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Genomics and Health Informatics Group

Towards the identification of early mechanisms underlying complex human diseases.
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Genomics and Health Informatics Group

Which molecular perturbations underly disease cellular states?

Sick

Healthy
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“Cells are residents of a vast landscape of possible states,

over which they travel during development and in disease”

C.H. Waddington
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“Cells are residents of a vast landscape of possible states,

over which they travel during development and in disease”

C.H. Waddington

↓
Locating the cells on this landscape == identify cell identity and state.
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Genomics and Health Informatics Group

Which molecular perturbations underly disease cellular states?
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↓
Dynamic mixture of subpopulations with distinct physiological states.
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Simpson’s Paradox (Simpson 1951)

1

Failing to properly compartmentalize the data by cell type leads to a qualitatively incorrect
interpretation.

1Trapnell 2015.
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One cell type, several cell states

Cell state can be described as the range of cellular phenotypes arising from the interaction of a
defined cell type with its environment.

▶ A meaningful definition of cell types must be associated with
what cell types do2.

▶ In response to diverse stimuli, the same cell type can exhibit a range of different phenotypes ==
states.

▶ Several cell states to address the diverse function of cell type.

2Zeng 2022.
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“Cells are residents of a vast landscape of possible states,

over which they travel during development and in disease”

C.H. Waddington

↓
The landscape might indeed change over time!
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Decentralised biology of the neurons

Compartment-specific functions

↓
Need to rapidly respond to external cues.
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Time-scale underlying transcriptional regulation

▶ For most genes, a new steady-state expression level is established by 120 mn.

▶ Estimated median mRNA half-life in human cells is 10 h3.

▶ mRNA transcription factors have shorter half-life (< 1 h)4

3Yang et al. 2003.
4Sharova et al. 2009.
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Decentralised biology of the neurons

Compartment-specific functions

↓
Need to rapidly respond to external cues.

↓
Cannot depend on transcription.
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Decentralised biology of the neurons

Compartment-specific functions

Neurons homeostasis relies on local translation through controlled regulation of axonal mRNA
localization, transport, and stability
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Gene expression analysis has been the major focus to precisely define

cellular states and catalog them in development and disease, yet

▶ Regulation in gene expression does not enable fast response to environmental cues.

▶ Alternatively spliced variants can provide further information and help to refine cell types.5

5Booeshaghi et al. 2021.
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One gene, several isoforms
What about their non-coding portions?

> 90% of the transcriptome does not encode for protein.
↓

Key regulatory functions of 5’ UTR, introns, and 3’ UTR in health and disease.
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Regulation by 5’ UTR

Key regulatory platform for translational efficiency6

▶ Critical for ribosome recruitment and ultimately initiation of translation

▶ Switching between 5’UTR isoforms is a way to alter protein synthesis rates

▶ Can be comprehensively identified using CAGE-seq

▶ Impact in neuronal biology7 and disease such as cancer8

6Hinnebusch, Ivanov, and Sonenberg 2016; Jia et al. 2020.
7Biever, Donlin-Asp, and Schuman 2019.
8Weber et al. 2023.



18/57

Regulation by 3’ UTR

Key regulatory platform for mRNA localisation, storage and translation

▶ Generated by alternative polyadenylation.

▶ Tandem 3’ UTR: identical protein-coding sequence but different 3’ end.

▶ APA isoforms are cell-type specific and change on activation of signaling pathway9

▶ 3’ UTR isoforms can undergo cytoplasmic shorting upon external stimuli10

9Mayr 2019.
10Andreassi et al. 2021.
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Regulation by 3’ UTR

Key regulatory platform for mRNA localisation and translation

11

11
Adapted from Tian, B. and Manley, J. L. (2013) Alternative cleavage and polyadenylation: the long and short of it. Trends in biochemical

sciences.
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Regulation by intronic sequences

Emerging regulatory platform for mRNA and protein localisation
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Nuclear detention
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Alternative spliced isoforms enable

mRNA localisation, storage and translation.

And certainly much more!
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RNA-sequencing data
What are we looking at?

12

12
Image fromhttps://chem.libretexts.org/ (CC BY 3.0).
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RNA-sequencing
Overview of a standard bioinformatic pipeline

1. Quality control (QC) of the fastq files (FASTQC)

2. Mapping of the reads onto a reference genome and/or transcriptome to obtain a count data table.

3. QC of the library

4. Pre-processing (statistical modelling)

5. Down-stream analysis

• Unsupervised analysis (clustering)
• Supervised analysis (DGE, pathway analysis)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

Figure 1

IR AltEx MIC
Alt3Alt5

0

100

200

300

400

0 3 7 14 22 35

# 
IR

0

50

100

150

200

0 3 7 14 22 35

# 
IR

F

DIV
CYTOPLASMNUCLEUS

−1.0

−0.5

0.0

0.5

1.0

G

lo
g2

FC
 g

en
es

0 3 7 14 22 35
DIV

A

0 7 14 22 35

Fibroblasts

VCP
mu

dualSmad 
+ 

GSKb inhibitors

iPSC NPC(2)

RA+
SHH low SHH NOTCH antagonist

pMN MN

Induction Patterning Terminal Differentiation

Exit
cell cycle

mMN

time [days]
3

NPC(1)

CELL FRACTIONATION

RNA-sequencing

Nucleus
Cytoplasm

MOTOR NEURON DIFFERENTIATION

B
Control VCP

NC NC NC NC NC NC
1 2 3 1 2 3

Cytoplasmic Nuclear
0.0001

0.001

0.01

0.1

a.
u.

 

GAPDH intron/exon
Control
VCP

H3

PSPC1

GAPDH

C

●
●
●

●
●
●

●●●

●

●●

●
●●

●

●

●
●●●●

●

●
●

●

● ●

●

●●

●
●

●
●

●●
●●

●
●●

●
●●

●

●

●●●●●●
●
●

●

●
●
●●●●●

●●

●

●●●●●

●
●

●● ●●●●

●
●

●●
●●●
●

●●

●
●●

●●●

−0.15 −0.05 0.05

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

PC1 (41%)

PC
2 

(1
5%

)

● ● ●

● ● ●

0 3 7
14 22 35

●●

●

●
●
●

●
●
●

●●●

●

●●

●

●

●
●●●●

●

●
●

●

● ●

●

●●

●
●

●
●

●●
●●

●
●●

●
●●

●

●

●●●●●●
●
●

●

●
●
●●●●●

●●

●

●●●●●

●
●

●● ●●●●

●
●

●●
●●●
●

●●

●
●●

●●●

−0.15 −0.05 0.05

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

PC1 (41%)

PC
2 

(1
5%

)

D
●● CytoplasmicNuclear

●
●
●

●
●
●

●●●

●

●●

●
●●

●

●

●
●●●●

●

●
●

●

● ●

●

●●

●
●

●
●

●●
●●

●
●●

●
●●

●

●

●●●●●●
●
●

●

●
●
●●●●●

●●

●

●●●●●

●
●

●● ●●●●

●
●

●●
●●●
●

●●

●
●●

●●●

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
● ●CTRL VCP

E

PC
2 

(1
5%

)

−0.15 −0.05 0.05
PC1 (41%)

527 204

13

13Howe et al. 2022.
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Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical sessionFigure 1
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RNA-sequencing

Pre-processing of the read count table

1. Log-transformation

2. Filter-out lowly expressed genes

3. Normalisation
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Unsupervised clustering analysis

Hierarchical agglomerative clustering

Compute pair-wise distance between samples

▶ Flexible distance metrics between samples.

▶ Euclidean, correlation-based (Pearson or Spearman).

Agglomerative clustering of the samples

▶ Linkage criterion determines the distance between sets of observations as a function of
the pairwise distances between observations.

▶ Linkage criterion influences shape of the clusters.

▶ The definition of shortest distance is what differentiates between the different
agglomerative clustering methods.

▶ Complete-linkage tends to produce more spherical clusters than single-linkage.

▶ Single-linkage tends to produce long thin clusters in which nearby elements of the same
cluster have small distances
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Unsupervised clustering analysis

Principal Component Analysis

▶ To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

▶ To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

▶ The orthogonal coordinates are called principal components (PCs).

▶ PC retain most variability in the data.
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Unsupervised clustering analysis

Principal Component Analysis

▶ To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

▶ To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

▶ The orthogonal coordinates are called principal components (PCs).

▶ PC retain most variability in the data.

↓

- To reduce the dimensionality of data

- To extract essential information

- To characterize the structure of the data.
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Principal Component Analysis

Objective

▶ Let X ∈ Rn×d be the data matrix, mean-centered.

▶ Find v1 such that:

1. ∥v1∥ = 1
2. Variance of projection onto v1 is maximized

16

16https://intoli.com/blog/pca-and-svd/
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Principal Component Analysis

Covariance and projection

- The projection of a vector x ∈ Rn onto v1 is given by vT1 x.

- Assuming X is mean-centered, the sample variance of the projection onto v1 is:

Var(Xv1) =
1

n − 1

n∑
i=1

(vT1 xi )
2 = vT1

(
1

n − 1
XTX

)
v1

- The covariance matrix is defined as:

Cov(X) =
1

n − 1

n∑
i=1

(xi − µ)(xi − µ)T =
1

n − 1
XTX
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Principal Component Analysis

Solution

The variance of X projected onto v1 must be maximized.

Var(Xv1) = vT1

(
1

n − 1
XTX

)
v1 = vT1 Cov(X)v1

↓

Cov(X)v1 = λ1v1 ⇒ vT1 Cov(X)v1 = λ1

v1 and λ1 are an eigenvector and its associated eigenvalue of the covariance matrix.
↓

The optimal v1 is the eigenvector corresponding to the largest eigenvalue of Cov(X).

Cov(X) =
1

n − 1
XTX = VΣV T
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Principal Component Analysis

ESC iPSC mMN
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▶ Most biologists focus on the clustering of the samples in PC1 and PC2.

▶ This is ok for simple experimental set-up (2 or 3 covariates).

▶ However what if more complex experiment?

↓
More subtle but biologically relevant signal might be captured in other components.
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Singular Value Decomposition (SVD)

Let M ∈ Rg×s be a real-valued gene expression matrix, with g genes and s samples (g ≥ s).

Each entry mij represents the expression of gene i in sample j .

▶ g⃗i ∈ Rs : expression profile of gene i across samples

▶ s⃗j ∈ Rg : expression profile of sample j across genes

M = UΣVT

where:

▶ U ∈ Rg×s : orthonormal basis for genes

▶ Σ ∈ Rs×s : diagonal matrix of singular values

▶ VT ∈ Rs×s : orthonormal basis for samples
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Singular Value Decomposition (SVD) Analysis

Definition

=

‘

=

where s⃗j and g⃗i are the expression profiles of sample j and gene i .
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Singular Value Decomposition (SVD)

Definition

=

‘

=

▶ the left singular vectors {u⃗k} form an orthonormal basis of the space of sample expression
profiles so that ui · uj = 1 for i = j and 0 otherwise.

▶ the right singular vectors {v⃗k} form an orthonormal basis of the space of gene expression profiles
so that vi · vj = 1 for i = j and 0 otherwise.
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Singular Value Decomposition (SVD)

Important results

=

‘

=

▶ M(l) =
∑l

k=1 ukskv
T
k is the closest rank-(l) matrix to M i.e. M(l) minimizes

∑
ij ∥mij −m

(l)
ij ∥

2
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Singular Value Decomposition (SVD)

How to get U, Σ and V

MTM = VΣ2V T (5)

U = XVΣ−1 (6)
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Relation Between SVD and PCA
When PCA is performed via the covariance matrix, it is closely related to the SVD of the data matrix

M.

Assuming M is column-centered:

▶ MTM ∝ Cov(M)

▶ Diagonalizing MTM gives V , the right singular vectors , which are the principal directions (PCs).

▶ The matrix UΣ gives the principal component scores (coordinates of genes in PC space).

Alternatively, if rows of M are centered:

▶ MMT ∝ Cov(genes)

▶ The left singular vectors U then correspond to the principal components of gene expression
profiles.
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Singular Value Decomposition (SVD)

Definition

=

‘

=

▶ The columns vectors {v⃗k} with k ∈ [1 : S ] are orthogonal and compose the right singular vectors.

▶ Each v⃗k can be thought as a linear combination of {g⃗i}
▶ Each g⃗i can be thought as a linear combination of {v⃗k}.
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Singular Value Decomposition (SVD)

How individual samples relate to singular vectors

=

‘

=

PROJECTION

▶ The projection of s⃗j onto the k th left singular vector u⃗k is pjk
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Singular Value Decomposition (SVD)

How individual samples relate to singular vectors

=

‘

=

PROJECTION CORRELATION

▶ The projection of s⃗j onto the k th left singular vector u⃗k is pjk
▶ pjk = s⃗j · u⃗k = (MTU)ik = (UTM)ik = (VΣ)jk ∝ vjk
▶ vjk represents how much a sample contributes to the left singular vector u⃗k .
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Singular Value Decomposition (SVD)

The analysis of the samples loadings onto vk
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Adapted from ”Modeling ALS with motor neurons derived from human induced pluripotent stem cells” by Samuel Sances, Lucie I Bruijn,

Siddharthan Chandran et al. 2016, Nat Neurosci, 19(4). Copyright 2016 Nature America, Inc. All rights reserved.
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Singular Value Decomposition (SVD)

The analysis of the samples loadings onto vk
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

=

=
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

=

=

PROJECTION
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

=

=

PROJECTION

▶ The projection of g⃗i onto the k th right singular vector v⃗k is pik

▶ pik = g⃗i · v⃗k = (MV )ik = (UΣ)ik ∝ uik

▶ uik represents how much a gene contributes to the right singular vector v⃗k .
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Singular Value Decomposition (SVD)

How individual genes relate to singular vectors

=

=

PROJECTION CORRELATION

▶ The projection of g⃗i onto the k th right singular vector v⃗k is pik

▶ pik = g⃗i · v⃗k = (MV )ik = (UΣ)ik ∝ uik

▶ uik represents how much a gene contributes to the right singular vector v⃗k .
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Singular Value Decomposition (SVD)

Extract most contributing and correlating genes
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Singular Value Decomposition (SVD)

Biological Pathway Enrichment Analysis

days:          0    7  14   21   35
mutation: -  +  - +  - +  -  +  - +
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