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Singular Value Decomposition (SVD) Analysis
Definition
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where 5; and gj are the expression profiles of sample j and gene i.



Singular Value Decomposition (SVD)
Definition
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» The columns vectors {Vi} with k € [1 : S] are orthogonal and compose the right singular vectors.
» Each Vi can be thought as a linear combination of {g;}

» Each g can be thought as a linear combination of {Vj}.



Singular Value Decomposition (SVD)

How individual samples relate to singular vectors
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> The projection of & onto the k™ left singular vector uj is p
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> vjc represents how much a sample contributes to the left singular vector .



Singular Value Decomposition (SVD)

The analysis of the samples loadings onto vy
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

- T
Mixs) = Upgxs) - Zsxs) - Visxs
S GbBiE 5
— a
‘Urgz 2 A
_ ™ B =
B 3 | » Pi3 g‘l
& FH. pi3
5}
y
\
\
G \\

TION \

rosecron \
A\ ==

=& 7= (U)o i p=p Bl Pl

ps =& {#]= (V%) 75 el Tl = VS ewr?

> The projection of g; onto the k™ right singular vector vj is pi
> pik =8 Vi = (MV)x = (UX)ik x uik
> uj represents how much a gene contributes to the right singular vector V.



Singular Value Decomposition (SVD)
Extract most contributing and correlating genes

47% of variance 15% of variance
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Singular Value Decomposition (SVD)
Biological Pathway Enrichment Analysis
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Single-cell RNA-sequencing

A transformative technology
> Cell states are now known to be more flexible than previously thought.

> Sc-RNA-seq enable to identify a variety of cell types/subpopulations that were invisible with
traditional experimental techniques.

» Enable to characterize complex tissues

Single-cell research has become one of the fastest-growing fields in life science, yet sometimes at the
cost of the quality of the data analysis which is not as mature as we would like.



Single-cell RNA-sequencing

Step 1: sample preparation
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Single-cell RNA-sequencing

Step 1: sample preparation

> Starting material of various sources:
- fresh viable single cells
- preserved sample (paraffin blocks)
- nuclear RNA from frozen tissue

> Preparation of single-cell suspensions
- Primary cells, stem cells and other sensitive cell types may require washing and suspension
in alternative buffers to ensure viability.
- Sample processing might introduce variation in the gene expression profile for. ex.
activation of stress-related genes.
- Physical isolation of cells by microdissection or pipetting.
- Target populations can be selected by FACS and MACS with appropriate labeling.

The number sequenced cells depend on the type of experiment and the expected frequency of the
population of interest: https://satijalab.org/howmanycells/



Single-cell RNA-sequencing
Step 2: sequencing

RNA capture and reverse transcription
(first-strand synthesis)
mRNA <« 3444
NN
mRNA < 47 [Cell barcode][T7]

ANV AAAA
mRNA <« 7777 | I[Cell barcode][PCR adaptor]

Second-strand synthesis and cDNA
amplification (PCR, IVT)

Tagmentation

= XK= OR Fragmentation
Library preparation

(8- or 5’—biasid, full-length)
\ Sequencing (paired-end, single-end) /

2Lafzi et al. 2018.



Single-cell RNA-sequencing
Step 2: sequencing

1. Most frequent capture of poly(A) RNA molecules by poly(T) oligo

2. Reverse Transcription (RT) and transcriptome amplification:

Captured RNA is reverse-transcribed into stable cDNA.

Most methods add single-cell-specific barcodes

Allows multiplexed processing of pooled samples.

Random-nucleotide-sequence stretches in the poly(T) oligonucleotide serve as unique
molecule identifiers (UMls)

UMI allow the user to correct for amplification biases and reduce technical noise

RNA nput Lbrary Generaton PCR Enrchment
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Single-cell RNA-sequencing

Step 2: sequencing
. Most frequent capture of poly(A) RNA molecules by poly(T) oligo
. Reverse Transcription (RT) and transcriptome amplification

. For short-read sequencing applications, the amplified cDNA (PCR) or RNA (IVT) is fragmented
before sequencing adaptors are added.

. Full-length versus 3'- or 5'-end transcript sequencing:

- Full-length protocols do not allow the introduction of UMls

- Microtiter plates by FACS: few cells (hundreds) but full length.
- Microfluidics: many cells (thousands) but 3'- or 5'-end biaised



Single-cell RNA-sequencing
Step 2: sequencing

Cell doublets

- Intrinsic problem for most microfluidics-based methods

- Two cells can be captured per reaction site (nanowell or droplet)

Cell capture efficiency

- Highly relevant in experiments involving primary or rare samples.

- The number of cells captured directly relates to the proportion of sample that enters downstream
analysis
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Single-cell RNA-sequencing

Step 3: pre-processing

D ]
inloxi Cell-specific reads
barcode UMI RNA Demultiplexing p
ACAGTATAAAGACT. . ....
e SoachNTGRsaooaL:
CGTTAGGTTACGIC. . . .
TGACAAGTTACGTC. . . . . ACAGTAGTTACGTC
GTTAGCTGATGCCG. . . . . .CITTGCAT ACAGTATGATGCCG .
GTTAGCTGATGCCG. . . . TCTCGACT
CGTTAGTGATGCCG. . . . . ccTeaace Ceflre T
ACAGTAGTTACGIC. . . . . . Cod o e dthe
TGACAATGATGCCG. . . . .GTCACATC . Lo
ACAGTATGATGCCG TCGACGAT N
GTTAGCTAAAGACT. . . . e —

Normalization

CGTTAGGTTACGTC. . . .

Imputation
Feature selection

Reference genome

3Lafzi et al. 2018.




Single-cell RNA-sequencing
Step 3: pre-processing

1. QC of the FASTQ reads.
® FASTQ reads are quality checked with


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Single-cell RNA-sequencing
Step 3: pre-processing

1. QC of the FASTQ reads.

2. De-multiplexing of reads using cell barcodes.



Single-cell RNA-sequencing
Step 3: pre-processing

1. QC of the FASTQ reads.
2. De-multiplexing of reads using cell barcodes.

3. Mapping to reference genomes.
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Single-cell RNA-sequencing
Step 3: pre-processing

QC of the FASTQ reads.
De-multiplexing of reads using cell barcodes.
Mapping to reference genomes.

Quantification to create a transcript/gene expression matrix.
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Single-cell RNA-sequencing
Step 3: pre-processing
QC of the FASTQ reads.
De-multiplexing of reads using cell barcodes.

Mapping to reference genomes.

Quantification to create a transcript/gene expression matrix.

The provides a comprehensive list of available computational tools for data
processing and analysis.

Steps 2, 3,4 can be done with


http://www.scRNA-tools.org
https://www.kallistobus.tools/

Single-cell RNA-sequencing

Bioinformatics libraries for single-cell RNA-seq analysis

> (R)* and (python)® are widely used packages for scRNA-seq analysis.

v

Main difference between Seurat and Scanpy in marker gene selection and DEG analysis

» These methods use different formulas to calculate fold-change values, based on the raw count
and mean-log values.

v

We will use Seurat given that we are working in R.

“Satija et al. 2015.
SWolf, Angerer, and Theis 2018.


https://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/tutorials/index.html

Single-cell RNA-sequencing

Data-set for tutorial

PARENTAL RESISTANT

w4
/6 weeks
/ vemurafenib

» 451Lu melanoma cell line

» Two conditions:
- untreated cell line called parental.
- cell line treated for 6 weeks with BRAF inhibitors; as still proliferating these are called
resistant.

®Ho et al. 2018.



Single-cell RNA-sequencing

Seurat object

#Create Seurat object
GE <- CreateSeurat0Object(
counts = expression_matrix,
meta.data = as.data.frame(cell_metadata),
min.cells = 5,
min.features = 0)

#Access raw counts matrix:
GEQassays$RNAQlayers$counts

#Access normalised count matrix:
GE_qn@assays$RNAQlayers$data
GE_sct@assays$SCT@data

#Access scaled count matrix:
GE_gn@assays$RNA@layers$data
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Single-cell RNA-sequencing
Step 3: pre-processing

QC of the FASTQ reads.

De-multiplexing of reads using cell barcodes.
Mapping.

Quantification.

Filtering of low-quality cells



Single-cell RNA-sequencing

Low-quality cells’

» Low QC cells might be due to dying cells, cells whose membranes are broken or doublets.

» Cells with a low count depth, few detected genes, and a high fraction of mitochondrial counts
can indicate cytoplasmic mRNA leakage through a broken membrane, and thus, only mRNA
located in the mitochondria is still conserved.

» Cells with unexpectedly high counts and a large number of detected genes may represent
doublets.

> Cells with a high fraction of mitochondrial counts may be involved in respiratory processes.

> Cells with low counts and/or genes may correspond to quiescent cell populations.

» Cells with high counts may be larger in size.

QC covariates should be considered jointly and with expert eyes, being aware of the system we
are working on.

"Luecken and Theis 2019.



Single-cell RNA-sequencing
Filtering of low-quality cells

To ensure that all cellular barcode data correspond to viable cells,
Seurat object has two relevant features:

nFeature_RNA

» number of genes detected in each cell.
> low nFeature_RNA for a cell indicates that it may be dead/dying or an empty droplet.

» High nFeature_RNA indicates that the cell may in fact be a doublet.

nCount_RNA

total number of molecules (UMI) detected within a cell.
Can be high yet all coming from the same molecule.

nCount values that are too low could possibly mean an empty droplet

vV v v Y

nCount values that are too high could possibly mean a doublet.



Single-cell RNA-sequencing

Filtering of low-quality cells

Cells that are poor quality are likely to have®
> low # genes detected per cell (nFeature_RNA)
> low UMI counts per cell (nCount_RNA)

» high mitochondrial counts ratio

8llicic et al. 2016; Griffiths, Scialdone, and Marioni 2018.



Single-cell RNA-sequencing
Filtering of low-quality cells

Low quality cells are identified with the following criteria:

» UMI counts (nCount_RNA) per cell

> Genes (nFeature_RNA) detected per cell
> UMIs vs. genes detected

> Mitochondrial counts ratio

» Complexity of the library
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Single-cell RNA-sequencing
Step 3: pre-processing

QC of the FASTQ reads.

De-multiplexing of reads using cell barcodes.
Mapping.

Quantification.

Filtering of low-quality cells

Filtering of lowly expressed genes



Single-cell RNA-sequencing

Filtering of genes

Single-cell data have a very low sensitivity.

scRNA-seq data are sparse.

The majority of cells do not express more than 3000 genes
Remove genes not detected in any cells

Many studies select genes with read count above a pre-defined threshold for example selecting
genes which are expressed in 10 or more cells.

An alternative is to select for genes reliably expressed in specific conditions by creating
pseudo-bulk expression matrix.
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Single-cell RNA-sequencing
Step 3: pre-processing

QC of the FASTQ reads.

De-multiplexing of reads using cell barcodes.
Mapping.

Quantification.

Filtering of low-quality cells

Filtering of lowly expressed genes

Normalisation



Single-cell RNA-sequencing
Technical challenges in scRNA-seq data

Methods developed for bulk RNA-seq tend to neglect prominent features of scRNA-seq
data.

High level of noise such as dropout events due to stochastic RNA loss, biased
amplification and incomplete library sequencing.

zero inflation, i.e., excess of zero read counts observed in some single-cell protocols.

transcriptome-wide nuisance effects (e.g., batch) comparable in magnitude to the
biological effects of interest.

uneven sample quality, e.g., in terms of alignment rates and nucleotide composition.



Single-cell RNA-sequencing

Normalisation

Scaling

» The goal is to compare concentrations rather than absolute amount of mRNAs per cell.
> Multiply each UMI count by a cell specific factor.

» To get all cells to have the same UMI counts.

Simple transformation
» Apply the same function to each individual measurement such as log transform or square root
transform.
> Genes with different abundances are affected differently®.

> Effective normalization using the log transform is only observed with low/medium abundance
genes.

» Substantial imbalances in variance were observed with the log-normalized data.

®Hafemeister and Satija 2019.


https://hbctraining.github.io/scRNA-seq_online/lessons/06_SC_SCT_normalization.html

Single-cell RNA-sequencing

Normalisation cont’d

Pearson residuals for transformation

» We cannot treat all genes the same®.

» Use Pearson residuals for transformation as implemented in Seurat's SCTransform function.
» Measurements are multiplied by a gene-specific weight.
>

Each gene is weighted based on how much evidence there is that it is non-uniformly expressed
across cells.

» More evidence == more of a weight; Genes that are expressed in only a small fraction of cells
will be favored (useful for finding rare cell populations).

> Not just a consideration of the expression level is, but also the distribution of expression.

Hafemeister and Satija 2019.


https://hbctraining.github.io/scRNA-seq_online/lessons/06_SC_SCT_normalization.html

Single-cell RNA-sequencing
Normalisation cont’d
Normalisation choices determines DE-analysis performance!!!

12/is an R package for comparing and ranking the performance of different

between-samples normalization schemes for single-cell RNA-seq.

1yieth et al. 2019.
2Cole et al. 2019.


https://bioconductor.org/packages/release/bioc/html/scone.html

Single-cell RNA-sequencing

Existing methods

- Quantile Normalisation: has been previously proposed in protocols lacking UMI counts®3.

- Methods developed for scRNA-seq: SCnorm**, SCRAN.
- Methods developed for bulk RNA-seq: Census'®, MR, TMM®®, Linnorm®°.

3Townes and Irizarry 2020.
“Bacher et al. 2017.

% un, Bach, et al. n.d.

®Qiu et al. 2017.

7 Anders and Huber 2010.
18Robinson and Oshlack 2010.
Yip et al. 2017.



Single-cell RNA-sequencing

Normalisation in Seurat

LogNormalize: gene counts for each cell are divided by the total counts for that cell and
multiplied by the scale.factor. This is then natural-log transformed.

CLR: clr(x) :== (Inxi — 5 ji1 |“Xj),--

RC: gene counts are divided by the total counts per cell and multiplied by the scale.factor. No
log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6.

SCTransform= modeling framework for the normalization and variance stabilization of molecular
count data from scRNA-seq experiments. This procedure omits the need for heuristic steps
including pseudocount addition or log-transformation.
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Single-cell RNA-sequencing

Step 3: pre-processing
QC of the FASTQ reads.
De-multiplexing of reads using cell barcodes.
Mapping.
Quantification.
Filtering of low-quality cells
Filtering of lowly expressed genes
Normalisation

Imputation



Single-cell RNA-sequencing

Imputation

- scRNA-seq datasets are also very sparse (many zeros).

- Non-expressed genes and technical shortcomings, such as dropout events (unsequenced
transcripts).

Missing transcript values can be computationally inferred by imputation, for example, with
MAGIC®, sclmpute?, sclGAN?.

- See for a complete review of the methods.

This step is not performed in this tutorial.

2Van Dijk et al. 2018.
21j and Li 2018.
22Xu et al. 2020.


https://link.springer.com/article/10.1186/s13059-020-02132-x

Single-cell RNA-sequencing

Step 4: down-stream analysis
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Single-cell RNA-sequencing

Step 4: down-stream analysis

Dimensionality reduction analysis
Unsupervised clustering

Differential gene expression analysis
Cell type identification

Trajectory analysis
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Single-cell RNA-sequencing

Dimensionality reduction analysis**

- By reducing the dimensionality, the computational complexity can be significantly reduced,
making the algorithms more efficient.

- Can help in filtering out noisy/irrelevant features to achieve better generalization and predictive
accuracy.

- To enable the representation of data in two or three dimensions, allowing for easier visualization
and interpretation.

- Can assist in feature engineering by creating new, derived features that capture the most relevant
information in the original dataset.

#source:https://aurigait.com/blog/blog-easy-explanation-of-dimensionality-reduction-and-
techniques/



Single-cell RNA-sequencing

Dimensionality reduction analysis

To visually inspect cellular subpopulation structures.
To enable unsupervised clustering analysis.

Most frequent methods: PCA, t-SNE and UMAP.
For PCA:

® Choose the most variable features then scale the data.
® Highly expressed genes exhibit the highest amount of variation
® Do not want highly variable genes only to reflect high expression

® Need to scale the data to scale variation with expression level.
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Single-cell RNA-sequencing
Selection of highly informative genes
Dimensionality reduction analysis challenging with too may genes
A common strategy is to analyze highly variable genes across datasets.
Increases the signal-to-noise ratio.
Reduces the computational complexity.

With the Seurat FindVariableFeatures() function.



Single-cell RNA-sequencing

Data Scaling in Seurat

» With the Seurat ScaleData() function.
» Adjust the expression of each gene across D cells x; — X; such that y; = % Z,-D:l X; = 0.

> Scaling expression of each gene to give a variance across cells of 1.



Dimensionality Reduction

t-distributed Stochastic Neighbor Embedding (t-SNE)*

The aims

- To perform non-linear scaling to represent changes at different levels.

- To find optimal separation in 2-dimensions.

%5Maaten and Hinton 2008.



Dimensionality Reduction

t-distributed Stochastic Neighbor Embedding (t-SNE)?®

The idea

- Based around all-vs-all table of pairwise cell to cell distances.
- Convert similarities between data points in the high-dimensional space into probabilities.

- Map these probabilities to a lower-dimensional space in a way that preserves the relationships
between the data points as much as possible.

- Minimize the divergence between the pairwise similarities in the high versus the low-dimensional
spaces.

26Maaten and Hinton 2008.



Dimensionality Reduction
t-distributed Stochastic Neighbor Embedding (t-SNE)*’
The parameters in RunTSNE() from Seurat

» dims the dimensions of the PCA to use as input features.
> perplexity the expected number of neighbours within a cluster.

> Distances scaled relative to perplexity neighbours.

N N N
[0) (0] (0]
C [=4 C
[} O 3
o 10} o
. Perplexity = 4 . Perplexity = 2
Gene 1 Gene 1
2"Maaten and Hinton 2008.
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https://www.bioinformatics.babraham.ac.uk/training/10XRNASeq

Dimensionality Reduction

t-distributed Stochastic Neighbor Embedding (t-SNE) cont'd*®

The procedure
1. Pairwise similarities between data points are computed using a Gaussian kernel that measures the
similarity based on the Euclidean distance between data points.

2. From the pairwise similarities, probability distributions are constructed for each data point that
represent the similarities between a data point and all other points in the high-dimensional space.

3. An initial embedding of the data points in the low-dimensional space is randomly generated.

Pairwise similarities between data points are computed in the low-dimensional space.

2Maaten and Hinton 2008.



Dimensionality Reduction

t-distributed Stochastic Neighbor Embedding (t-SNE) cont'd

The resulting embedding

> Unlike PCA, X and Y do not mean anything.
Unlike PCA, distance does not mean anything.

>

» Cannot rationalise distances, or add in more data.
> Gives reliable information on the closest neighbours.
>

Large distance information is almost irrelevant.

Pros and cons

+ Can reduce to 2D.
+ Can cope with non-linear scaling.
- Slow and does not scale well to large numbers of cells (10k+)

- Does not cope well with noisy data.


https://www.bioinformatics.babraham.ac.uk/training/10XRNASeq

Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP)*

The idea

- To construct a low-dimensional representation of the data that preserves global and local
structure.

- Uses a graph-based approach to build a topological representation of the data..

- Minimize the divergence between the pairwise similarities in the high-dimensional space versus in
the low-dimensional space.

2Becht et al. 2019.



Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP)*

The procedure

1. Calculate the pairwise distances between data points in the high-dimensional space using

Euclidean distance, cosine distance, or correlation distance.

Based on the pairwise distances, a fuzzy simplicial set is constructed representing the local
neighborhood structure of the data points.

Simplical sets are higher-dimensional generalizations of directed graphs, partially ordered sets and
categories.

*Becht et al. 2019.
31~ ol Vamaiala and Camara 2010



Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP)*?* cont'd

Key parameters
» n.neighbors the number of expected nearest neighbours; the same concept as perplexity; will
affect the influence given to global vs local information.

> min.dist how tightly UMAP packs points which are close together; will affect how compactly
packed the local parts of the plot are.

» metric determines the choice of metric used to measure distance in the input space.

32Becht et al. 2019.



Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP)* cont'd

Pros and cons

+ Can reduce to 2D.

+ Can cope with non-linear scaling.

+ Allow new data to be added to an existing projection
+/- A bit quicker than tSNE
+/- Is supposed to preserve more global structure than tSNE

+/- It is claimed that it can be run on raw data without PCA preprocessing

3Becht et al. 2019.


https://www.bioinformatics.babraham.ac.uk/training/10XRNASeq

Single-cell RNA-sequencing

Compare methods

PCA

+ Linear transformation that preserves Euclidean distances between cells in the full PCA space.

+ Interpretable.
+ Effective for capturing global patterns.

+ Computationally efficient.
- The structure of most scRNA-seq datasets cannot be captured by 2 or 3 PCs.



Single-cell RNA-sequencing

Compare methods cont’d

t-SNE
+ Focus on capturing local similarity at the expense of global structure. .
- Non-linear i.e. the interpretability of the reduced dimensions is sacrificed.
- May exaggerate differences between cell populations.
- t-SNE graphs may show strongly different numbers of clusters depending on perplexity parameter.

- Computationally intensive.



Single-cell RNA-sequencing

Compare methods cont’d

UMAP

+ Supposed to better preserve large-scale structures than t-SNE.
+ Fast and able to scale to large numbers of cells.

- Tends to favor fully connected representations of the data rather than the discrete clusters
favored by t-SNE.

- Non-linear i.e. the interpretability of the reduced dimensions is sacrificed.

- Computationally intensive.



Single-cell RNA-sequencing
Reproducibility issue with tSNE and UMAP

» t-SNE and UMAP require user-defined hyperparameters
> Result are sensitive to the value chosen.

» t-SNE and UMAP are stochastic.

» Results significantly depend on initialization.

> Faithful representation of local and/or global structure in low dimensions not always true**.

34Kobak and Berens 2019; Cooley et al. 2019.



Single-cell RNA-sequencing
Optimality of linear embedding
» The Johnson-Lindenstrauss lemma on the optimality of linear embedding shows that preservation

of pairwise distances with a margin of error of at most 20% for a sized dataset of 10,000 cells
would require at least 1,842 dimensions..

> Extreme dimension reduction inevitably induces significant distortion of high-dimensional
datasets™.

> Poor preservation of local neighborhoods by both PCA and the nonlinear reduction methods.

1

It discouraged to blindly apply such heuristic procedures.

35Chari and Pachter 2023.
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