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Protein-DNA interactions

Nature Reviews | Genetics

Komili & Silver 2008

* Gene regulation occurs via interaction of DNA with protein complexes

* There is specific binding (transcription factors), indirect binding (co-factors),
unspecific binding (Polymerase, histones)

* These can be studied with high-throughput genomic techniques



ChIP-Seq: method

1) Cross-link Proteins+DNA
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ChIP-Seq: method

2) Sonicate (or digest)

200-400 bp



ChIP-Seq: method

3) ImmunoPrecipitate




ChlIP-Seq: method

4) Reverse cross-links
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ChIP-Seq: method

5) Sequence dsDNA (short read 5’ of either strand)
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ChIP-Seq: method

6) Map reads to reference sequence
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Histone modifications

Chromatin state reflects transcriptional history,
modification-specific antibodies can be used
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ChIP profiles (active gene)
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ChIP profiles (inactive gene)
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ChIP profiles (inactive gene)

*In general: signal at a genomic position is proportional to fraction of cells
naving the protein bound at this position

* For travelling proteins (e.g. Polll) this is proportional to residency time
(inverse of speed): population average is the same as time average

* For sequence-specific binding, this is related in a non-linear way to binding
affinity
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DNA fragment distribution

Genome size: 3 - 10°

fragment size: ~ 300 = nb fragments per cell: 10’

Typical number of (occupied) transcription factor binding sites: ~ 10*.

: €t S (bound fragment is 100 times more likely to
Antibody “enrichment ratio”: & 100 X be selected than control)

TF-bound fragments are 1/1000 in input, hence 1/10 in IP
= false positives ~ 90 % .

Starting material is ~ 107 cells, sequencing throughput is ~ 10% reads
Consequence: each protein-bound fragment comes from a different cell

But: 0.1 x 10% reads distributed over 10* fragments is 10°reads per fragment

0.9 x 10® reads distributed over 10’ fragmentsis 9 reads per fragment



Non-specific reads are spread throughout the genome, but not uniformly.
To detect false positives, several techniques are routinely used:
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Binding regions have characteristic peak shape
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Sequence-specific DNA binding

A CAP-DNA Complex
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Sequence-specific occupancy

DNA binding proteins have a sequence-dependent binding energy G(S):
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Sequence-specific affinity

We assume binding via L consecutive bases, each bond contributes an
independent additive weight:
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Sequence-specific affinity

In this approximation, the binding affinity is represented by Position-Weight
Matrices (PWM):
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Relation between energy, frequency and score

There are 2 kinds of PWM:
Position-Probability Matrix (PPM in units of probability/frequency: W)
Position-Specific Scoring Matrix (PSSM in units of relative energy: g)

A C G T

PPM (absolute prob) 0.184211 0.000000 0.105263 0.710526 4« SUM="1

PPM (relative to consensus) 0.259260 0.000000 0.148148 1.000000\ 1
max=

PSSM (log of PPM) -2.440569 -0 -3.247930 -0.493041
PSSM - constant -1.947528 -0 -2.754889  0.000000
A strong binding site has: Motif score (protein affinity for a given sequence S)
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Sequence-specific affinity

Finding the matrix by maximum likelihood: data S is a set of protein-bound
sequences

Sequence scoring is relative to a specific set of background frequencies
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sl g5 ™ Jh . i TPY'S b v cobi,
? “}m 4 G }“ \G ATCCAG Set of ChlP-seq enriched sites
TCCA TGTC CCGTAA

AATGTCG
TCCGTAAG
Suppose each site contains | | | |
one instance of a . = 3 motif find high scoring triplets
0.024
ATCCAG
score
) 0.028
AATGTCG
0.024 0.024
PPM TCCGTAAG

meme-suite.org


https://meme-suite.org/tools/meme

sl g5 ™ Jh. A TPY'S b v cobi,
? “}m Y }“ } ATCCAG Set of ChlP-seq enriched sites
TCCA TGTC CCGTAA

AATGTCG
TCCGTAAG

Suppose each site contains

one instance of a L = 3 motif Average ties

0.024
ATCCAG
score

PR 0.011
update AATGTCG

0.024 0.024

TCCGTAAG

meme-suite.org


https://meme-suite.org/tools/meme

st 15 ™ Jh.._ Lhaaid TR b v cobi,
? \Gm Y S \G ATCCAG Set of ChlP-seq enriched sites
TCCA TGTC CCGTAA

AATGTCG
TCCGTAAG
Suppose each site contains
one instance of a L = 3 motif
score ATCCAG
175 | 0.25 —
1.75 | 1.75 | 0.25 | 0.25 update | AATGTCG
0.25 | 0.25 | 3.25 | 0.25
PPM * 4 TCCGTAAG

pseudo-counts: add .25 to each row to avoid O
then divide by 4 = nb sites + 1

meme-suite.org


https://meme-suite.org/tools/meme

sl g5 ™ Jh . i TPY'S b v cobi,
? “}m 4 G }“ \G ATCCAG Set of ChlP-seq enriched sites
TCCA TGTC CCGTAA

AATGTCG
TCCGTAAG

Suppose each site contains

. . New scores
one instance of a L = 3 motif

0.15
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iterate
ﬁ

| 0.1
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PPM * 4 TCCGTAAG
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https://meme-suite.org/tools/meme

sl g5 ™ Jh . i TPY'S b v cobi,
? “}m 4 G }“ \G ATCCAG Set of ChlP-seq enriched sites
TCCA TGTC CCGTAA

AATGTCG
TCCGTAAG

Suppose each site contains
one instance of a L = 3 motif

0.155
. ATCCA
iterate
0.56 | 0.11
0.32 | 0.56 | 0.06 | 0.06 AATGTCG
0.06 | 0.06 | 0.82 | 0.06 0155
PPM TCCGTAAG

Initialize with "flat" matrix

meme-suite.org



https://meme-suite.org/tools/meme

HMMs are particularly well adapted to modeling multiple binding sites in
promoters.

Example: the double E-box structure of circadian promoters
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e, e 2daaaaa; Paguetetal. PLoS Comp Bio (2009)



TnS transposons

Transposase: a protein that can cleave a
segment of DNA and transpose it elsewhere

Transposase binding

Donor DNA TIR  transposon TIR

transposase cleavage

Cleavage homodimer
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ATAC-seq

Use Tnd transposases preloaded with sequencing adapters (+ barcode, UMI, etc.)

a Isolate nuclei Expose to Tn5

(chromatin intact) transposase
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Bound transcription factors create a "footprint” inside a cleavage peak

500 bases
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Single cell ATAC-seq

Technique is sensitive enough to use on single nuclei.

1. Identify peaks on combined data
2. Cluster cells + peaks with similar patterns
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Li Z et al. Nat. Comm. (2021)



ChiP-seq + ATAC-seq + TF motifs

* Induce expression of transcription factor CASZ1 to trigger muscle differentiation
» Cooperates with specific myogenic regulatory factors MYOD, MYOG, MEF2D
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ChiP-seq + ATAC-seq + TF motifs

Motif inference from ChIP-seq peaks

CASZ1 HOMER de novo motif

Rank Motif P-value Best match
_ - CASZ1 binds to same motif as
| |ESCAGCTG | ™" | tweatees

2 f@QAAnggé 1e-271 TEAD1, TEAD2, MYOD, MYOG, TEAD (MEFZ)

TEADS, TEAD4

Averaged / cumulative profiles

«
-

CASZ1 MYOD MYOG H3K27ac H27me3 R-Polll  DNAase-seq
MEKi - -

+

- + =

+

0.8 1

CASZA1
0.6 — H3K27me3
RNA_Polll

0.4 —

—4000 —2000 Center 2000 4000 m

Read count per million mapped
reads

Aligned CASZ1 peaks (5408)

B e T R T L L

B L S e

LR B

1
Distance from CASZ1 peak center -2k 0 2k Distance from CASZ1 peak center
= Promoter region m Enhancer region m Unassigned regions

Liu Z et al. Nat. Comm. (2020)



