
Lecture 2.1: Genome assembly algorithms

Professors: Jacques Rougemont, Anne-Florence Bitbol, Raphaëlle Luisier

Fragments assembly

General Procedure:
• Overlap → Layout → Consensus

Difficulties:
• Computing overlap with sequencing errors (1-3%) and unknown orientation

ACGGTTA GTGGG

AAATCCTCGACGGTTA
CCGCAG

CCGCAG

CGCCG

GCAG

CGCAG

ACCGTTA

TCGGA

TGTTCC

Contig
(contiguous sequence)

TGTTC

Assembling a genome

We start with a simpler problem:
sequencing provides reads all of length ,
when 2 reads overlap, it is always by nucleotides

N R1, …, RN L
ℓ

 = ACGTGTCCGATTGG
 = GTCCGATTGGTGTA

R1
R5

 = 14, = 10L ℓ

overlap graph:
vertices = reads
edges = overlaps

R1

R5

R3

R4

R2

GTCCGATTGG

Overlap graph

Contig is a Hamiltonian path

1.TACCGA
2.CGATCG
3.CGATAC
4.ATTCGA

 = 4, = 6, = 3N L ℓ

1

2

3

4

CGA

CGA

TAC

CGA

CGA

contig: 134 2
ATTCGA

CGATAC
TACCGA

CGATCG

ATTCGATACCGATCG

Overlap graph

Definition: A Hamiltonian path in a graph is a path visiting every vertex once and
only once

Definition: An Eulerian path in a graph is a path visiting every edge once and only
once. If the path closes on itself it is called an Eulerian cycle.

Finding a Hamiltonian path is a NP-complete problem:
there is no good algorithm to solve this problem

Theorem: There exists an Eulerian cycle in a graph if and only if the
graph is balanced: for each vertex : v

indegree(v) = outdegree(v)

Hamiltonian paths are hard to find

Dual graph

1.TACCGA
2.CGATCG
3.CGATAC
4.ATTCGA 1

23
4

TCG

TAC

ATT

CGA

contig is an Eulerian path:

134 2
ATT CGA TAC CGA

ATTCGATACCGATCG

TCG

vertices are overlaps:
TAC, CGA, TCG, ATT
edges are reads

Euler assembler

Problem:
• Reads have variable length (sometimes)
• Reads have sequencing errors
• Reads have random orientation
• Overlap size is variable and unknown
• Graph is not balanced and is highly redundant

Strategy:
• Construct a de Bruijn graph
• Heuristically simplify graph
• Extract many quasi-eulerian paths

Pevzner PA, Tang H & Waterman, MS. PNAS (2001).

⇒ many disjoint contigs

gaps

genome

scaffold

de Bruijn graph

Reads:
1. ATTCGAT
2. CGATCG
3. CGATACCGA

1
TCGATT

CGA

TTC

quasi-Eulerian cycle:

ATT

CGA

ATA

CCG

ATTCGATACCGATCG

ATC

overlap parameter:
 = 4ℓ

all -mers:
ATTC, TTCG, TCGA, CGAT,
CGAT, GATC, ATCG,
CGAT, GATA, ATAC, TACC, ACCG, CCGA

ℓ

unique -mers:
ATT, TTC, TCG, CGA, GAT,
ATC, ATA, TAC, ACC, CCG

(ℓ − 1)

Dual graph:

GAT

ATC

ATA TAC

ACC

CCG
1

1

2
3

1 3

2

2

3 3

3

3

TTC
TCG

GAT

TAC
ACC

CGA
GAT

TCG

Dual graph:

de Bruijn graph

1
TCGATT

CGA

TTC

GAT

ATC

ATA TAC

ACC

CCG
1

1

2
3

1 3

2

2

3 3

3

3

reduce bulge

close cycle

Heuristics: reduce graph inbalance

check for
sequencing errors
(try all mutations)

split
incompatible reads

1 1
2

2 33 4 4

1 1

2
2 33 4 4

correct for variable
coverage,
dead ends, etc

3x 2x 3x

Paired-end sequencing

2 reads from same DNA fragment,
from both ends Fragment size known: ~ 10kb

Read length: 1kb

Genome: R R R

A B C D

repetitive sequence

de Bruijn graph:
R
R

R

A

B

C

D

2 possible scaffolds:

A B C DR R R

A BC DR R R

≫10kb

Lecture 2.2: Sequence alignments

Professors: Jacques Rougemont, Anne-Florence Bitbol, Raphaëlle Luisier

Open Reading Frames (ORFs)

A

R

N

D

C

Q

E
G

H

I

L

K

M

F

P

S

T

W

L

S

Y

*

R

V *

6-frame translation

atgatcgacgcctcctcagcaagctga
 M I D A S S A S *
 * S T P P Q Q A
 D R R L L S K L
tcagcttgctgaggaggcgtcgatcat
 S A C * G G V D H
 Q L A E E A S I
 S L L R R R R SMethionine (M) = AUG = Start

An ORF is anything between M and *

ATGACG••••••••AGTCGAC

The Genetic Code

• On a bacterial genome, practically all proteins can be identified by direct translation
(maybe ignoring short ORFs)

• In eukaryotes, genes have introns and alternative splicing

intronexon exon

M I D

• We will use comparison to known transcripts to identify gene
structures in the genome

• There are large databases of RNA sequences (full transcripts
or fragments)

ALIGN calculates a global alignment of two sequences
 version 2.2u
Please cite: Myers and Miller, CABIOS (1989) 4:11-17
chr|NC_000068|NC_000068.6 Chromosome 2; [Mus musculus] gi:1 1494 nt
vs.
Shark_HoxD12 504 nt
 using matrix file: DNA, gap open/ext: -12/-4
 25.2% identity in 1494 nt overlap; Global score: -3279

 190 200 210 220 230 240
chr|NC GAGCACAGCCGAGGCCCTTTGTTGGAGATGTGTGAGCGCAGTCTCTACAGAGCTGGCTAT
 :::::
Shark_ ---GCTAT
 30

 250 260 270 280 290 300
chr|NC GTGGGCTCGCTTCTGAATTTACAGTCACCGGACTCTTTCTACTTTTCCAACCTGAGAGCC
 :: ::::: :: : ::::: ::::: : :::::::: :::::::: : :
Shark_ GTCGGCTCCCTGTTAAATTTTACCAGCCCGGAGCCCTTCTACTTCCCCAACCTGCGTCCG
 40 50 60 70 80 90

 310 320 330 340 350 360
chr|NC AATGGCAGCCAGTTGGCCGCGCTTCCCCCCATCTCATACCCTCGCAGCGCGCTGCCCTGG
 :::::
Shark_ AATGG---

 370 380 390 400 410 420
chr|NC GCTACTACGCCCGCCTCATGCACCCCTGCGCAGCCTGCCACCGCCTCTGCCTTTGGAGGC
 : :::: ::: :: ::::: :
Shark_ ------------GGCTCAA---------------CTGGCA---ACTCTGTC---------
 100 110

 430 440 450 460 470 480
chr|NC TTCTCTCAGCCTTACTTGACCGGCTCTGGGCCAATTGGCCTGCAGTCTCCAGGCGCCAAG
 ::: ::: :::::
Shark_ -------------------------------------GCCAGCACTCTCC----------
 120

 490 500 510 520 530 540
chr|NC GACGGACCCGAAGACCAGGTCAAGTTCTATACGCCTGATGCGCCCACCGCATCTGAGGAA
 ::::: ::::: ::::
Shark_ ---------------------------TATAC--------------CCGCAGG-GAGGTG
 130 140

 550 560 570 580 590 600

 550 560 570 580 590 600
chr|NC CGCAGCCGGACTAGGCCGCCCTTCGCCCCCGAGTCTAGTCTGGTTCATTCGGCTCTCAAA
 :: :::: :::: :
Shark_ TGC-------------------TCGCTCCCGTG---------------------------
 150 160

 610 620 630 640 650 660
chr|NC GGCACCAAGTATGACTACGCGGGTGTGGGCCGGACCGCTCCAGGCTCTGCGACCCTGCTC
 :::: :: : :::: :: :: : : ::
Shark_ ------------GACTTCGAG-----------------TCCATGC---GCATCGCCGCCG
 170 180

 670 680 690 700 710 720
chr|NC CAGGGGGCCCCCTGTGCCTCCAGCTTCAAGGAAGACACCAAAGGCCCGCTCAACTTGAAC
 ::: : : : :::: :::: : : : ::::
Shark_ CAGAG------CCGCGCCTTCAGCGGCTA-----------------CTCTCA--------
 190 200 210

 730 740 750 760 770 780
chr|NC ATGGCAGTGCAAGTGGCCGGGGTGGCCTCTTGCCTGCGATCTTCACTGCCCGACGGTAAA
 : ::: :::: : :: :
Shark_ -----------------------GTCCT----------ATCT---CAGCA-------ACT
 220 230

 790 800 810 820 830 840
chr|NC CAGTGCCCATGCTCCCCCAAGCCAGTTTAGGCAGGGACGGGAGGTGGGGTGTCAGGGACA
 :::: :::: : : ::: :::::: ::: ::::
Shark_ CAGTCTCCAT-CAGCATCAA-------TAGGCACGGA--------------TCAG-----
 240 250 260

 850 860 870 880 890 900
chr|NC GTTGGACAGGGAGGAGACCCGCCAGCAGTGGTGAACGTCTGTGGGGCGGGCAGTTGATCT
 ::: :: ::::::
Shark_ -----ACAAGG-----------CAGCAG--------------------------------
 270 280

 910 920 930 940 950 960
chr|NC GAGCGAGCTGACATGGGTCGGGGCTCTGTTGCAGGCCTGCCGTGGGGGGCGGCCCCGGGG
 : :::
Shark_ -------------------------------CCGGC------------------------

 970 980 990 1000 1010 1020
chr|NC AGGGCCCGCAAGAAGAGGAAACCCTACACAAAGCAGCAGATTGCGGAGCTGGAGAACGAA
 :::::: :::: :: ::
Shark_ -----------GAAGAG-----CCTA-----------------------------ACAAA
 290 300

Sequence alignments

Definition: An alignment of the two sequences (length) and (length) is a
sequence of operations:
match , delete , and insert such that

X n Y m

M D I
#M + #D = n #M + #I = m

CACCGCATC-TG
DDMMMMMMMIDM
--CCGCAGGA-G

CACCGCATC-TG
MDMDMMMDMIMM
C-C-GCA-GGAG

•Is one alignment a better choice than the other?
•Are these alignments significant or not?

Sequence alignments

CACCGCATC-TG
DDMMMMMMMIDM
--CCGCAGGA-G

CACCGCATC-TG
MDMDMMMDMIMM
C-C-GCA-GGAG

How many different alignments exist? (n + m
m)

... (167960 possibilities)

10 100 200

1 11 101 201

50

100

8 ⋅ 1010 1040 1053

108110595 ⋅ 1013

nm

Scoring an alignment

CACCGCATC-TG
DDMMMMMMMIDM
--CCGCAGGA-G

We calculate a quality score for each alignment based on a
scoring matrix

M =

0

BBBB@

A C G T �
A 2 �1 �1 �1 ��
C �1 2 �1 �1 ��
G �1 �1 2 �1 ��
T �1 �1 �1 2 ��
� �� �� �� �� �1

1

CCCCA
.

<latexit sha1_base64="8Q6fKagyXrjBG+U+GYgToMRgwj4=">AAAC+XicdZLPTtswGMCdwICFAQWOu1ggqh1olZQDXJD4c2CXSSC1gNZUleM6xcJ2IttBVFHgNThw4QCaduUBeAduvA1OA21Hx6dE/un7fp8dOw5iRpV23RfLnpj8MjU989WZ/TY3v1BaXDpWUSIxaeCIRfI0QIowKkhDU83IaSwJ4gEjJ8H5fl4/uSBS0UjUdS8mLY66goYUI21S7UVr4Ze/vu2v+0EkO0RypCW9TJ2yb+hM8nQ3G+D+EA+GWB9iJfOxhCOdTq1c8d4fv4s4R6OGmdAxldrnxkFhDKRxoz4wCmncqORGkS5/PlIR6l52VXXapVW36vYDjoP3Bqs7v2dvnq6n4sN26dnvRDjhRGjMkFJNz411K0VSU8xI5viJIjHC56hLmgYF4kS10v6fy+CayXRgGEnzCg372dGOFHGlejwwZr4d9bGWJ/9XayY63GqlVMSJJgIXC4UJgzqC+TWAHSoJ1qxnAGFJzbdCfIYkwtpclvwQvI9bHofjWtXbqNaOzGnsgSJmwHewAn4AD2yCHfATHIIGwNaFdWvdWw92at/Zf+y/hWpbbz3L4J+wH18BQ9/pvw==</latexit>

S(X 0, Y 0|M) =
LX

k=1

M(X 0
k, Y

0
k)

<latexit sha1_base64="bkKeBohuYNkMxkKo7+cE70xcS8E=">AAACEHicbVDLSsNAFL3xWesrPnZugkXaQimJCropFN24sFDRaqWpYTKd1iGTBzMTocR+ght/xY0LRdy6dOffOE1daOuBC4dz7uXee9yIUSFN80ubmp6ZnZvPLGQXl5ZXVvW19UsRxhyTBg5ZyJsuEoTRgDQklYw0I06Q7zJy5XrHQ//qjnBBw+BC9iPS9lEvoF2KkVSSo+fPC8186Tp/XyvapYpdskXsO4lXsQY3pzVlOZ4yHa/o6DmzbKYwJon1Q3LVTUhRd/RPuxPi2CeBxAwJ0bLMSLYTxCXFjAyydixIhLCHeqSlaIB8ItpJ+tDA2FFKx+iGXFUgjVT9PZEgX4i+76pOH8lbMe4Nxf+8Viy7h+2EBlEsSYBHi7oxM2RoDNMxOpQTLFlfEYQ5Vbca+BZxhKXKMKtCsMZfniSXu2Vrr7x7tp+rHo3SgAxswTYUwIIDqMIJ1KEBGB7gCV7gVXvUnrU37X3UOqX9zGzAH2gf312mmlY=</latexit>

X′

Y′

sequence+gaps character no kD

I

M

−γ − γ + 2 + 2 + 2 + 2 + 2 − 1 − 1 − γ − γ + 2 = 10 − 4γ

Scoring matrix must be:
•symmetric
•diagonal > 0, off-diagonal < 0
•M(-,-) impossible: −∞

We always use:
•All diagonal element equal
•All gaps equal

match
mismatch

gap penalty

Scoring an alignment

CACCGCATC-TG
DDMMMMMMMIDM
--CCGCAGGA-G

M =

0

BBBB@

A C G T �
A 2 �1 �1 �1 ��
C �1 2 �1 �1 ��
G �1 �1 2 �1 ��
T �1 �1 �1 2 ��
� �� �� �� �� �1

1

CCCCA
.

<latexit sha1_base64="8Q6fKagyXrjBG+U+GYgToMRgwj4=">AAAC+XicdZLPTtswGMCdwICFAQWOu1ggqh1olZQDXJD4c2CXSSC1gNZUleM6xcJ2IttBVFHgNThw4QCaduUBeAduvA1OA21Hx6dE/un7fp8dOw5iRpV23RfLnpj8MjU989WZ/TY3v1BaXDpWUSIxaeCIRfI0QIowKkhDU83IaSwJ4gEjJ8H5fl4/uSBS0UjUdS8mLY66goYUI21S7UVr4Ze/vu2v+0EkO0RypCW9TJ2yb+hM8nQ3G+D+EA+GWB9iJfOxhCOdTq1c8d4fv4s4R6OGmdAxldrnxkFhDKRxoz4wCmncqORGkS5/PlIR6l52VXXapVW36vYDjoP3Bqs7v2dvnq6n4sN26dnvRDjhRGjMkFJNz411K0VSU8xI5viJIjHC56hLmgYF4kS10v6fy+CayXRgGEnzCg372dGOFHGlejwwZr4d9bGWJ/9XayY63GqlVMSJJgIXC4UJgzqC+TWAHSoJ1qxnAGFJzbdCfIYkwtpclvwQvI9bHofjWtXbqNaOzGnsgSJmwHewAn4AD2yCHfATHIIGwNaFdWvdWw92at/Zf+y/hWpbbz3L4J+wH18BQ9/pvw==</latexit>

X′

Y′

affine gap penalty

number of gap opening

−γ − γ + 2 + 2 + 2 + 2 + 2 − 1 − 1 − γ − γ + 2−3δ = 10 − 4γ−3δ

Sa�ne(X
0, Y 0|M, �) =

LX

k=1

M(X 0
k, Y

0
k)�G�

<latexit sha1_base64="kxTMO6Ik2AHZeOWgFLqKvv6Q3YU=">AAACL3icbVDLSsNAFL3xWeurPnZugkVUqCVRQTeFoqAuFBStVpoaJtNJHTKThJmJWGL+yI2/4kZEEbf+hdPWha8DA4dzzp2Ze7yYUaks69kYGBwaHhnNjeXHJyanpgszs+cySgQmNRyxSNQ9JAmjIakpqhipx4Ig7jFy4QW7Xf/ihghJo/BMdWLS5KgdUp9ipLTkFvZO3dThXnSbIt/Xd2TZSn25dLl8d1RyWoQptOqUKk7JkQl306BiZ1eHRzrhBjrjBqtr+/2UWyhaZasH8y+xv0ixOg89HLuFR6cV4YSTUGGGpGzYVqyaKRKKYkayvJNIEiMcoDZpaBoiTmQz7e2bmUtaaZl+JPQJldlTv0+kiEvZ4Z5OcqSu5W+vK/7nNRLlbzdTGsaJIiHuP+QnzFSR2S3PbFFBsGIdTRAWVP/VxNdIIKx0xXldgv175b/kfL1sb5TXTzaL1Z1+G5CDBViEFbBhC6pwAMdQAwz38Agv8Go8GE/Gm/Hejw4YXzNz8APGxyfoz6fC</latexit>

gap openings

We calculate a quality score for each alignment based on a
scoring matrix

Examples

CACCGCATCTG
--CCGCAGGAG
 +++

Which of these alignments is better depends on choice of scoring matrix

γ = 2 : − 4 − 3 + 12 = 5 > − 16 + 12 = − 4

CACCGCATCTG---
--CCGCA---GGAG

M =

0

BBBB@

A C G T �
A 2 �1 �1 �1 ��
C �1 2 �1 �1 ��
G �1 �1 2 �1 ��
T �1 �1 �1 2 ��
� �� �� �� �� �1

1

CCCCA
.

<latexit sha1_base64="8Q6fKagyXrjBG+U+GYgToMRgwj4=">AAAC+XicdZLPTtswGMCdwICFAQWOu1ggqh1olZQDXJD4c2CXSSC1gNZUleM6xcJ2IttBVFHgNThw4QCaduUBeAduvA1OA21Hx6dE/un7fp8dOw5iRpV23RfLnpj8MjU989WZ/TY3v1BaXDpWUSIxaeCIRfI0QIowKkhDU83IaSwJ4gEjJ8H5fl4/uSBS0UjUdS8mLY66goYUI21S7UVr4Ze/vu2v+0EkO0RypCW9TJ2yb+hM8nQ3G+D+EA+GWB9iJfOxhCOdTq1c8d4fv4s4R6OGmdAxldrnxkFhDKRxoz4wCmncqORGkS5/PlIR6l52VXXapVW36vYDjoP3Bqs7v2dvnq6n4sN26dnvRDjhRGjMkFJNz411K0VSU8xI5viJIjHC56hLmgYF4kS10v6fy+CayXRgGEnzCg372dGOFHGlejwwZr4d9bGWJ/9XayY63GqlVMSJJgIXC4UJgzqC+TWAHSoJ1qxnAGFJzbdCfIYkwtpclvwQvI9bHofjWtXbqNaOzGnsgSJmwHewAn4AD2yCHfATHIIGwNaFdWvdWw92at/Zf+y/hWpbbz3L4J+wH18BQ9/pvw==</latexit>

γ = 0 : − 3 + 12 = 9 < 12

γ = 0, δ = 2 : − 3 + 12 − 2 = 7 > 12 − 6 = 6

Global alignment: The Needleman-Wunsch algorithm

• Can we find the best scoring alignment (given) without searching through all
possibilities?

• Dynamic programming: a class of algorithms that work by recursively extending
the solution of a sub-problem.

• We find the alignment of sequences of length by extending the alignments of
lengths

M

(n, m)
(n − 1,m − 1), (n, m − 1), (n − 1,m)

Fi,j = max
Fi−1,j−1 + M(Yi, Xj)
Fi,j−1 + M(− , Xj)
Fi−1,j + M(Yi, −)

recursive formula

scoring table

Global alignment: The Needleman-Wunsch algorithm

•Optimal score is at bottom-right

C

A
5
1

8
6

0

Smax

↑ 8 + M(A, −) = 8 − 2 = 6
← 1 + M(− , C) = 1 − 2 = − 1
↖ 5 + M(A, C) = 5 − 1 = 4

↖ = M ↑ = I ← = D

-
-

M =

0

BBBB@

A C G T �
A 2 �1 �1 �1 �2
C �1 2 �1 �1 �2
G �1 �1 2 �1 �2
T �1 �1 �1 2 �2
� �2 �2 �2 �2 �1

1

CCCCA

<latexit sha1_base64="yXkAHl7w6OjYjDuDMUg4uwLFVC8=">AAACznicbZLbSsMwGMfTeq6nqZfeBEXxwo22XuiN4OFCQYQJm4rrGGmWzmCa1iQVZyne+gi+je/gnQ/ge5iuuoP6kcKP/y9fmib1Y0alsu0Pwxwbn5icmp6xZufmFxZLS8uXMkoEJnUcsUhc+0gSRjmpK6oYuY4FQaHPyJV/d5z7qwciJI14TXVj0gxRh9OAYqR01Cp9nnvb+96250eiTUSIlKCPqbXpaboVYXqY9fF4gCcDrA2wnHlYwKFOy90sOz/DHZZ6LUuH7r/ypJB9PyJrfVn4EVnOZR7+DI/yQHUzq1Vatyt2r+BfcL5h/eBm9vXteTKutkrvXjvCSUi4wgxJ2XDsWDVTJBTFjGSWl0gSI3yHOqShkaOQyGbau44MbuikDYNI6Icr2EuHO1IUStkNfT0z37j87fLwP9dIVLDXTCmPE0U4Ll4UJAyqCOZ3C9tUEKxYVwPCguq9QnyLBMJK/wH5ITi/P/kvXLoVZ6fiXujTOAJFTYNVsAa2gAN2wQE4BVVQB9g4M+6NJyM1q+aDmZnPxVTT+O5ZASNlvnwBjnnW/A==</latexit>

Fi,j = max
Fi−1,j−1 + M(Yi, Xj)
Fi,j−1 + M(− , Xj)
Fi−1,j + M(Yi, −)

•Backtracking follows optimal alignment

Global alignment: The Needleman-Wunsch algorithm

C

C

0

M =

0

BBBB@

A C G T �
A 2 �1 �1 �1 �2
C �1 2 �1 �1 �2
G �1 �1 2 �1 �2
T �1 �1 �1 2 �2
� �2 �2 �2 �2 �1

1

CCCCA

<latexit sha1_base64="yXkAHl7w6OjYjDuDMUg4uwLFVC8=">AAACznicbZLbSsMwGMfTeq6nqZfeBEXxwo22XuiN4OFCQYQJm4rrGGmWzmCa1iQVZyne+gi+je/gnQ/ge5iuuoP6kcKP/y9fmib1Y0alsu0Pwxwbn5icmp6xZufmFxZLS8uXMkoEJnUcsUhc+0gSRjmpK6oYuY4FQaHPyJV/d5z7qwciJI14TXVj0gxRh9OAYqR01Cp9nnvb+96250eiTUSIlKCPqbXpaboVYXqY9fF4gCcDrA2wnHlYwKFOy90sOz/DHZZ6LUuH7r/ypJB9PyJrfVn4EVnOZR7+DI/yQHUzq1Vatyt2r+BfcL5h/eBm9vXteTKutkrvXjvCSUi4wgxJ2XDsWDVTJBTFjGSWl0gSI3yHOqShkaOQyGbau44MbuikDYNI6Icr2EuHO1IUStkNfT0z37j87fLwP9dIVLDXTCmPE0U4Ll4UJAyqCOZ3C9tUEKxYVwPCguq9QnyLBMJK/wH5ITi/P/kvXLoVZ6fiXujTOAJFTYNVsAa2gAN2wQE4BVVQB9g4M+6NJyM1q+aDmZnPxVTT+O5ZASNlvnwBjnnW/A==</latexit>

- C A C G
-

C

C

G

-2 -4 -6 -8 -10

-2

-4

-6

-8

2 0 -2 -4 -6

0 1 2 0 -2

-2 -1 3 4 2

-4 -3 1 2 6

CACCG
MDMMM
C-CCG

↖ = M ↑ = I ← = D

Cost of the algorithm (in time and memory):

 = 6⨉5 = 30

compare to number of possible alignments:

 = 126

(((m + 1)(n + 1))

(m + n
m) = (9

4)

Local alignment: The Smith-Waterman algorithm

Fi,j = max

0
Fi−1,j−1 + M(Yi, Xj)
Fi,j−1 + M(− , Xj)
Fi−1,j + M(Yi, −)

C

C

0
- C A C G

-

C

C

G

0 0 0 0 0

0

0

0

0

2 0 2 2 0

2 1 2 4 2

2 1 3 4 3

0 1 1 2 6

Possible local alignments:

CCG
MMM
CCG

CC
MM
CC

score: 6 score: 4

CAC
MMM
CCC

score: 3

•Optimal score is highest anywhere in table

•Backtrack from a high score until you reach
a 0

How to make a scoring matrix

• The scoring matrix contains "prior information" about what we consider a relevant
alignment

• A standard interpretation of alignment scores is as log-likelihood ratios
• You can estimate them empirically

5 Remarks on scoring

In this section I would like to discuss more precisely the meaning and the construction of
the scoring matrix M . The numbers 2 for a match and �1 for a mismatch are in fact quite
arbitrary. They could be replaced by other values, but this will result in different align-
ments being called “optimal”. Therefore the choice of score values depends on what kind
of alignments we are looking for. To align protein (amino acid) sequences, several different
kinds of matrices have been proposed that reflect empirical notions of chemical similarity
between residues (see http://en.wikipedia.org/wiki/Substitution_matrix).

In general these matrices are constructed as follows: count the frequency q↵ of each
base (residue). The frequency of having ↵ and � at the same position in two unrelated
sequences is q↵ · q�. Imagine we have a model of how sequences actually evolved from
common ancestors: the frequency at which ↵ in one sequence is replaced by � in another
takes some value p↵�. The total likelihood of an alignment between sequences X and Y
is Lmodel(X, Y) =

Q
i pxiyi for “homologous” sequences and Lrandom(X, Y) =

Q
i qxiqyi

for two unrelated sequences. The ratio of these two numbers is the likelihood ratio or the
odds ratio. It is most convenient to take the logarithm of the ratio (it transforms products
into sums):

L(X, Y) = log

✓
Lmodel(X, Y)

Lrandom(X, Y)

◆
=

X

i

(log pxiyi � log qxi � log qyi) =
X

i

M(xi, yi) .

Thus the matrix entries are interpreted as the log-odds ratios between a biologically-
motivated model of substitutions and a random alignment.

Remark that the model values pij must be such that the expected value of L(X, Y)
for a random alignment is negative to justify the Smith-Waterman choice of discarding
negative scores.

6 BLAST

The most popular local alignment program is called BLAST (Basic Local Alignment
Search Tool: http://www.ncbi.nlm.nih.gov/BLAST/). It uses the following strategy to
find alignments between large query sequences (the size of a protein or gene) and large
databases (genome or proteome).

1. Remove low-complexity regions from query sequence

2. Cut query in small words (DNA: 11 bases, AA: 3 residues) look for exact matches
in the database (pre-computed table)

3. Perform a Smith-Waterman alignment in the neighborhood of each hit to produce
a high-scoring segment pair (HSP)

BLAST alignments significance is evaluated using the E-value (the expected number
of similar alignments found in a random database of the same size). This is computed
as follows: we assume (for lack of a better model) that large alignment scores follow an
extreme value distribution:

E = Kmne��S ,

m and n are the length of the sequences, S the alignment score, and K, � are unknown
parameters of the distribution, which have been estimated from large families of random

7

Negative set: random sequences

CGCA-CATG-TG
-CAGTAG-TAGT

Positive set: curated pairs of
homologous sequences

CGCATCATG-GT
-GCATG--CAAT

Count frequency of each
nucleotide pair = pxy

Frequency of nucleotide pair
= product of individual frequencies

= qC ⋅ qA

Lmodel(X, Y) = ∏
i

pxiyi
Lrandom(X, Y) = ∏

i
qxi

qyi

Empirical chemical similarity of amino-acids:
wikipedia:Substitution_matrix

http://en.wikipedia.org/wiki/Substitution_matrix

BLAST

1.Remove low-complexity (repeat-like) regions from query
2.Cut query in small words (DNA: 11 bases, AA: 3 residues), look for exact matches

in the database (pre-computed table)
3.Perform a Smith-Waterman alignment in the neighborhood of each hit to produce a

high-scoring segment pair (HSP)

Basic Local Alignment Software Tool
search local alignements of query ("gene") in a large database ("genome")

Ranking of HSP is performed by E-value, assuming an extreme value distribution:

E = Kmne−λS

E = mn2−S′

S-W score

sizes of query and database

Parameters have been empirically tuned.

Ranking will not change if you rescale all scores as
K, λ

S′ = λS − log K
log 2

"bit-score"

BLAST

Basic Local Alignment Software Tool
search local alignements of query ("gene") in a large database ("genome")

blast.ncbi.nlm.nih.gov

https://blast.ncbi.nlm.nih.gov/

BLAST
• Database: dog genome
• Query: human BRCA1

UCSC BLAT = "BLAST-like alignment tool"

genome.ucsc.edu

https://genome.ucsc.edu/cgi-bin/hgBlat

