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In Brief
The molecular mechanisms
underlying SARS-CoV-2 infection
and disease severity are unclear.
We used multiomics analysis in
patient material and cell-line
models to delineate the metabolic
modulations caused by SARS-
CoV-2 infection. Plasmamannose
emergedasa strongbiomarker for
COVID-19 severity. SARS-CoV-2
depends on glutaminolysis and
glycolysis for infection and
replication. Infection of lung
epithelial cells indicated strong
metabolic adaptation with
mitochondrial dysfunction.
Inhibition of glycolysis and
glutaminolysis limits viral
production, which indicates a
potential host-directed novel
treatment strategy.

Highlights
• COVID-19 disease severity was characterized by increased plasma glucose and mannose.• Mannose is a strong biomarker of COVID-19 disease severity.• Glycolysis and glutaminolysis are essential for virus replication.• Blocking the metabolic pathways caused significant reduction in virus production.
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RESEARCH
Metabolic Perturbation Associated With
COVID-19 Disease Severity and SARS-CoV-2
Replication
Shuba Krishnan1, Hampus Nordqvist2, Anoop T. Ambikan1 , Soham Gupta1 ,
Maike Sperk1, Sara Svensson-Akusjärvi1 , Flora Mikaeloff1, Rui Benfeitas3 ,
Elisa Saccon1 , Sivasankaran Munusamy Ponnan4, Jimmy Esneider Rodriguez5 ,
Negin Nikouyan1, Amani Odeh6, Gustaf Ahlén1, Muhammad Asghar6 , Matti Sällberg1,
Jan Vesterbacka7, Piotr Nowak7,8, Ákos Végvári5 , Anders Sönnerborg1,6,
Carl Johan Treutiger2,7, and Ujjwal Neogi1,9,*
Viruses hijack host metabolic pathways for their replicative
advantage. In this study, using patient-derived multiomics
data and in vitro infection assays, we aimed to understand
the role of key metabolic pathways that can regulate severe
acute respiratory syndrome coronavirus-2 reproduction and
their association with disease severity. We used multiomics
platforms (targeted and untargeted proteomics and untar-
geted metabolomics) on patient samples and cell-line
models along with immune phenotyping of metabolite
transporters in patient blood cells to understand viral-
induced metabolic modulations. We also modulated key
metabolic pathways that were identified using multiomics
data to regulate the viral reproduction in vitro. Coronavirus
disease 2019 disease severity was characterized by
increased plasma glucose and mannose levels. Immune
phenotyping identified altered expression patterns of car-
bohydrate transporter,glucose transporter1, inCD8+Tcells,
intermediate and nonclassical monocytes, and amino acid
transporter, xCT, in classical, intermediate, and nonclassical
monocytes. In in vitro lung epithelial cell (Calu-3) infection
model, we found that glycolysis and glutaminolysis are
essential for virus replication, and blocking these metabolic
pathways caused significant reduction in virus production.
Taken together, we therefore hypothesized that severe
acute respiratory syndrome coronavirus-2 utilizes and
rewires pathways governing central carbon metabolism
leading to the efflux of toxicmetabolites and associatedwith
disease severity. Thus, the host metabolic perturbation
could be an attractive strategy to limit the viral replication
and disease severity.
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The global pandemic of coronavirus disease 2019 (COVID-
19) caused by the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) created a severe public health
crisis worldwide. Although most patients presented with mild
to moderate or no symptoms, patients having pre-existing
metabolic disorders like diabetes, cardiovascular diseases,
and obesity are at risk for severe and critical cases of infec-
tion. Some recent observational studies indicate that disease
severity in patients with COVID-19 is associated with plasma
metabolic abnormalities that include a shift toward amino acid
and fatty acid synthesis, altered energy, and lipid metabolism
(1–4). However, metabolic regulation of an individual always
depends on several factors, including age, gender, environ-
mental factors, dietary intake, and lifestyle. Such alterations in
metabolic regulation can change rapidly or adapt to an altered
situation, and sometimes have sustained effects over an
extended period. The initial phase of characterization of the
metabolic landscape of COVID-19 and its association with
disease severity has urged the need to understand how
metabolic reprogramming occurs during the acute SARS-
CoV-2 infection with the ultimate goal toward therapeutic
intervention.

Viruses are known to exploit the host metabolic machinery
to meet their biosynthetic demands for optimal replication
capacity (5). This cellular exploration is highly connected with
the initial host–viral response, thereby determining the disease
pathogenesis. Viral replication is dependent on extracellular
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Metabolic Perturbation in SARS-CoV-2 Infection
carbon sources such as glucose and glutamine. It induces a
plethora of metabolic alterations in host cell including host
central carbon metabolism, nucleotide, fatty acids, and lipid
synthesis that modulate viral pathogenesis and host response
(6). Our recent in vitro multiomics studies have shown that the
SARS-CoV-2 dysregulates PI3K/Akt/mammalian target of
rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF-1)
signaling in infected cells (7). These pathways regulate
glycolysis by altering glucose transporters (GLUTs) across cell
membranes. Targeting these pathways with inhibitors such as
MK2206 (Akt inhibitor) or 2-deoxy-D-glucose (2-DG; glycolysis
inhibitor) can lower the viral burden in the cells in vitro (7, 8).
This opens the area for host-based metabolic strategies to
inhibit viruses as an additional way other than direct-acting
antivirals to weaken the viral replication by metabolic
intervention.
In this study, we performed plasma proteomics targeting 92

plasma proteins related to inflammation and plasma untar-
geted metabolomics followed by immune phenotyping of the
lymphocyte and monocyte cell populations toward the
metabolite transporters. To understand the viral-induced
metabolic rewiring, we reanalyzed quantitative untargeted
proteomics data in SARS-CoV-2–infected lung, liver, kidney,
and colon-derived cell lines (9). We also modulated the key
metabolic pathways identified in the patient-based metab-
olomics data and cell model–based quantitative proteomics
data to regulate the viral reproduction. Our clinical and
experimental studies thus provide an account of metabolic
control during SARS-CoV-2 infection that can aid antiviral
therapeutics in COVID-19 through metabolic perturbation.
EXPERIMENTAL PROCEDURES

Study Designing and Patients

The COVID-19 patients (n = 41) who were PCR positive and hos-
pitalized in May 2020 were recruited from the South Hospital,
Stockholm. Based on the oxygen (O2) requirements, the patients were
categorized into (1) hospitalized—mild (O2 consumption <4 l/min) and
(2) hospitalized—severe (O2 consumption ≥4 l/min). The exclusion
criteria included known liver cirrhosis, severe renal insufficiency
(estimated glomerular filtration rate ≤30 ml/min/1.73 m2), chronic
obstructive pulmonary disease, and chronic lung disease leading to
habitual SpO2 ≤ 92%. In addition, COVID-19 PCR-negative samples
(healthy control [HC], n = 31) were also collected. Immunoglobulin G
antibody was tested on the HC samples as described previously (10),
and ten samples turned out to be SARS-CoV-2 Ab positive further
defined as HC-CoV-2 Ab+. The study was approved by regional
ethics committees of Stockholm (dnr 2020-01865) and abide by the
Declaration of Helsinki principles. All participants gave informed
consent. The patient identity was anonymized and delinked before
analysis.

Cell Line and Virus

Human lung adenocarcinoma cell line, Calu-3 (American Type
Culture Collection; HTB-55), was purchased. SARS-CoV-2 virus used
in this study was the first virus isolated from a Swedish patient (11).
2 Mol Cell Proteomics (2021) 20 100159
Chemicals and Materials

All information regarding reagents, antibodies, and critical com-
mercial kits are listed in Table S1.

Experimental Design and Statistical Rationale

Plasma untargeted metabolomics was performed by ultrahigh
performance LC–tandem mass spectroscopy (UPLC-MS/MS) using
global metabolomics (HD4) in Metabolon, Inc as described by us
recently (12). The samples were run in four different UPLC–MS/MS
methods: two separate reverse phase/UPLC-MS/MS methods with
positive ion mode electrospray ionization (ESI), one for analysis by
reverse phase/UPLC–MS/MS with negative ion mode ESI, and one for
analysis by hydrophilic interaction LC/UPLC–MS/MS with negative ion
mode ESI, with a single analysis for each sample (no technical or
biological replicates). Several types of controls were analyzed in
concert with the experimental samples: a pooled well-characterized
human plasma maintained by Metabolon, Inc served as a technical
replicate throughout the dataset and injected as every eighth samples;
extracted water samples served as process blanks injected as every
fourth, and a cocktail of quality control standards that were carefully
chosen not to interfere with the measurement of endogenous com-
pounds were spiked into every analyzed sample, allowed instrument
performance monitoring, and aided chromatographic alignment. In-
strument variability was determined by calculating the median relative
standard deviation (RSD) for the internal standards that were added to
each sample prior to injection into the mass spectrometers. The me-
dian RSD for the instrument variability of the run was 7%. Overall
process variability was determined by calculating the median RSD for
all endogenous metabolites (i.e., noninstrument standards) present in
the pooled quality control technical replicates, which was 9%. The
samples were randomized of the individuals from the study design
groups. The metabolomics method is ISO 9001:2015 certified, and the
laboratory is accredited by the College of American Pathologist, USA.
For statistical analysis, we sought to explore the effect of COVID-19
on the measured plasma metabolites. The model also contained po-
tential confounders of the plasma metabolic profile, that is, age,
gender, and body mass index (BMI). For the cellular proteomics, two
experimental groups were mocked, and SARS-CoV-2 was infected for
all the four cell lines, Caco-2, Calu-3 (American Type Culture Collec-
tion; HTB-55), Huh7, and 293FT as reported earlier (9). The LC–MS/
MS assay was carried out in three technical replicates. All the mock
and infected cells were performed in the same batch to minimize the
issue of the typical missing values (13) and avoid batch effects. All
reported p values were corrected (Benjamini–Hochberg) throughout
and considered statistically significant if <0.05 unless otherwise
stated.

Plasma Targeted Proteomics Analyses (Secretome)

The secretome was performed using a targeted proteomics analysis
by proximity extension assay technology targeting 96 plasma protein
markers by Olink Target 96 Immuno-Oncology (Olink). The protein
concentration was reported as normalized protein expression levels
(NPX), which were Ct values normalized to extension control and a
correction factor (normal background noise) and reported in Log2
scale.

Statistical and Bioinformatics Analysis

For targeted proteomics data analysis, we used Mann–Whitney U
test through the R package stats, version 3.6.1, for pair-wise analysis
as the data were not normally distributed. For metabolomics data,
dimensionality reduction of all samples was performed with uniform
manifold approximation and projection (UMAP) using R package
UMAP, version 0.2.6.0 (14). Reduced dimensions of the data were



Metabolic Perturbation in SARS-CoV-2 Infection
plotted in 2D space using R package ggplot, version 3.3.2 (15). The
metabolite measurements were log2 scaled before differential anal-
ysis. Differential analysis was done using R/Bioconductor package
limma, version 3.42.2 (16). R package MUVR, version 0.0.973 (17), was
used for biomarker discovery. Random forest core modeling was
selected from the package for biomarker identification. Minimal-
optimal variables selected by the model were considered as bio-
markers. Correlation analysis was performed using corr.test function
from the package psych, version 1.9.12.31, based on Spearman rank
correlations. Untargeted protein raw data abundance was first filtered
for empty rows and quantile normalized. Functional analysis of the
proteins was performed using enrichr module of python package
GSEAPY, version 0.9.16 (https://pypi.org/project/gseapy/) (18), where
all the quantified proteins were considered as background. Kyoto
Encyclopedia of Genes and Genomes 2019 human gene-set library
downloaded from Enrichr web resources was used for the enrichment
test for molecular pathway analysis. Functional analysis of the me-
tabolites was carried out using ingenuity pathway analysis software
package.

Data Visualization

Heatmaps were generated using R/Bioconductor package Com-
plexHeatmap, version 2.2.0 (19). Violin plots, box plots, bubble plots,
and volcano plots were made using R package ggplot2, version 3.3.2,
respectively. A density plot was created using the R package
ggridges, version 0.5.2. Alluvial plot was made using the R package
ggalluvial, version 0.11.3. Correlation pairs plot was made using R
package GGally, version 2.0.0. The network was represented using
Cytoscape, version 3.6.1 (https://cytoscape.org/). Protein–protein in-
teractions were retrieved from STRING Db (version 5.0) (https://string-
db.org/). Only interactions with high confidence (interaction score >
0.7) from databases and experiences were kept.

Flow Cytometry

Peripheral blood mononuclear cells (PBMCs) were subjected to
flow cytometry analysis. All samples were stained with live/dead
fixable near IR dye (Invitrogen), and cell surface markers were detec-
ted by incubating cells with relevant antibodies for 20 min on ice in
flow cytometry buffer. All cells were fixed with 2% paraformaldehyde
before acquiring a BD FACS Symphony flow cytometer (BD Biosci-
ence), and data were analyzed and compensated with FlowJo, version
10.6.2 (TreeStar, Inc) and Prism 8 (GraphPad Software, Inc). The
gating strategy is given in supplemental Figure S1.

Measurement of Mitochondrial DNA Copy Number

Mitochondrial DNA (mtDNA) copy number was measured using an
absolute human telomere length and Mitochondrial DNA Copy Num-
ber Dual Quantification qPCR Assay Kit (ScienCell Research Labora-
tories) as per the manufacturer's instruction. A reference genomic
DNA was added on each plate with known mtDNA copy number (925
copies). Each sample was run in duplicates, and relative mtDNA copy
number and single copy reference were calculated by ΔCT (CT target
sample − CT reference sample), after adjusting PCR efficiency using
the Pfaffl method (20). Finally, mtDNA copy number per diploid cell of
target sample to reference sample was calculated by (2−ΔΔCT × 925),
where ΔΔCT is ΔCT mtDNA/ΔCT single copy reference.

SARS-CoV-2 Infection and Quantitative Proteomics

To identify the acute SARS-CoV-2–induced metabolic responses,
we reanalyzed our previous untargeted quantitative proteomics data
on SARS-CoV-2–infected human cell lines, including Calu-3 (lung),
Caco-2 (colon), 293FT (kidney), and Huh7 (liver) after 24 h of infection
restricted to metabolic pathways (9).
Metabolic Perturbation and Virus Infection

Calu-3 cells were seeded in 24-well plate, and after 72 h of seeding,
the cells were infected with SARS-CoV-2 at multiplicity of infection
(MOI) of 0.001 for 1 h. Following infection, the cells were treated with
Dulbecco's modified Eagle's medium (Gibco), which contained pyru-
vate (1 mM) and glutamine (4 mM) as the basal carbon source and
were supplemented with 5% fetal bovine serum and different con-
centrations of glucose (11.1, 22.2, and 44.4 mM) (Gibco) and keeping
basal glucose concentration at 11.1 mM, different concentrations of
mannose (11.1, 22.2, and 44.4 mM) (Sigma–Aldrich). Inhibitors of
glycolysis, 2-DG (Sigma–Aldrich), and glutaminolysis, 6-diazo-5-oxo-
L-norleucine (DON; Sigma–Aldrich), were reconstituted in water, and
cytotoxicity at different concentrations and 24 h time point was
determined in Calu-3 cells using alamarBlue Cell Viability Reagent
(Invitrogen) according to the manufacturer's instructions. To determine
the effect of these drugs on viral replication, following 1 hpi (MOI =
0.001), the Calu-3 cells were treated with 2-DG (10 mM) and DON
(200 μM), respectively. The supernatants were collected after 24 hpi,
and the cells were lysed in TRI reagent (Zymo Research) and stored
in −70 ◦C for RNA extraction.

RT–Quantitative PCR Analysis

The virus production and infectivity were determined by RT–
quantitative PCR targeting the viral E-gene in the supernatant and
RNA extracted from the cells as described by us (7, 9).

The purified RNA was reverse transcribed using a High-Capacity
cDNA reverse transcription kit (Applied Biosystems) according to the
manufacturer's instructions. Quantitative PCRs were performed using
KAPA SYBR Fast qPCR kit (KAPA Biosystems) on an Applied Bio-
systems 7500 Fast qPCR machine. Detailed information on primers is
included in supplemental Table S2.

Plasma Mannose-Binding Lectin Measurement

Mannose-binding lectin (MBL) levels in patient plasma were deter-
mined using Human MBL Quantikine ELISA Kit (R&D Systems)
according to the manufacturer's instructions using NanoQuant Infinite
M200 plate reader (Tecan).
RESULTS

Patient Characteristics

The study population included HCs (n = 31), SARS-CoV-2
PCR-positive hospitalized—mild (mild, O2 consumption <4 l/
min, n = 29) and hospitalized—severe (severe, O2 consump-
tion ≥4 l/min, n = 12) patients. The mild and severe groups
were matched by gender (male: 79% versus 91%, p = 0.6514),
BMI (median [interquartile range (IQR)]: 29 (25–31) versus 28
(25–34); p = 0.8622), and age (median [IQR]: 57 [44–63] versus
57 [52–69]; p = 0.2831). The HC has significantly lower age
(median [IQR]: 48 (46–55)) and lower BMI (median [IQR]: 24
(21–25)) (supplemental Table S3). The immunoglobulin G CoV-
2 antibody test showed that ten of the HC were CoV-2 anti-
body positive (HC-CoV-2 Ab+; supplemental Fig. S2). Among
the patients with COVID-19, the classical comorbidities were
observed at 45% (13 of 29) in mild and at 66% (8 of 12) in
severe (p = 0.3058). The samples were collected within me-
dian (IQR) 2 (2–3.5) days of hospitalization (median [IQR] mild:
2 (1–3) and severe 3 (2–4); p = 0.1170). None of the patients
Mol Cell Proteomics (2021) 20 100159 3
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Metabolic Perturbation in SARS-CoV-2 Infection
were on any known anti-COVID-19 treatment at the time of
sample collection.

Plasma Proteomics Identified Distinct Clusters of HC and
COVID-19 Individuals

We performed targeted proteomics analyses (secretome)
looking at 92 plasma proteins involved in inflammatory re-
sponses. As expected, several cytokines and chemokines
were significantly elevated in COVID-19 patients (mild and
severe) compared with HCs (HC and HC-CoV-2 Ab+),
including interleukin 6 (IL-6) (Fig. 1A). Pathway enrichment
FIG. 1. Targeted plasma proteomics in COVID-19 patients. A, heatm
detected by the immuno-oncology panel. Column annotation represen
statistical analysis. Rows are proteins hierarchically clustered based on th
that are identified as significant in any of the statistical analysis are p
changed proteins between HC (HC + HC-CoV-2 Ab+) and COVID-19 (h
cantly regulated (Mann–Whitney U test) proteins between hospitalized m
COVID-19, coronavirus disease 2019; HC, healthy control; KEGG, Kyoto
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analyses of the proteins that were significantly changed
between HCs and COVID-19 patients revealed that the
majority of altered proteins were involved in cytokine–
cytokine receptor interaction and chemokine signaling, fol-
lowed by intestinal network for immunoglobulin A produc-
tion, IL-17 signaling pathway, and Toll-like receptor
signaling pathway; to name the top five pathways (Fig. 1B).
Interestingly, 11 proteins were altered between the mild and
severe COVID-19 patients (Fig. 1, A and C): hepatocyte
growth factor, pleiotrophin, the chemokines CXC chemokine
ligand 12, CXC chemokine ligand 13, and chemokine ligand
ap of Z-score transformed quantitative measurements of all proteins
ts each patient sample and their corresponding groups and pairs of
e Euclidean distance and complete linkage method. Names of proteins
rinted. B, KEGG pathway enrichment analysis results of significantly
ospitalized mild + hospitalized severe) groups. C, violin plot of signifi-
ild and hospitalized severe, *adjusted p < 0.05, **adjusted p < 0.01.
Encyclopedia of Genes and Genomes.
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23 (also known as macrophage inflammatory protein 3),
monocyte chemotactic protein 3 (also known as chemokine
ligand 7), IL-12, tumor necrosis factor–like weak inducer of
apoptosis, vascular endothelial growth factor A, angiopoie-
tin 2, and Fas ligand (adjusted p < 0.05). Most of these
proteins were elevated in COVID-19 patients with highest
levels in the severe group, except for IL-12, which was
increased in the mild group compared with both severe
group and HCs (Fig. 1, A and B). Furthermore, Fas ligand
followed the opposite trend of being lower in COVID-19
patients compared with HC and lowest in severe COVID-
19 patients.
FIG. 2. Untargeted global plasma metabolomics in COVID-19 patie
plotted in 2D space after performing dimensionality reduction using UM
icantly changed between HC (HC + HC-CoV-2 Ab+) and COVID-19 (h
sponding superpathways and subpathways. C, metabolic set enrichment
COVID-19 patients. The size of the bubble indicates adjusted p values. D
metabolites significantly changed between HC (HC + HC-CoV-2 Ab+) an
annotation represents each patient sample and the corresponding group
are metabolites hierarchically clustered based on Euclidean distance and
healthy control; UMAP, uniform manifold approximation and projection.
Distinct Amino Acid and Carbohydrate Profile in COVID-19
Patients

The plasma metabolomic profile followed a pattern similar to
the plasma proteomics. However, no metabolites were signifi-
cantly different between HC and HC-CoV-2 Ab+ (adjusted p >
0.05). Therefore, we combined the two groups as HC for further
analysis. The distribution of all samples for metabolite enrich-
ment showed a fair separation between samples of HC and
COVID-19 patients (Fig. 2A). Differential analysis between
COVID-19 patients and healthy individuals after adjusting for
age, gender, and BMI identified 444 significantly regulated
metabolites (adjusted p < 0.05), many of which are lipids
nts. A, sample distribution for quantitative metabolite measurements
AP. B, stacked bar plots visualizing percentage of metabolites signif-
ospitalized mild + hospitalized severe) group concerning their corre-
analysis using the significantly enriched metabolites between HCs and
, heatmap of log2 scaled and Z-score transformed measurements of
d COVID-19 (hospitalized mild + hospitalized severe) groups. Column
s. Row annotation represents superpathways of the metabolites. Rows
complete linkage method. COVID-19, coronavirus disease 2019; HC,

Mol Cell Proteomics (2021) 20 100159 5
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followed by amino acids (Fig. 2B). Metabolite set enrichment
analysis of the significant metabolites (adjusted p < 0.05)
identified amino acid–related pathways were most predomi-
nantly affected during infection, as shown in Figure 2C. Hier-
archical clustering of the metabolites showed two clusters that
had distinct enrichment patterns in COVID-19 infected patients
compared with HCs (Fig. 2D). Among these, amino acids such
as glycine, proline, tryptophan, alanine, histidine, glutamine,
and arginine, were found in lower levels in COVID-19 patients,
whereas glutamate, aspartate, and phenylalanine were found in
higher levels (Fig. 2D and supplemental Fig. S3) as also
observed in earlier studies (1, 3, 21). Interestingly, metabolites
of the central carbon metabolism including glycolysis (glucose,
3-phosphoglycerate, pyruvate, and lactate) and tricarboxylic
acid (TCA) cycle (citrate, aconitate, and α-ketoglutarate)
showed distinct changes when comparing HCs and COVID-19
patients and the different COVID-19 disease states
(supplemental Fig. S4).

Severe COVID-19 Patients Show a Distinct Metabolic
Profile With Mannose as a Biomarker

Next, we aimed to identify the metabolic signature in
COVID-19 severe patients. Statistical analysis found 88 me-
tabolites that significantly differed in the severe group
compared with mild samples. Hierarchical clustering of the
metabolites showed two clusters with moderately distinct
enrichment patterns in severe samples compared with mild
samples (Fig. 3A). Metabolic pathway enrichment analysis of
the significant metabolites by ingenuity pathway analysis
showed that several amino acid–related pathways, IL-12
signaling, and production in macrophages and insulin
signaling pathways were mainly dysregulated in the severe
patient samples compared with mild ones (Fig. 3B). Next, we
sought to identify biomarkers that differentiate the severe and
mild samples. Using R package MUVR that is suitable for
small sample size, a total of eight metabolites were identified
as biomarkers (supplemental Fig. S5). After adjusting for age,
gender, and BMI, seven remained significant, of which four
had higher abundance and three had lower abundance in
COVID-19 severe patients compared with the mild ones
(Fig. 3C and supplemental Fig. S5). COVID-19 infection was
associated with increased glutamate levels, whereas glucose
and mannose were determinants of the severity of the disease
(Fig. 3D) and mannose can be considered as a biomarker for
disease severity. These data suggest alterations in the
glycolysis/gluconeogenesis, glutaminolysis, and mannose
metabolism in COVID-19 patients irrespective of severity. Our
targeted secretome data identified the C-type lectin receptor
signaling pathway as one of the top 28 ranked protein path-
ways that were significantly changed between HCs and
COVID-19 patients (Fig. 1B). MBLs are involved in comple-
ment activation through the lectin pathways and have the
ability to cause increased coagulopathy, a feature often
associated with COVID-19 severity (22). We, therefore,
6 Mol Cell Proteomics (2021) 20 100159
measured plasma levels of soluble MBL using ELISA and
observed an increase in COVID-19 patients compared with
HC. Strikingly, there was no significant difference between the
mild and severe COVID-19 patients, but all COVID-19 patients
and the HC-CoV-2 Ab+ individuals showed increased MBL
levels compared with HC (Fig. 3E). These data show a
prominent elevation of MBL during COVID-19 infection that
can persist over a prolonged duration of time after recovery.
MBLs play an important role in viral pathogenesis as they
recognize the glycans present in the viral envelope and sub-
sequently activating antiviral immune response and T cells (23,
24). While the role of circulating mannose levels on activation
of MBL-mediated immune response is not known, we
assessed the correlation between them. We did not observe
any correlation between MBL and mannose in COVID-19 pa-
tients (Spearman correlation: 0.1437 (95% confidence inter-
val: −0.1806 to 0.4399]). We, therefore, speculate that
elevated MBL might not directly be the consequence of the
higher plasma mannose levels but regulated by SARS-CoV-2.

Role of Increased Sugars in SARS-CoV-2 Infection In vitro

An earlier study reported an increased SARS-CoV-2 repli-
cation in monocytes in the presence of elevated glucose (25).
However, a more recent study showed that despite SARS-
CoV-2 efficiently infects monocytes and monocyte-derived
macrophages, their infection is abortive (26). Therefore, to
understand the role of sugars like glucose and mannose in
SARS-CoV-2 infection, we performed in vitro infection assays
in Calu-3 cells with varying media concentrations of glucose
(11.1, 22.2, and 44.4 mM) and mannose (0, 11.1, 22.2, and
44.4 mM) with 0.001 MOI. We did not observe any statistically
significant difference in virus production in the supernatant in
the glucose/mannose concentrations tested (p > 0.05;
Fig. 3F), whereas we found a significant reduction in viral E-
gene expression at cellular level with high glucose concen-
tration of 44.4 mM (Fig. 3G; p < 0.05). Supplementation with
high mannose did not cause any significant change in
expression of the E-gene. Overall, our data indicate that
increased glucose levels but not mannose levels influence
viral replication in vitro in Calu-3 cells.

Immune Phenotyping of Metabolite Transporters GLUT1
(SLC2A1) and xCT (SLC7A11) in PBMCs

Metabolite transporters are known to dictate immune cell
activity by controlling access to nutrients, thereby main-
taining cellular homeostasis (27). Therefore, we next
measured the expression of transporters, GLUT1 (SLC2A1)
and xCT (SLC7A11), that are key transporters of glucose/
mannose and antiporter of glutamate respectively, in
PBMCs of HC (n = 19), HC-CoV-2 Ab+ (n = 9), and COVID-
19 patients: mild (n = 21) and severe (n = 11) using flow
cytometry. Like other studies (28, 29), the relative frequency
of lymphocytes significantly decreased in COVID-19 pa-
tients compared to HCs, which was more prominent in



FIG. 3. Metabolic alterations in the mild and severe hospitalized COVID-19 patients and its role in viral replication. A, heatmap of log2
scaled and Z-score transformed significantly changed metabolites between hospitalized mild and hospitalized severe groups. Column anno-
tation represents each patient sample and the corresponding groups. Rows are metabolites hierarchically clustered based on Euclidean dis-
tance and complete linkage method. B, alluvial plot representing pathways resulted from IPA pathway enrichment analysis using all metabolites
that differ significantly between hospitalized mild and severe groups. C, volcano plot showing all the metabolites that differ significantly between
hospitalized mild and hospitalized severe groups. D, box plots of key metabolites glutamate, glucose, and mannose. Adjusted p values
determined by limma is shown. *adjusted p < 0.05 and **adjusted p < 0.001. E, box plots of soluble mannose-binding lectin levels in patients'
plasma. p Values determined by Mann–Whitney U test. F and G, viral load of SARS-CoV-2 determined by RT–quantitative PCR targeting the viral
E-gene is measured in (F) cell culture supernatants and (G) cell lysates at MOI 0.001 in Calu-3 cells grown in different glucose and mannose
concentrations (millimolar) as indicated. The data are represented as mean ± SEM of two independent experiments, duplicates in each
experiment. p Values are determined by Student's t test, *p < 0.05. COVID-19, coronavirus disease 2019; IPA, ingenuity pathway analysis; MOI,
multiplicity of infection; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.

Metabolic Perturbation in SARS-CoV-2 Infection
severe patients (Fig. 4A). In total lymphocytic populations,
the CD3+ T cells were significantly reduced in COVID-19
severe patients compared with mild patients and HCs
(Fig. 4B). Although there was no difference in total monocyte
frequencies, we observed a mild increase in the frequency of
intermediate monocytes and a significant decrease in
nonclassical monocytes in the COVID-19 patients compared
to HCs (Fig. 4, A and B). This highlights the potential role of
monocytes in COVID-19 as was also recently reported in
single-cell transcriptomics data (4, 30) and functional anal-
ysis on COVID-19 patient monocytes (31). More than 98%
CD8+ T cells expressed GLUT1, and the surface expression
of GLUT1 was significantly higher in COVID-19 severe pa-
tients than in COVID-19 mild and HCs (Fig. 4, C and D). We
also found significantly higher surface expression of GLUT1
on the intermediate monocytes of COVID-19 severe patients
Mol Cell Proteomics (2021) 20 100159 7



FIG. 4. Glucose, mannose, and glutamate transporters in COVID-19 severity. A, percentage of total lymphocytes and monocytes in all four
patient groups. B, percentage of PBMC subpopulations, CD3+ T cells of lymphocytes, CD4+ T cells (of CD3+ cells), CD8+ T cells (of CD3+ cells),
classical monocytes (CM, CD14+CD16− of monocytes), intermediate monocytes (IM, CD14+CD16+ of monocytes), and nonclassical monocytes
(NCM, CD14−CD16+ of monocytes). Median values are indicated by lines. C, density plot of percentage of CD8+ T cells, IM, and NCM expressing
GLUT1. Histograms show percentage of cells expressing GLUT1 (x-axis) and GLUT1 read density of each sample (y-axis). The median per-
centage of cells expressing GLUT1 is shown for each patient group. D, MFI of GLUT1 in CD8+ T cells, IM and NCM in all four patient groups. E,
density plot of percentage of CM, IM, and NCM expressing xCT. Histograms show percentage of cells expressing xCT (x-axis) and xCT read
density of each sample (y-axis). The median percentage of cells expressing xCT is shown for each patient group. F, MFI of xCT in CM, IM, and
NCM in all four patient groups. In all the panels, the median values are indicated by lines, p values are determined by Mann–Whitney U test, *p <
0.05, **p < 0.01, and ***p < 0.001. COVID-19, coronavirus disease 2019; GLUT1, glucose transporter 1; MFI, mean fluorescence intensity; PBMC,
peripheral blood mononuclear cell.
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compared with COVID-19 mild and HCs (Fig. 4D). While all
classical and intermediate monocytes expressed xCT, we
observed a mild decrease in frequency of nonclassical
monocytes expressing xCT in COVID-19 patients compared
with HCs (Fig. 4E). The surface expression of xCT was
significantly higher in classical and intermediate monocytes
of COVID-19 patients compared to HCs (Fig. 4F),
8 Mol Cell Proteomics (2021) 20 100159
emphasizing the potential role of metabolite transporters in
monocytes in COVID-19 infection.

SARS-CoV-2 Regulates Central Carbon Metabolic
Pathways in a Cell Type–Specific Manner

Our previous study, together with other observational
studies, indicate that SARS-CoV-2 infection causes
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dysregulation of PI3K/Akt/mTOR and HIF-1 signaling path-
ways (7, 25, 32) and affect mitochondrial functions (31, 33).
Based on these findings, we hypothesized that the altered
extracellular glucose, mannose, and glutamate levels could be
due to dysregulated carbohydrate metabolism and mito-
chondrial function. Therefore, to identify the acute SARS-CoV-
2–induced metabolic responses, we used our previous
untargeted quantitative proteomics data on SARS-CoV-2–
infected human cell lines, including Calu-3 (lung), Caco-2
(colon), 293FT (kidney), and Huh7 (liver) that showed differ-
ential protein abundance in Calu-3 (6462 proteins), Caco-2
(177 proteins), and Huh7 (4 proteins) after 24 h of infection
(9). The protein set enrichment analysis targeting the meta-
bolic pathways identified that most of the highly abundant
proteins in infected Calu-3 cells belonged to pentose phos-
phate pathway (PPP), fructose and mannose metabolism, as
well as amino acid biosynthesis (Fig. 5A). Proteins detected at
a lower level in the infected cells mainly belonged to TCA
cycle, oxidative phosphorylation, and N-glycan biosynthesis
(Fig. 5A). Parallelly, in patients' metabolomic analysis, we
observed unbalanced levels of glycolysis, fructose and
mannose metabolism, and TCA cycle intermediates (Figs. 2D
and 3D). We, therefore, focused our analysis on the proteins
(n = 78) that are a part of glycolysis/gluconeogenesis, fructose
and mannose metabolism, and TCA cycle (Kyoto Encyclo-
pedia of Genes and Genomes Human 2019) (Fig. 5B). A clear
change in metabolic poise was observed upon SARS-CoV-2
infection in Calu-3 cells, where a majority of the significantly
upregulated proteins belonged to glycolysis/gluconeogenesis
and fructose and mannose metabolism, whereas most of the
proteins of the TCA cycle were significantly downregulated
(Fig. 5B and supplemental Fig. S6). However, this phenome-
non was not observed in the other three cell culture models
(supplemental Fig. S7). Only two of 177 proteins identified
were significantly different in Caco-2 cells (ACSS1 and
PFKFB4), and no differences were observed in Huh7 cells out
of the four identified proteins in the three pathways mentioned
previously (supplemental Fig. S6). This shows that Calu-
3 cells, which are lung epithelial cells, have a distinct meta-
bolic modulation caused by SARS-CoV-2 infection. Interest-
ingly, although all the mitochondrial TCA cycle enzymes were
downregulated, cytosolic enzymes, such as MDH1, IDH1,
ACO1, and ACLY, that convert TCA cycle intermediates
outside the mitochondria were upregulated in infected Calu-3
cells (Fig. 5C). This points toward dysfunctional mitochondria
caused by COVID-19 infection. Alterations in mtDNA copy
number in circulating blood cells can serve as a surrogate for
mitochondrial dysfunction (34). Indeed, in our patient cohort,
we observed a decreasing trend of the mtDNA copy numbers
with the disease severity (Fig. 5D). In addition to changes in
glucose and glutamate (Fig. 3D), we also observed a signifi-
cant increase in metabolites, such as pyruvate, lactate, and
α-ketoglutarate (more pronounced in mild patients) and
decrease in citrate and aconitate in COVID-19 patients
compared with HCs (supplemental Fig. S4). This indicated an
impact of SARS-CoV-2 infection on glycolysis and gluta-
minolysis to meet biosynthetic and bioenergetic demands. In
order to determine the requirement of glycolysis and gluta-
minolysis for optimal replication of SARS-CoV-2 in Calu-
3 cells, we blocked these pathways using 2-DG (10 mM) and
DON (200 μM), respectively (Fig. 5E). The concentrations were
selected based on the cell cytotoxicity assays (Fig. 5F).
Infectivity of SARS-CoV-2, quantified as relative E-gene levels
in cell lysates, showed ~50-fold decrease in 2-DG–treated
cells and >100-fold decrease in DON-treated cells (Fig. 5G).
This was also corroborated with virus production in the cell
culture supernatant, quantified by viral E-gene levels that
decreased by more than 2log10 RNA copies/ml in both 2-DG-
and DON-treated cells compared with untreated cells
(Fig. 5H). While several studies have shown the role of
glycolysis on SARS-CoV-2 infection (25, 32), so far there is no
direct evidence linking the role of glutaminolysis to replication
and spread of SARS-CoV-2, and here, we show for the first
time that both glutaminolysis and glycolysis can be essential
for SARS-CoV-2 infection and progressive replication in vitro
in the lung epithelial cell line.
DISCUSSION

In this study, we used metabolomics, proteomics, and
immunophenotyping to observe the effect of SARS-CoV-2
infection on metabolic dysregulation in COVID-19 patients
and reanalyzed our earlier in vitro infection data in four
different cell models to find out potential host metabolic
regulation during acute SARS-CoV-2 infection. Our study
recognized the role of monocytes, especially in severe COVID-
19 disease. As expected, COVID-19 patients presented a
cytokine storm. Interestingly, IL-12 plasma levels were
decreased in severe compared with mild COVID-19 patients.
Among the carbohydrates, plasma mannose emerged as a
biomarker for disease severity, but in vitro assays showed no
effect of mannose on viral replication. Furthermore, host
cellular response following SARS-CoV-2 infection identified a
strong acute metabolic adaptation in the lung epithelial cells
(Calu-3) by modulating central carbon metabolism and indic-
ative of mitochondrial dysfunction that is also observed in
severe COVID-19 patients. Glycolysis and glutaminolysis can
be essential for virus replication, and metabolic perturbations
of these processes can impede SARS-CoV-2 and could be an
attractive antiviral strategy.
As reported, the cytokine storm syndrome is evident in

COVID-19 patients (35). Several plasma proinflammatory cy-
tokines including IL-6 were elevated in both mild and severe
COVID-19 patients. In our study, though we observed higher
levels of soluble IL-12 in mild patients, the severe patients
showed IL-12 levels like HCs. Elevated plasma levels of IL-12
have also been described in hospitalized patients infected
with other coronaviruses, such as SARS-CoV and Middle East
Mol Cell Proteomics (2021) 20 100159 9



FIG. 5. Cell-specific regulation of central carbon metabolic pathways by SARS-CoV-2. A, bubble plots of protein set enrichment analysis
(adjusted p < 0.1) restricted to metabolic pathways showing highly upregulated (red) and downregulated (green) proteins in SARS-CoV-2–
infected Calu-3 cells compared with mock-infected cells. Bubble size is relative to number of proteins. B, network analysis of proteins from
glycolysis/gluconeogenesis, fructose and mannose metabolism, and TCA cycle that were significantly different in SARS-CoV-2–infected and
mock-infected Calu-3 cells. Rectangular shapes represent the three pathways. Circular shapes show each protein that is either upregulated (red)
or downregulated (green) in infected cells compared with mock-infected cells. The size of the circle indicates fold change. Lines denote
connection of each protein to its respective pathway and connection between each protein–protein (STRING, confidence > 0.7). C, schematic
map of the glycolysis/gluconeogenesis, fructose and mannose metabolism, and TCA cycle. Red indicates significantly upregulated proteins, and
green indicates significantly downregulated proteins in SARS-CoV-2–infected Calu-3 cells. D, mtDNA copy number in whole blood cells in all
four patient groups. Median values are indicated by lines, p values are determined by Mann–Whitney U test, *p < 0.05. E, schematic of inhibitors
of metabolic pathways, 2-DG inhibits glycolysis, and DON inhibits glutaminolysis. F, cell viability (percent relative to control) following treatment
of Calu-3 cells with 2-DG (10 mM) and DON (200 μM). G and H, viral load of SARS-CoV-2 determined by RT–quantitative PCR targeting the viral
E-gene is measured in (G) cell lysates and (H) cell culture supernatants, at MOI 0.001 in Calu-3 cells treated with 2-DG or DON as indicated. The
data are represented as mean ± SEM of two individual experiments, triplicates in each experiment. p Values are determined by Student's t test,
*p < 0.05, ***p < 0.001. 2-DG, 2-deoxy-D-glucose; DON, 6-diazo-5-oxo-L-norleucine; MOI, multiplicity of infection; mtDNA, mitochondrial DNA;
SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; TCA, tricarboxylic acid.
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respiratory syndrome coronavirus (36). However, to our
knowledge, no associations of IL-12 levels with disease
severity were reported in these infections. In vitro studies on
IL-12 administration have shown enhanced host cellular re-
sponses that generally promote virus clearance and host re-
covery from infection (37). IL-12 also plays a critical role in viral
immunity by activating the natural killer cells and promoting
differentiation of Th1 CD4+ T cells. Based on the different
levels of IL-12 in COVID-19 patients at varying disease stages,
its role in disease severity needs further attention.
Both DNA and RNA viruses rewire host cell metabolism by

altering central carbon metabolic pathways such as glycol-
ysis, gluconeogenesis, PPP, TCA cycle, amino acid synthesis/
degradation, and lipid synthesis. In our metabolomics data,
we observed increased glucose, pyruvate, and lactate levels in
the plasma of COVID-19 patients compared with HCs indic-
ative of toxic metabolic dysregulation during acute phase of
infection. Under aerobic and standard growth conditions,
primary mammalian cells use glucose for generation of ATP.
Alterations of the amino acid metabolism in COVID-19 pa-
tients were reported earlier as observed in our study (1, 3, 4,
21, 38–40). Off note, the amino acid metabolic pathways are
dependent upon the central carbon metabolism, including
glycolysis, TCA cycle, glutaminolysis, and urea cycle. More-
over, earlier studies including ours reported that SARS-CoV-2
modulates AKT/mTOR/HIF-1 pathways that is central regu-
lator of the glycolysis and other central carbon metabolic
pathways (7, 25, 39). Combining ours and other studies one
can posit that the SARS-CoV-2 infection alters the key
metabolic pathways of central carbon metabolism that are
regulated by AKT/mTOR/HIF-1 signaling and may potentially
define disease severity.
Viral infections including SARS-CoV-2 are known to

enhance the glycolytic flux and increase the production of
lactate from pyruvate (41, 42). Viruses can target glycolysis by
regulating glucose transporters' expression, which is also vital
for immune cell activation during host cellular response (43).
Increased GLUT1 does not only result in higher glucose up-
take but also gives rise to increased PPP intermediates that
enhance nucleotide pool required for viral replication (6).
GLUT1 transports glucose, mannose, glucosamine, and do-
cosahexaenoic acid across the cell membrane (44). We
observed a significant increase in surface expression (mean
fluorescence intensity) of GLUT1 in CD8+ T cells and inter-
mediate monocytes in COVID-19 severe patients. We also
measured surface expression of xCT, a cystine/glutamate
antiporter that exchanges glutamate for cystine essential for
maintenance of redox balance. Furthermore, we observed a
significant increase in surface expression of xCT in classical
and intermediate monocytes in COVID-19 patients. To the
best of our knowledge, the association of xCT expression in
respiratory viral diseases has not been studied before, and our
data for the first time highlight a potential role of expression of
xCT in monocytes that needs further investigation. A growing
body of evidence highlights the potential role and metabolic
status of monocytes in COVID-19 disease severity (4, 31). A
recent study also reported the potential role of GLUT1 in the
disease progression of SARS-CoV-2 infection (45). Combining
all the data, metabolite transporters, xCT and GLUT1, could
play an essential role in disease severity. The specific changes
of metabolic transporters were more prominent in monocytes,
indicating that metabolic profile of the different monocytic
subpopulations could contribute to mediating severity of the
disease.
Plasma mannose emerges as a robust biomarker of disease

severity that is in line with earlier studies from China and
United States (3, 4) indicating the role of mannose in COVID-
19 severity. Other metabolite biomarkers, like 6-oxopiperidine-
2-carboxylate, hydantoin-5-propionate, 4-hydroxy phenyl-
acetate, eicosanedioate, and 6-bromotryptophan, were not
reported earlier. This could be because of patient heteroge-
neity, genetic background, diet, or the metabolomics method
used. In addition to mannose, we also observed increased
levels of MBL in both COVID-19 patients and convalescent
patients compared with the COVID-19–negative individuals.
However, no correlation between plasma MBL and mannose
were observed in COVID-19, and these two can very well be
independent factors. Monomeric mannose is a crucial element
of N-linked glycosylation of proteins. Recent studies reported
that plasma mannose levels were an indicator of glycogenol-
ysis as well as glucose tolerance and associated with the
future risk of developing chronic diseases, such as type 2
diabetes, cardiovascular diseases, and albuminuria (46). In our
study cohort, the incidence of type 2 diabetes was low in all
study groups and can therefore not explain the high plasma
mannose levels in COVID-19 patients. This further strongly
suggests that increased mannose is an effect of SARS-CoV-2
infection. However, considering recent research indicating a
possibility of a bidirectional link between SARS-CoV-2 and
diabetes, it is tempting to speculate that increased mannose
has a role to play in new-onset diabetes after SARS-CoV-2
infection (47, 48).
C-type lectins, such as MBL, recognize carbohydrates,

particularly on the surface of microorganisms leading to acti-
vation of the complement cascade and phagocytosis (23).
Although N-linked mannose residues have been identified on
SARS-CoV-2 spike protein, it is improbable that the elevated
plasma mannose levels in the patients would be derived from
the virus itself (49). The processing of endogenous glyco-
conjugates and their subsequent efflux from the cells are
currently thought to be responsible for mannose levels in the
blood and steady-state maintenance (50). Interestingly, a
recent study by Heindel et al. (51) describes endogenous high
mannose levels as a key mediator of influenza virus–induced
pathogenesis and disease severity. High mannose is
induced through unfolded protein response pathway, and the
influenza virus–infected cells are recognized in a high
mannose–dependent manner by MBL (51). Finally, authors
Mol Cell Proteomics (2021) 20 100159 11
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state that MBL signaling contributes to disease severity
through complement cascade activation and inflammatory
response. High mannose and/or high MBL could thus dysre-
gulate the immune system and lead to severe damage asso-
ciated with disease severity (51). Activation of the complement
is one of the features seen in COVID-19, as described in earlier
studies (7, 52). In concordance with Heindel et al. as reported
in influenza, we also noticed increased plasma MBL in COVID-
19 and even in healthy convalescent controls compared with
HC. This increase in MBL could potentially regulate the
complement cascade.
To elucidate the effects of extracellular glucose and

mannose in infection and replication of SARS-CoV-2, we
established an in vitro infection set up with varying media
concentrations of glucose and mannose postinfection. Virus
production in the cell culture supernatant was unaffected by
both glucose and mannose concentrations. However, high
extracellular glucose decreased viral infectivity, measured as
relative expression of viral E-gene in Calu-3 cells. This con-
tradicts the earlier finding that an increase in glucose con-
centration aids in virus replication (25). However, it is to be
noted, the observations by Codo et al. (25) were made in
peripheral monocytes, whereas we performed our experi-
ments in Calu-3 as we have reported cell-specific replication
dynamics and immune modulation in SARS-CoV-2 (9).
In the untargeted quantitative proteomics of the Calu-3

infection model, most of the proteins from carbohydrate
metabolism and PPP were upregulated, whereas most of the
proteins of TCA cycle, oxidative phosphorylation, and fatty acid
metabolism were downregulated in infected cells compared
with the mock-infected controls (Fig. 5). Further delineation of
the pathways indicated an inefficient mitochondrial metabolism
as majority of the TCA cycle enzymes were downregulated in
the infected cells. A significant downregulation of the TCA cycle
and glycolytic pathways in COVID-19 patients compared with
COVID-19 negative samples in plasma proteomics reported
earlier corroborates our findings (39). This was in line with the
decreased mtDNA copy numbers in severe COVID-19 patients
(Fig. 5F) indicating a possible mitochondrial dysfunction as
reported previously (31, 53).
The metabolism and concentration of sugars and amino

acids, such as glucose, mannose, glutamine, and glutamate
among others, play an important role in cellular metabolic
homeostasis and are targeted by viruses for their replication
(5). Recent studies have shown that elevated glycolysis favors
SARS-CoV-2 infection and replication (25, 32). Glutaminolysis
has been implicated as a carbon source for other human DNA
and RNA viruses (6). Our data show for the first time that
glutaminolysis is also crucial for SARS-CoV-2 infection and
replication. The inhibition of glutaminolysis has a larger effect
on viral replication and production compared with the inhibi-
tion of the glycolysis in lung cell model (Fig. 5, F and G).
Glutaminolysis is a process of converting glutamine to TCA
cycle intermediates and essential for biosynthesis of proteins,
12 Mol Cell Proteomics (2021) 20 100159
lipids, and nucleic acids. Some viruses (e.g., herpes simplex
virus 1, human cytomegalovirus, hepatitis C virus, etc) use
glutamine as an anaplerotic substrate to replenish TCA cycle
via generation of α-ketoglutarate (42, 54). Recently, re-
searchers have proposed that the metabolic reprogramming
of glutamine in SARS-CoV-2 can trigger pathogenesis. They
further hypothesized that metabolic intervention of gluta-
minolysis could be an antiviral strategy for COVID-19 (54, 55).
Although the exact underlying mechanism is unknown, our
in vitro study shows that SARS-CoV-2 replication depends on
both glycolysis and glutaminolysis.
In conclusion, our patient-based multiomics studies and

in vitro analysis emphasizes the need to understand the host
metabolic reprogramming because of acute SARS-CoV-2
infection. Among other factors, the role of carbohydrate and
amino acid transporters, mainly in the monocytic–macrophage
lineages, under the altered central carbon metabolism regu-
lated by AKT/mTOR/HIF-1 signaling may potentially define
disease severity. The metabolic alteration in glucose, mannose,
lactate, pyruvate, and glutamate levels in severe COVID-19
cases need further clinical considerations. Changes in these
metabolites might have a sustained effect on insulin resistance,
type 2 diabetes, neurocognitive impairments, and multiorgan
failure, which is already reported in COVID-19 infection.
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