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Probability: notation and formulas

P(x) probability of event x
P(x|y) probability of x knowing y (conditioned on y)
P(x,y) probability of x and y

P(x,y) = P(x|y)P(y)
If x, y independent: P(x,y) = P(x)P(y), therefore P(x|y) = P(x)

D P =1 D P(x|y)P(y) = P(x)

XES yES'

*high pressure
*low pressure

epressure down
epressure up

& = state space

= all weather conditions S'= barometer state



test result

D = "data"

6 = "parameters"

P@|D) =

S

posterior

Rare disease: 1/10'000

disease state
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P(D|O)PO)  P(D|O)P(O)

Diagnostic test:

FP (false positive) = 1/100
Sensitivity = 99.9% (FN = 1/1000)

P(D) X PDIYPQ)

P(+|d)P(d)

Pd}+) =

(+]d)P(d) + P(+[h) P(h)
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Markov models

*discrete time evolution
*finite state space
fixed set of transition probabilities

today
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plausible sequences
P(S,y1 =8) = Y P(S,, =5|S,=0)P(S, = 0)
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Hidden Markov models (HMM)

sun
high: 90%

HMM generates

Observed sequence
Hidden sequence

hidden states
sun rain >

M =

transition matrix
0.8 0.5 sun
onT0% 0.5 0.2 0.5 rain
sun rain

emission matrix
(09 03 Y high
@ 0.7 low

emitted symbolsj

P(T,=1|§, =5s)

time —
T = hhlhhhh111hh1hhlhh1h111hh11111h1h111hl1lh
S — SSSSrrssSSSrsSSrsrsssSSSSrrrssSsSSSSrSSSSSST



Example: CpG islands

 Human genome: 30% A/T, 20% C/G
* Frequency of GC ~ 4%, CC and GG ~ 5%, but CG < 1% !
* However there are regions called CpG islands containing many consecutive CG

 HMM states: Background (not a CpG island) or CpG
« States are further divided into A/T, C, G

CpGIAT
50% A, 50% T

BG/AT
50% A, 50% T

BG/C CpG/C
100% C 100% C

BG/G CpG/G
100% G 100% G



Example: CpG islands

BA BC BG CA CC CG

BA (54 54 54 54 54

BC| .09 .34 .08 .09 .09

A - BG| 27 .02 28 27 27

- CA| .02 .02 .02 .06 .02

] . cc| .05 .02 .07 .02 .01
: CG \ .03 .06 .01 .02 .07

CG, GC > CC, GG
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CpG islands

ACGCGTCGCGA

BCCCCCCCCCB
57672676754=2.8e-12

6 ACGCGTCGCGA

-_ : . BEBEBBEBBEB
T: 0.5 C: 1.0 7 028254928254 =24e-12

L X X0

\’ 27 K

. ~25
9 \ Bckgrnd/G
G: 1.0 28
Bckgrnd/C 2
54

Bckgrnd/AT
A: 0.5
T: 0.5
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Hidden Markov Models (HMM)

Questions:

«What is the sequence S of hidden states most likely to
generate the observed symbols T?

- What is the probability of the observed sequence T?

- What are the parameters E, M (emission and transition
probabilities) that maximize the probability of T?

Answers:

* Viterbi algorithm

- Forward / Backward
algorithms

* Baum-Welch algorithm



Hidden Markov Models (HMM)

Questions: Answers:

i algorithm

*\What is the sequenc

Decoding the observations
generate the observed symioc :

| 5 aoaard / Backward
- What is the probabili Evaluating the model hms

« \What are the paramets
probabilities) that ma




Initial state transition
)
Probability of hidden sequence: P(S) = P(50) H M(S,,Sn_1)

n=1

emission from

N hidden state
Probability of observed sequence

(knowing hidden states): P(T,|S,) H E(T,,S,)

P(T|S)P(S)

Bayes theorem: P(S|T) —
2.0 P(T|o)P(0)

N
Numerical stability: log P(S) = log P(So) + » log M(Sy,Sn_1)

n=1



Viterbi algorithm

Example

T =hhllh nH—

Vn,x — E(Tn, .Xf) max M(X, y)Vn—l,y
Y

X slo 45«32«3 02 07
| l v N N ¥ ¥
SUlL Taln rli00€<15 3 5€1.6«0.2
A~ ( 08 05 Y\ sun
0.2 0.5 rain
: Most probable sequence: ssrrs
sun rain

o 0.9 0.3 high
0.1 0.7 low



Forward / Backward algorithm

What is the probability of my observation T?  P(T) = 2 P(T |s)P(s)

*Forward score (replace max by sum in Viterbi):

Fo. = ET,x) ) Mx.y)F, ,, = P(T,,...T,.S, =x)

*Backward (similar to Forward, move from right to left):

ZE( +19y)M(y9x)Bn+1y = P( +1"°"TN|Sn ZX)

P(T|S, =x) - P(S, =x)
P(T)

P(...T,S,)=P(..T,|S,P(S, )ﬁ' KP( T,T,.,...1S)=P(..T,|S)PT,....1S,)
F..-B, . PT,... s, =x) P oo Iy S, = x
B _ P VP Tel =9 pe
Zy FN,y P(T) /
Probability of any
Bayes hidden state given

observed T



Baum-Welch optimization

Example of Expectation-Maximization (EM) algorithm

Baum-Welch
M-step

Update model
Calculate prob. of M, E

S, T

E-step

Dynamic programming:
F, B scores

= converges to a model which maximizes P(T)




Model "learning”

Training data

T, .., T,

Bau m—We

rbi

Test data
/ /
LT




Modeling spliced genes

A C G T
HEN
: 1.0 < : 0.1 < : 1.0 < > 0.1 @
0.9 0.9
S = ...EEEEEEEESIIIIIII...
T = ...CAGTGTAAGTATCATT...

Schuster-Bockler B, Bateman A,
Current protocols in bioinformatics (2007)



TSS

5" exon

-AG=—

Internal
exon

“AG—

~Poly(A)

3' exon

NSNS

e
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Intronless

gene

_GT—

Genscan programm

wikipedia:GENSCAN

Reverse strand: mirror reflection of above

Nature Reviews | Genetics

Zhang MQ), Nat Rev Gen (2002)


https://en.wikipedia.org/wiki/GENSCAN

