parasite and host, enabling an influx of Ca®* ions that is essential to
complete invasion into the erythrocyte [61-64]. Despite its importance for invasion, the structure
of the ternary complex remained unknown until the recent publication of two cryoEM structures of
recombinantly expressed PfCyRPA-Ripr and PMRh5-CyRPA-Ripr complexes at overall resolu-
tions of 5.07 Aand 7.17 A, respectively [46] (Figure 1C). Importantly, the ternary structure re-
vealed that the three subunits assemble in a 1:1:1 ratio, with PfCyRPA acting as a core that
joins PMRh5 and PfRIipr. Fitting a previously published PRh5-basigin crystal structure [65] into
the ternary complex cryoEM density yielded insights into the possible mechanism of PIRh5—
Ripr insertion into the erythrocyte membrane; briefly, the N-terminus of PfARh5 binds to basigin,
orienting the PMRh5-Ripr complex parallel to the erythrocyte membrane. This positions the am-
phipathic P/Rh5 C-terminal helical bundle close to the membrane, potentially initiating
insertion into the membrane. The cryoEM structure of the ternary complex provides an important
step forward in understanding the role of PfRh5-CyRPA-Ripr in parasite invasion and will enable
future studies seeking to block invasion by interfering with the complex.

CryoEM enables structure determination of endogenous P. falciparum protein
complexes

In the previously described studies, the reduced sample requirement associated with cryoEM
was leveraged to enable structure determination of noteworthy protein complexes that eluded
characterization by XRC, leading to important observations about the biology of the parasite.
However, another implication of the reduced sample requirement should not be overlooked:
the requirement is sufficiently low to enable cryoEM structure determination of endogenously
derived complexes [66-70]. In addition, unlike XRC, which requires highly purified samples to
allow billions of identical protein molecules to pack together into a highly ordered crystal lattice,
protein molecules in cryoEM samples are preserved in a frozen-hydrated state [71,72], thereby
capturing the full range of conformations and orientations sampled by the molecules while in
aqueous solution. The ramifications for P. falciparum and other non-model organisms with
proteomes that resist expression in recombinant systems are significant. CryoEM structure
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determination of endogenous protein complexes enriched directly from the parasite presents an
exciting path forward for the many challenging protein complexes that are not amenable to
expression in heterologous systems, enabling structure determination of these important
complexes in near-native states. Further, this approach ensures the presence of biologically
relevant post-translational modifications and potentially allows the identification of previously
undiscovered native substrates or binding partners, and even the discovery and characterization
of previously unknown protein complexes.

CRISPR-assisted tagging of endogenous proteins enables structure determination of complexes
enriched directly from P. falciparum parasites using cryoEM

Combined with advances in CRISPR/Cas9-assisted parasite gene editing that enable the addi-
tion of affinity tags to proteins of interest for purification [69,73-75], the endogenous approach
to cryoEM structure determination can be quite powerful. For example, this approach was first
used to determine the structure and mechanism of an essential malarial membrane protein com-
plex known as the Plasmodium translocon of exported proteins (PTEX) [69]. PTEX is the sole
gateway for export of hundreds of effector proteins into the host cell, a process essential to
the ability of the parasite to inhabit and reproduce within human erythrocytes (Box 1). To obtain
the long-sought structure of this novel translocon, endogenous PTEX was enriched directly
from P. falciparum parasites via an epitope tag inserted using CRISPR/Cas9 technology into
the genetic locus encoding a PTEX subunit. Single-particle cryoEM was then used to determine
structures of the native PTEX complex in two distinct functional states, yielding the first reported
near-atomic-resolution cryoEM structures of protein(s) isolated directly from a native source using
an epitope tag inserted into the endogenous locus with CRISPR/Cas9 gene editing [69].

Remarkably, native cargo protein peptides were observed still bound in the central channel of the
PTEX translocon in both structures (Figure 2), a direct consequence of the fact that the PTEX complex
was enriched from parasites harvested at a point in the life cycle when they are actively exporting
hundreds of effector proteins [69]. This serendipitous outcome provided a key insight into the
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Figure 2. Cryo electron microscopy (cryoEM) of the endogenous Plasmodium falciparum PTEX complex reveals native cargo. CryoEM density maps of
HSP101 from the PTEX translocon in transparent white with cargo (pink) and interdigitating pore loop tyrosines (purple, stick representation) in the engaged and resetting
states (EMD-8951, EMD-8952)". Maps are bisected to show the endogenous cargo and pore loop tyrosines in the protein-unfolding channel of the HSP101 unfoldase.
Comparing the positioning of these pore loops relative to the cargo between the two states suggests a model for the mechanisms by which HSP101 unfolds the cargo
protein and threads it through the transmembrane channel of the translocon. Full PTEX complex structures are shown in the insets for context (PDB IDs: 6E10, 6E11)".
Abbreviations: EXP2, exported protein component 2; HSP101, malaria heat shock protein 101; PTEX, Plasmodium translocon of exported proteins.
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molecular mechanism of effector protein translocation by the PTEX translocon (Figure 2) that would
have been missed had the complex been artificially reconstituted in a heterologous system.

This work demonstrates that, by enabling structure determination of endogenously derived
samples, cryoEM not only provides a path forward for many previously intractable malarial
macromolecular complexes but also presents the possibility of observing as yet undiscovered
native substrates, binding partners, or post-translational modifications [76], none of which would
be found in samples produced in heterologous systems. Similar unanticipated observations have
been reported in a growing number of endogenous structures [69,76-81], and it is increasingly
clear that the potential for discovering native binding partners, substrates, or modifications repre-
sents a major advantage of endogenous cryoEM that should be capitalized on.

Leveraging cryoEM to discover previously unknown protein complexes within heterogeneous
samples enriched from P. falciparum cell lysates

With cryoEM, protein molecules are more likely to be captured in near-native and biologically rel-
evant states, and the resulting 2D projections of individual protein molecules in a dataset of
cryoEM micrographs, known as particles (Figure 3A), can be extensively classified before
distinct subsets of self-similar particles are averaged to yield the final high-resolution 3D recon-
structions (Figure 3B,C) [24,26,32,82,83]. During these powerful 2D and 3D classification
steps, the sample is subjected to what is in essence an additional in silico purification step. Be-
cause of this extra step, sample heterogeneity that would be prohibitive for XRC is not only
tolerated but can sometimes be leveraged to achieve multiple high-resolution structures of a
single protein complex in different conformational states (Figure 3D) [69,84,85], or even several
distinct structures of completely unrelated protein complexes from a single cryoEM dataset [68].

We recently developed a cryoEM-enabled endogenous structural proteomics approach that
leverages the capacity for in silico purification to determine multiple structures from coarsely fraction-
ated parasite lysates containing a heterogeneous mixture of protein complexes (Figure 4A, key figure)
[68]. Parasite lysates are subjected to sucrose gradient fractionation, and the protein complexes in the
resulting fractions are identified using a combination of cryoEM, mass spectrometry, and cryolD, a
program that identifies proteins in cryoEM density maps of unknown protein complexes at better
than 4.0 A, without prior knowledge of their primary sequence(s) (Figure 4A-C) [68]. This approach
was used to identify and determine the structures of three P. falciparum protein complexes —

Particle

Particle picking 2D Classification Initial 3D Reconstruction Final 3D reconstruction 3D Model
Trends In Blochemlcal Sclences
Figure 3. Single-particle cryo electron microscopy (cryoEM) data-processing workflow. (A) CryoEM micrographs of a protein sample. Particles are identified, or
'picked’, then extracted from the micrographs. (B) Extracted particles are sorted into classes containing self-similar views, and are then averaged to produce 2D class
averages. (C) Particles from high-resolution 2D class averages are then used to calculate 3D reconstructions. (D) 3D reconstructions are further classified and refined to
yield one or more final high-resolution cryoEM density maps, which enable atomic model building (E).
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Key figure

Cryo electron microscopy (cryoEM), focused ion beam scanning electron microscopy (FIB-SEM),
and in situ cryo electron tomography (cryoET) workflow
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Figure 4. (A) Tag-free sample preparation for endogenous structural proteomics. Protein complexes are enriched from malaria parasite lysates using sucrose gradient
fractionation. Mass spectrometry and negative-stain electron microscopy are used to identify fractions containing protein complexes of interest, which are then plunge-
frozen on cryoEM grids for (B) single-particle cryoEM imaging in a high-resolution 300 kV transmission electron microscope (TEM). (C) CryoEM analysis yields near-
atomic-resolution cryoEM density maps. CryolD software is used to identify the protein(s) in the maps, enabling model building of atomic-resolution structures. (D)
Sample preparation for endogenous CRISPR-tagged single-particle cryoEM. Affinity tags are inserted into the endogenous loci of proteins of interest in malaria
parasites using CRISPR/Cas9 gene editing. Tagged proteins are affinity purified from parasite lysates, plunge-frozen on cryoEM grids, and used for single-particle
cryoEM imaging (B). (E) CryoEM analysis yields near-atomic-resolution cryoEM density maps, enabling atomic model building. (F) Sample preparation for in situ cryoET.
Proteins of interest are fluorescently tagged using CRISPR/Cas9 gene editing. The resulting transgenic P. falciparum parasites are grown in synchronous culture, and
parasite-infected red blood cells (RBCs) are isolated and plunge-frozen directly on cryoEM grids. (G) Vitrified RBCs are then thinned in a dual-beam cryo-focused ion
beam scanning electron microscope (cryo-FIB-SEM), yielding sections 100-200 nm in thickness called lamellae. Vitrified grids can be visualized in a cryo-correlative light
and electron microscope (cryo-CLEM) to identify promising sites for cryo-FIB milling. (H) Tilt series are collected on lamella using a dose-symmetric tilt scheme ranging
from —60° to +60° on a 300 kV TEM. ()) Tilt series are aligned and reconstructed into 3D volumes called tomograms. 3D segmentation and subtomogram averaging (STA)
are then used to reveal subcellular details at subnanometer resolutions. (J) Integrating atomic-resolution information from single-particle cryoEM with the cellular context
from in situ cryoET provides further insights into the molecular mechanisms underlying parasite biology and pathogenesis. High-resolution reconstructions from cryoEM
can be inserted into lower-resolution subtomogram averages to give context on the immediate environment. Reconstructions can also be mapped back to the original 3D
segmentation for cellular context.

glutamine synthetase, M18 aspartyl aminopeptidase, and the 20S proteasome — from images of a
single sucrose-gradient fraction in a proof-of-principle study [68]. To further demonstrate the power
of this approach, the endogenous structural proteomics approach was used in a second study to de-
termine a structure of the P. falcjparum RhopH complex [70].

The endogenous structural proteomics approach will be particularly impactful in organisms such

as P. falciparum where dissection of important protein—protein interactions is often laborious
owing to the genetic intractability of the parasite.
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In situ cryoET holds potential to resolve cellular ultrastructures of intact,
parasite-infected erythrocytes at subnanometer resolution

The single-particle cryoEM studies described thus far have all made significant contributions to
our understanding of various aspects of malaria parasite biology and pathogenesis. However,
one major drawback of single-particle cryoEM studies is their dependence on purified protein
complexes. During the purification process, red blood cells and their resident parasites must
be broken open, destroying the cellular context within which macromolecular complexes exist,
along with many important clues to the function and mechanism of the proteins in their native en-
vironments.

The loss of cellular context can be addressed using cryoET, a technique wherein a series of im-
ages are taken of a vitrified, intact cell from many angles, and are then aligned and combined
to produce a 3D reconstruction of the cell, called a tomogram, to directly visualize intracellular
features within their preserved context. For example, earlier this year, a cryoET study of the
Trypanosoma brucei flagellum revealed the architecture underlying the flagellum-driven, non-
planar helical motility of the parasite, thereby elucidating how the specific manner in which the
axoneme and the paraflagellar rod are connected enables the typical movement of T. brucei
that is essential for infection [86]. In apicomplexan parasites, cryoET has been used to investi-
gate the apex of Toxoplasma parasites [87], the membrane structure of the Plasmodium
apicoplast [33], and the nuclear pore complexes and microtubule structures within Plasmodium
sporozoites [39,90].

However, sample thickness is one of the major determinants of achievable resolution in cryoET and
imposes a limit on the types of samples that can be investigated with this method. Consequently,
cryoET studies such as those listed above have been limited to analyses of isolated organelles, the
thinnest areas of cells like the parasite apex, or life stages that are naturally thinner, for example
Plasmodium sporozoites.

The recent development of cryo-focused ion beam (cryo-FIB) milling, that uses a cryo-FIB-
scanning electron microscope (cryo-FIB-SEM) to create thin 100-200 nm sections, called lamellae,
of vitrified, unfixed cells has enabled cryoET beyond naturally thin cell areas [91]. This combination of
cryo-FIB milling with cryoET, known as in situ cryoET (Figure 4F-H), enables the collection of tilt
series anywhere in any cell, and with significantly improved contrast, thus yielding tomographic
reconstructions in which supramolecular features and even individual protein complexes are resolved
at unprecedented subnanometer resolution [92,93]. Further averaging of repeated particles within a
tomogram using a method called subtomogram averaging can yield 3D reconstructions of the
particles at resolutions approaching sub-4 A [28]. These reconstructions can then be mapped
back into the full cellular tomogram to capture the cellular context (Figure 41) [94-96].

Although the potential advances enabled by in situ cryoET are significant, it is still a relatively new tech-
nique that is subject to a fair share of limitations and challenges (see Outstanding questions). Even
with recent innovations in automation, cryo-FIB miling remains a laborious, time-consuming, and
low-throughput technique. The achievable resolution for subtormogram averaging depends heavily
on the quality of the sample and the number of protein complexes that can be extracted from a tomo-
gram [97]. Ribosomes and proteasomes are highly abundant in cells and can therefore be found and
targeted with relative ease, as can repetitive ultrastructures. However, many proteins of interest are
more difficult to pinpoint in a crowded cellular environment, and targeting specific areas of the cell re-
mains challenging. Using cryo-correlative light electron microscopy (cryo-CLEM), light microscopy im-
ages of cells expressing fluorescently tagged proteins can be mapped onto SEM images of the same
sample, enabling reasonable targeting of specific regions in the x—y direction for FIB milling [98].
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However, for accurate mapping in the z direction, specialized confocal [99] or super-resolution micro-
scopes [98,100] are needed in combination with correlative software programs. To avoid ice contam-
ination from transferring devices and to improve ease of correlation, high-resolution light objectives
and detectors that can be integrated into the cryo-FIB-SEM instrument are currently under develop-
ment, but the resolution in z remains a significant obstacle. Despite current limitations, in situ cryoET
provides a window into cells at an unprecedented resolution.

Concluding remarks

The use of cryoEM is quickly advancing our understanding of malaria parasite structural biology
and of the mechanisms underpinning P. falciparum invasion and subjugation of human erythro-
cytes. By combining the subnanometer to near-atomic-resolution cellular context attainable
using in situ cryoET and subtomogram averaging with atomic-resolution structural information
from single-particle cryoEM (Figure 4J) (see Outstanding questions), we will be able to directly
visualize the molecular machinery underlying novel parasite biology and host—pathogen interac-
tions at atomic resolution. These high-resolution insights into P. falciparum biology will be invaluable
tools in the continuous need to develop new strategies for combating the parasite.
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