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Genome is entangled

Stevens TJ et al. Nature (2017)

*Nucleotide size: 1/3 nanometer

- Genome size: 2 X 3 X 10° nucleotides: 2 m / 10~ litres
-Nucleus volume: 10713 litres (diameter 5-10 microns)

* Typical number of binding sites: 500-5000

* Number of protein copies per cell: 1000-10000



How long do we need to search?
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Facilitated diffusion

* b) 1D sliding a) 3D diffusion
/ I
~\9) Hopping — ?_'

c) Intersegmental
transfer

Schmidt HG et al. PLoS ONE 9 (2014)

* Hypothesis: proteins alternate free (3D) diffusion and (1D) sliding along the genome

* This accelerates the binding site search by concentrating it to a neighbourhood of
the genome

* Already proposed in 1986 by Berg and von Hippel



Facilitated diffusion

t3p = average duration of a jump 3D jumps only:
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Alternating with 1D sliding
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How to slide fast?

. . _ 2
Diffusion over a random landscape: Dp =~ ¢ r(fo)

Speed-stability paradox: it is impossible to have both a strong

affinity for some target binding sites and a fast diffusion across a
majority of non-specific sites




Mitigating effects

Crowded genome effect: only 5-10% of genome is available (not occupied
by other proteins)

This reduces the search space, increases the 3D time, and reduces the 1D

slide length.
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Folded genome effect: nucleus is compartmented into euchromatin
(accessible) and heterochromatin (inaccessible), this will mostly only
reduce the 3D search space.



P53 conformational change
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P53 conformational change

Petty TJ et al. EMBO J (2011)
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A general property of TFs?

Kamagata K et al. NAR (2023)

A Invitro DNA-LLPS mimicking system DNA-binding proteins
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In vitro observations of TFs in droplets with DNA
to mimic in-vivo compartmentalization



A general property of TFs?

A droplet B

DNA-binding
proteins
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Displacement = speed X time

dCas9-MBP

Kamagata K et al. NAR (2023)
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A general property of TFs?
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Slow mode correlates with

*size of protein (heavier is slower)

Kamagata K et al. NAR (2023)
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Transcriptional bursts
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Active genes are transcribed in "bursts": they alternate between

"on" phases of RNA synthesis and "off" times without transcription



Transcriptional bursts

Larsson AJM et al. Nature (2019)
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Distributions of "on" times and "off" times can be inferred

using the random "telegraph" model



Looping theory of enhancer-promoter interaction

Local chromatin
environment

p—

Transcription factors
availability
Histone
modifications

Number of cis-

regulatory elements Nucleosome
occupancy

Affinity of cis- Burst size

regulatory elements Burst size and frequency
Burst frequency

Nicolas et al. Mol BioSyst (2017)

* RNA synthesis requires the full transcription
machinery

Loss of any component turns it off

 Distant enhancer facilitates this assembly via
chromosome looping

Enhancer

Promoter m

20

Rodriguez J & Larson DR Annu Rev Biochem (2020)



Looping theory of enhancer-promoter interaction

Alonso-Gil D & Losada A. Trends in Cell Biology (2023)
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« CTCF binding fixes loop ends
* NIPBL/MAU2 pulls loop through (ATP-dependent)
* PDS5 recruits Cohesin and is repressed by WAPL



Transcription does not imply contact
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Enhancer-promoter contact before activation of Shh (ESC)

s lost during expression (NPC)



Not many loops created at promoters
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Not many loops between promoters and enhancers

KO CTCF / CTCF+Wapl Banigan EJ et al. PNAS (2023)

A CTCF KO DKO 1) Insulated domains

2) Lines from TSS ("stripes")

3) Lines from end of gene body

4) Self-contact within gene

5) Dots at gene boundaries
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e transcribed genes

HiC data more compatible with loops either sides of

transcribed genes than between promoter and
distant enhancer




Mobility of enhancers vs promoters

Normalized interaction score Platania A et al. Sci Adv (2024)
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No “loop pulling" effect

Platania A et al. Sci Adv (2024)

Substrate corrected
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Transcription increases promoter mobility, decreases

enhancer mobility and synchronizes them



Phase-separated droplets

Hyman AA, Weber CA & Jlilicher F. Ann Rev Cell Dev Biol (2014)
Jilicher F & Weber CA. Ann Rev Cond Mat Phys. (2024)

Mitochondrion

appa?:tlt?si \/ M

(s)awny

O Membrane bound

Membraneless

Time (min)

Cell (and nucleus) content is highly inhomogeneous:

some organelles are separated by a membrane but many are
just local "condensates" (p-bodies, I-bodies, ...)




Phase-separated droplets
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pout

Phase-separated droplets

Coordinates, r

* Particles are exchanged through the droplet boundary, but
concentrations are kept constant

* There is a pressure difference across boundary for round droplets

* There is a local flux from smaller droplets to larger droplets



Transcription condensates

Hypothesis:

* Nucleus is organised into phase-separated
droplets which locally increase
concentrations of specific proteins

* Transient contact between different
droplets triggers reaction bursts

« Example: promoters and enhancers in one
droplet, Pol2 and mediator in another
droplet lead to bursts of transcription

* Enhancers-bound cofactors modulate burst
frequency

inactive
enhancer

transcription
factor

G O coactivator

Gene

enhancer

Benabdallah NS & Bickmore WA. Cold Spring Harb (2015)



Transcription condensates

Du M et al. Cell (2024)

ro Pol Il

=N
&) -

| |
2.

Sox2 mRNA
=
o
1
o

burst intensity (a.u.)
|
&
distance (um)

o

on

|

o
Condensate-to-gene

o
o
|
o

| I | | | 1

0 5 10 15 20 25
Time (min)

Live cells

£

: e
. x g * ¢
T
nscriptiona 1
" Sox2 TSS

b O Dendra2-Pol Il *  MCP-SNAP

------------------

. Distal condensate
Proximal condensate

Transient contact between Pol ll-rich condensate and

gene promoter leads to burst of transcription



https://ars.els-cdn.com/content/image/1-s2.0-S0092867423013375-mmc2.mp4

Transcription condensates
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