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Chromosome conformation

Reconstruction of the most likely chromosome conformations based on
~120°000 contacts observed in 1 mouse stem cell

Stevens TJ et al. Nature (2017)



Chromosome conformation
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Measuring spatial structure of chromatin
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Quantifying interactions
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Quantifying interactions
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Hi-C contact maps
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Hi-C contact maps

Whole-genome contact map
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Hi-C normalization

Raw data log(Raw / Expected)

HOMER:HiCBackqground



http://homer.ucsd.edu/homer/interactions/HiCBackground.html

Hi-C normalization
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http://homer.ucsd.edu/homer/interactions/HiCBackground.html

Topologically Associated Domains

TADs
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TADs are genome “clusters’
there are more interactions within TADs than between TADs



Finding TAD boundaries

Interactions downstream

DI: directionality index
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Gene regulation and TADs

)\

Hl'C é r ~ ‘
5ooooooo| 51 oo 52000000 | 5aooooog. 5400
TADs . l. 11‘__.-th I-MTL‘ ‘
HMM state 5
CTCF 52 1 N
H3K4me3
ChIP-Seq e 0'3 D b A uu-.IIIL-. -l JdL-J
RNA Polll © l
0. g N b
H3K4me1
0 2 Ml cibl v vdad e dat dbed v ba ile .H' A‘ Juimll JL.ALI iLhMJ Jd‘llluulu. ok “l Ul 1 R TR lhjm
iStk31l Npy | 'lMggglc yCS Cbx31Skap 2»Hva1l 1»¢-+ Creb5 W Chn2 i
Genes ﬁ1 0003K15Rik 5 INpvf Nfe2i3 Hoxa1l Tril)
‘gf2bp3 Osbpl3l+ Hnrn b1| Hoxa2! |HoxaQ 1b£ Cpvif
Tra2a 5430402013Riky  Mir14 Hoxa3W 94300760 ik >
Ccdc1261 C530044C16Rik w Snx1ONl Hoxad|'Mir196b
1D330028D13Rik Hoxa5IHoxa10
Hoxa6 |\Hoxa11
Mira' lHoxa13

Hoxa7| 15730457N03Rik

Dixon et al. Nature (2012)



Gene regulation and TADs
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Correlation analysis
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HOMER:HiCpca



http://homer.ucsd.edu/homer/interactions/HiCpca.html

TAD hierarchy
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TAD hierarchy
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TAD hierarchy

A ESC-NPC, chr6 Cophenetic correlation coefficient: 0.84
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Changes in tree topology reflect changes in gene regulation

|
There are few overall changes in topology across cell types



Single-cell+diploid

How to separate “maternal” and “paternal” chromosome?

\SNP

(single nucleotide polymorphism)

*Use SNPs to attribute reads to haplotype

* Propagate to contacting loci along chromosome

« Use statistical model to split pairs without SNPs between haplotypes
* Observation: “proximity effect” also works between chromosomes

chr1
chr2

Tan L et al. Science (2018)



Single-cell+diploid
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Single-cell+diploid

A GM12878 Cell 6

B am12878 cell 16: M/G1

(/2]

Qo

Q

£

o -

F—’ Genomic
Coordinate
E =

PBMC Cell 18: Lobes

 Chromosome territories

* Mitotic / abnormal cell

* Eu/Heterochromatin

* Preferred distance to center

CpG
Of nUCIGUS Frequency

C am12878 cell 6 0.5% I— 2%

i |

e =

o ; £
@ Y

wn y -
E ’ | :i
@ : 2 A

7 :

o8 b B

8o : ® This Study
S8 DNA FISH
0 =

ol '

z

10 11 12 13 14 156161718 _20 22 X Y

Tan L et al. Science (2018)



Regulation and structure
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Regulation and structure
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Stembryos
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Stembryos
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Stembryos

Condensation (48 h) Rekaik et al. Nat. Genet (2023)
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