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Genomics and Health Informatics Group
Towards the identification of early mechanisms underlying complex human diseases
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Genomics and Health Informatics Group

Which molecular perturbations underly disease cellular states?
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“Cells are residents of a vast landscape of possible states,
over which they travel during development and in disease”

C.H. Waddington




“Cells are residents of a vast landscape of possible states,
over which they travel during development and in disease”

C.H. Waddington

Locating the cells on this landscape == identify cell identity and state.
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Simpson’s Paradox (Simpson 1951)
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Failing to properly compartmentalize the data by cell type leads to a qualitatively incorrect
interpretation.

Trapnell 2015.



One cell type, several cell states

Cell state can be described as the range of cellular phenotypes arising from the interaction of a
defined cell type with its environment.

» A meaningful definition of cell types must be associated with
what cell types do.

» In response to diverse stimuli, the same cell type can exhibit a range of different phenotypes ==
states.

> Several cell states to address the diverse function of cell type.

2Zeng 2022.



“Cells are residents of a vast landscape of possible states,
over which they travel during development and in disease”

C.H. Waddington

The landscape might indeed change over time!



Decentralised biology of the neurons

Compartment-specific functions
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Need to rapidly respond to external cues:.



Time-scale underlying transcriptional regulation

> For most genes, a new steady-state expression level is established by 120 mn.
» Estimated median mRNA half-life in human cells is 10 hS.

» mRNA transcription factors have shorter half-life (< 1 h)*

3Yang et al. 2003.
*Sharova et al. 2009.



Decentralised biology of the neurons

Compartment-specific functions
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Need to rapidly respond to external cues.
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Cannot depend on transcription.



Decentralised biology of the neurons

Compartment-specific functions

Neurons homeostasis relies on local translation through controlled regulation of axonal mRNA
localization, transport, and stability



Gene expression analysis has been the major focus to precisely define

cellular states and catalog them in development and disease, yet

» Regulation in gene expression does not enable fast response to environmental cues.

> Alternatively spliced variants can provide further information and help to refine cell types.®

®Booeshaghi et al. 2021.



One gene, several isoforms

What about their non-coding portions?

5'UTR 3'UTR

Pre-mRNA Bon 1 Exon 2 Exon 3 Bxon 4

Splicing & processing

5'UTR 3'UTR
Mature mRNA e Exon 1 Exon 2 Exon 3 Exon 4 ooe
5'cap 3' poly-A tail

> 90% of the transcriptome does not encode for protein.

I

Key regulatory functions of 5" UTR, introns, and 3" UTR in health and disease.



Regulation by 5’ UTR

Key regulatory platform for translational efficiency®

v

Critical for ribosome recruitment and ultimately initiation of translation

v

Switching between 5'UTR isoforms is a way to alter protein synthesis rates

» Can be comprehensively identified using CAGE-seq

8

v

Impact in neuronal biology” and disease such as cancer

®Hinnebusch, Ivanov, and Sonenberg 2016; Jia et al. 2020.
"Biever, Donlin-Asp, and Schuman 2019.
8Weber et al. 2023.



Regulation by 3’ UTR

Key regulatory platform for mRNA localisation, storage and translation

> Generated by alternative polyadenylation.

» Tandem 3’ UTR: identical protein-coding sequence but different 3’ end.

> APA isoforms are cell-type specific and change on activation of signaling pathway®
>

3' UTR isoforms can undergo cytoplasmic shorting upon external stimuli*®

“Mayr 2019.
0 Andreassi et al. 2021.



Regulation by 3’ UTR

Key regulatory platform for mRNA localisation and translation

short 3' UTR transcript isoform

5 e S 5

long 3' UTR transcript isoform
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Regulation by intronic sequences

Emerging regulatory platform for mRNA and protein localisation

FULLY SPLICED ISOFORM

@ Normal protein isoform

INTRON RETAINING ISOFORM

Alternative protein isoform

Localisation/storage

Degradation via NMD

Nuclear detention
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Alternative spliced isoforms enable

mRNA localisation, storage and translation.

And certainly much more!
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RNA-sequencing data
What are we looking at?
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Image fromhttps://chem.libretexts.org/ (CC BY 3.0).
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RNA-sequencing

Overview of a standard bioinformatic pipeline

Quality control (QC) of the fastq files (FASTQC)

Mapping of the reads onto a reference genome and/or transcriptome to obtain a count data table.
QC of the library

Pre-processing (statistical modelling)

Down-stream analysis

® Unsupervised analysis (clustering)
® Supervised analysis (DGE, pathway analysis)


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

MOTOR NEURON DIFFERENTIATION
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BHowe et al. 2022.



Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

CELL FRACTIONATION
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“Howe et al. 2022.



RNA-sequencing
Pre-processing of the read count table
1. Log-transformation
2. Filter-out lowly expressed genes

3. Normalisation
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Unsupervised clustering analysis
Hierarchical agglomerative clustering

Compute pair-wise distance between samples

> Flexible distance metrics between samples.

> Euclidean, correlation-based (Pearson or Spearman).

Agglomerative clustering of the samples
» Linkage criterion determines the distance between sets of observations as a function of
the pairwise distances between observations.
Linkage criterion influences shape of the clusters.

» The definition of shortest distance is what differentiates between the different
agglomerative clustering methods.

» Complete-linkage tends to produce more spherical clusters than single-linkage.

> Single-linkage tends to produce long thin clusters in which nearby elements of the same
cluster have small distances
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Unsupervised clustering analysis

Principal Component Analysis

To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates
The orthogonal coordinates are called principal components (PCs).

PC retain most variability in the data.



Unsupervised clustering analysis

Principal Component Analysis

To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

The orthogonal coordinates are called principal components (PCs).

PC retain most variability in the data.

To reduce the dimensionality of data
To extract essential information

To characterize the structure of the data.



Principal Component Analysis
Objective
> Let X € R"*9 be the data matrix, mean-centered.
» Find vi such that:
1. w1l =1

2. Variance of projection onto v; is maximized

Data in Original Coordinates Data in PC Coordinates

v

16




Principal Component Analysis

Covariance and projection

- The projection of a vector x € R" onto v; is given by v{ x.

- Assuming X is mean-centered, the sample variance of the projection onto v; is:

1 $ 1
Var(Xv;) = —1 zz(vlTx;)2 =v/ ( 1XTX> Vi

- n—
i=1

- The covariance matrix is defined as:

1

1 n
Cov(X) = n_1 Z(X:’ = p)(xi — H)T =5 1XTX
i=1




Principal Component Analysis

Solution

The variance of X projected onto vi must be maximized.

1

n—

Var(Xvi) = v{ ( 1XTX> vi = vy Cov(X)v;

1

Cov(X)vi = \vi = vlTCov(X)vl =\

vi and A; are an eigenvector and its associated eigenvalue of the covariance matrix.

!

The optimal vy is the eigenvector corresponding to the largest eigenvalue of Cov(X).

Cov(X) = ﬁxTx =vIv’



Principal Component Analysis
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» Most biologists focus on the clustering of the samples in PC1 and PC2.
> This is ok for simple experimental set-up (2 or 3 covariates).

» However what if more complex experiment?

1

More subtle but biologically relevant signal might be captured in other components.
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Singular Value Decomposition (SVD)

Let M € R8*® be a real-valued gene expression matrix, with g genes and s samples (g > s).
Each entry mj; represents the expression of gene i in sample j.
> g € R®: expression profile of gene i across samples

> s € RE: expression profile of sample j across genes

M=UxV’"

where:
> U € R&**: orthonormal basis for genes
> ¥ ¢ R°*°: diagonal matrix of singular values

> VT € R°**: orthonormal basis for samples



Singular Value Decomposition (SVD) Analysis
Definition

Micxs) = Upexs] © Xsxs] - VVisxs
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where 5; and g are the expression profiles of sample j and gene i.



Singular Value Decomposition (SVD)
Definition
Miexs) = Uexs) - ZXisxs] - VVisxs)
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> the left singular vectors {{k} form an orthonormal basis of the space of sample expression
profiles so that u; - u; = 1 for / = j and 0 otherwise.

> the right singular vectors {V,} form an orthonormal basis of the space of gene expression profiles
so that v; - v; = 1 for i = j and 0 otherwise.



Singular Value Decomposition (SVD)
Important results

Miexs) = Uexs) - ZXisxs) - Visxs
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> MO = ZL:1 usev] is the closest rank-(/) matrix to M i.e. M) minimizes > lImy — m,(-jl)||2



Singular Value Decomposition (SVD)
How to get U, ¥ and V

M™M= vV’

U=XvI!



Relation Between SVD and PCA

When PCA is performed via the covariance matrix, it is closely related to the SVD of the data matrix
M.
Assuming M is column-centered:
» M™M x Cov(M)
> Diagonalizing MM gives V , the right singular vectors , which are the principal directions (PCs).

> The matrix UX gives the principal component scores (coordinates of genes in PC space).

Alternatively, if rows of M are centered:
> MM o Cov(genes)

» The left singular vectors U then correspond to the principal components of gene expression
profiles.



Singular Value Decomposition (SVD)
Definition
Miexs) = Uexs) - ZXisxs] - VVisxs
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» The columns vectors {Vi} with k € [1 : S] are orthogonal and compose the right singular vectors.
» Each Vi can be thought as a linear combination of {g;}

» Each g can be thought as a linear combination of {Vj}.



Singular Value Decomposition (SVD)

How individual samples relate to singular vectors
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> The projection of 5; onto the k™ left singular vector i is Pjk



Singular Value Decomposition (SVD)

How individual samples relate to singular vectors

Mixs) = Uexs © Zsxs] - Visxs
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> The projection of & onto the k™ left singular vector dj is p
> p =5 ik = (MTU)ic = (UT M)y = (V) o vix

> vjc represents how much a sample contributes to the left singular vector i.



Singular Value Decomposition (SVD)

The analysis of the samples loadings onto vy
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17Adapted from " Modeling ALS with motor neurons derived from human induced pluripotent stem cells” by Samuel Sances, Lucie | Bruijn,
Siddharthan Chandran et al. 2016, Nat Neurosci, 19(4). Copyright 2016 Nature America, Inc. All rights reserved!



Singular Value Decomposition (SVD)

The analysis of the samples loadings onto vy
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

Miexs) = Uexs) + ZTsxs) - Vsxs

v




Singular Value Decomposition (SVD)

How individual genes relate to singular vectors
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

- T
Mixs) = Upgxs) - Zsxs) - Visxs
S GbBiE
— a
\:Uu; > i
- SN ==
p 3 | » Pi3 g‘l
‘@
.
\
\
G \

\
\

SROJECTION \
\
pis =|&i : (UD)is °<

> The projection of g; onto the k™ right singular vector vj is pi
> pik =8 Vi = (MV)x = (UX)ik x uik

> uj represents how much a gene contributes to the right singular vector V.



Singular Value Decomposition (SVD)

How individual genes relate to singular vectors
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> The projection of g; onto the k™ right singular vector vj is pi
> pik =8 Vi = (MV)x = (UX)ik x uik
> uj represents how much a gene contributes to the right singular vector V.



Singular Value Decomposition (SVD)
Extract most contributing and correlating genes
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Singular Value Decomposition (SVD)
Biological Pathway Enrichment Analysis

Healthy Controls
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