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Preliminary Information
Overview of the four modules

Module |

» Bulk RNA-sequencing |

> Unsupervised clustering analysis |
Module Il

» Bulk RNA-sequencing Il
Module 111

» Unsupervised clustering analysis |l

> Single-cell RNA-seq |

» Unsupervised clustering analysis Il
Module IV

> Single-cell RNA-seq Il

» Differential gene expression analysis
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Preliminary Information

Objectives of the course

1. Extract knowledge from messy and noisy ata.

2. Understand the analysis, the existing tools and the publicly available data-bases.
3. Get practical hands on statistics and machine learning.

4. Develop a critical view on the results.

5. Stimulate the engineers to develop better or novel technologies.
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Preliminary Information

Structures and evaluations

> First period: biological background.
» Second period: machine learning.

P Exercises: R with more than what you need.

» Evaluation:

® Evaluate your knowledge and critical thinking on a new data-set.

Adapt source code that has been done during exercises.

Upload your HTML file including source code.

Criteria: correct answer (50%), quality of the figure (25%), description of the results
(25%).
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RNA Molecules

Central to all biological processes
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RNA Molecules

Underlying all cell behaviours and identities
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RNA Molecules

Strong therapeutics potential
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RNA Molecules

Copies of DNA segments composed of 4 components

Gene1 Gene 2---Gene N
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RNA Molecules

Only a small fraction encode for proteins

Ribosome
f A

L
Pre-mRNA

Nucleus
g
mRNA H
| X
Protein

tRNA
circRNA

s SIRNA
1.5% of transcripts

Repressive smRNAs

; I
= MIRNA L

s DiRNA

1 snRNA
i b @i @i @)
NcRNA SNORNA

S8

IncRNA

Pseudogene

S8

IncRNA

& 11/61



Versatile RNA Molecules
> 95% of RNA molecules are non-coding
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Versatile RNA Molecules
> 95% of RNA molecules are non-coding
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RNA Molecules

Only a small fraction encode for proteins
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Canonical knowledge

A structured and interacting multifunctional molecule
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Three phases of discoveries

Decode RNA versatility with Al
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RNA Molecules

Ubiquitous, versatile with strong therapeutic potential

Gene 1 Gene 2---Gene N
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» Central to all biological process

P Implication in most human disorders

> Strong therapeutics potential (ASO for SMA)
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RNA-sequencing data
What are we looking at?
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Image fromhttps://chem.libretexts.org/ (CC BY 3.0).
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RNA-sequencing

Information retrieved from such analysis

Qualitative - what type of molecule

> |dentify expressed genes, transcript isoforms

> |dentify transcript start and end boundaries

Quantitative - how much of each molecule

» Relative amount of mMRNA produced in a cell, tissue, spatial location

> Enable sample clustering, differential gene expression analysis, differential splicing analysis, etc.



RNA-sequencing
High-throughput measurements of RNA and proteins.

Bulk RNA-sequencing

Can resolve the full complexity of the transcriptome, yet confound changes due to gene regulation with
those due to shifts in cell type composition (Simpson's Paradox, 1951).

Single-cell RNA-sequencing

Resolution at the single-cell level however gene coverage is not even and therefore challenging to study
gene structure.

Spatial RNA-sequencing

Mapping between location, form and gene expression. About 10 cells per spot. Not suitable for AS and
APA analysis.



RNA-sequencing
High-throughput measurements of RNA and proteins.
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RNA-sequencing

Overview of a standard bioinformatic pipeline

Quality control (QC) of the fastq files (FASTQC)

Mapping of the reads onto a reference genome and/or transcriptome to obtain a count data table.
QC of the library

Pre-processing (statistical modelling)

Down-stream analysis

® Unsupervised analysis (clustering, )
® Supervised analysis (DGE, pathway analysis)


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

RNA-sequencing
FASTQ file store the reads

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+
L'k ((((*%%+))%%%++) ($3%%) . 1%**_+*' ') )**55CCF>>>>>>CCCCCCCH5

Field 1 Sequence identifier
Field 2 Raw sequence letters
Field 3 + optionally followed by the same sequence identifier and any description

Field 4 Quality values for the sequence



RNA-sequencing

Relative quantification of mRNA content
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From the reads to gene expression count matrix

Chrom Start End Strand
read 1 3 1045 2038 +
read 2 21 1998 3000 =
read 3 7 76323 76523 -

Genome Annotation

read 70k 8 5654 5900  + Gene A Gene B

Gene A Gene B

!

gene count matrix

sample 1 sample 2 sample 30
gene1 324533 3454 98
gene 2 33 6345 34532

gene3 34555 966 62

gene 40k 3243 34 7544



UCSC Genome Browser
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https://genome-euro.ucsc.edu

RNA-sequencing

Mapping of the reads

(A) Reads mapped to genome.



RNA-sequencing

Mapping of the reads

(B)

(A) Reads mapped to genome.
(B) Spliced reads mapped to transcriptome and genome



RNA-sequencing

Mapping of the reads

Use of splice-aware alignment tools to resolve isoform complexity.



RNA-sequencing

Mapping of the reads

» Mature RNAs (mRNA) are spliced (without introns)
> Key info in the reads spanning the splice junctions)

> Mapping of the raw reads (fastq files) with an aligner that uses both a reference genome (fasta)
and gene structure (gtf) information.



RNA-sequencing
Splice aware alignment tools

Open-source splice-aware aligners

3 4 5

More info related to different aligners can be found

Required files

> A fastq file
> A reference genome in fasta format which can be obtained from UCSC

» The gene structure or genome annotation as obtained from UCSC, Ensembl and NCBI

> Make sure that the annotation file (GTF) is exactly matched with the genome file (fasta)!

3Wang et al. 2010.
*Kim et al. 20109.
5Dobin et al. 2013.


https://github.com/LiuBioinfo/MapSplice
https://github.com/DaehwanKimLab/hisat2
https://github.com/alexdobin/STAR/
https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lectures/alignment_quantification.pdf
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.annotation.gtf.gz

RNA-sequencing
CookBook:

K00102:523: HK7FLBBXY:7:1228:16133:47032 355 chr2l 5106425 3 0 = 5106635 311 GACTGGCTGCTGTTTGTTTTTCTTGTGGCTGCAGTGGTTTTCTAAGAAGGTAACTCA!
GTAAAAATAGTTACCATTCATGCCACACCTGC  AAFFFIJIJIFIFFII-AJ11111131313333333F<13333333333IAFFII13333333333333333333FI333IFIIIIIIIIIIIIFIII NH:i:2 HI:i:2 AS:is
K00102: 523 : HK7FLBBXY : 7:1201:29366: 15170403 chr2l 5106558 3 10M ] = 5106367 -292  CTTACACATGTGCACAGATACACATATCACACATGACTATGTGCAGACGTGTGCACA!
CCCACAGGTGCGCTGCACACCCGCACACACA FFJJIF<JAF<)111111113F<JAAJIIEFFI<F11111313IAI7A11103<-7<IAFIIIIFIFIFIF-AIFIIIII<AF<IIIFIIIIIIFFFFFAL  NH:i:2 HI:i:2 AS:i
Read name Alignement information: chromosome --- start coordinate --- Quality --- CIGAR

Col | Field | Type Brief description CIGAR Code BAM Integer Description

! ONAME][Stinaf [QuenjempiatoNAVE M 0 alignment match (can be a sequence match or mismatch)

2 |FLAG |Int | bitwise FLAG e

| 1 insertion to the reference
3 RNAME | String | References sequence NAME
- - D 2 deletion from the reference

4 POS Int 1- based leftmost mapping POSition

5 | MAPQ | Int MAPping Quality N 3 skipped region from the reference

6 | CIGAR | String | CIGAR siring s 4 soft clipping (clipped sequences present in SEQ)

7 | RNEXT | String | Ref. name of the mate/next read H 5 hard clipping (clipped sequences NOT present in SEQ)

8 | PNEXT | Int Position of the mate/next read P 6 padding (silent deletion from padded reference)

9 |TLEN |Int | observed Template LENgth - 7 sequence match

10 |SEQ | String  segment SEQuence X s e G

11 | QUAL | String | ASCII of Phred-scaled base QUALity+33

BAM file: compressed binary version of a SAM file

SAM file: represent aligned sequences

® Header section followed by Alignement section
® Alignment section have 11 mandatory fields


https://samtools.github.io/hts-specs/SAMv1.pdf

-sequencing

RNA
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Identify AS events from RNA-seq data
CookBook:Example spliced reads

Open IGV

Load in_chr21.bam

Go to chr21 : 29013935 — 29053651
Sort alignements by start location

Group alignements by read strand



Use of IGV

!
PRACTICE



RNA-sequencing
QC of the library |

. Strandedness: check fraction of reads mapping to correct strand
. Relative fraction of reads mapping to intergenic regions

. Relative fraction of reads mapping to each chromosome

. RIN scores

. 5'-3' coverage biases

. Ribosomal contamination



Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

MOTOR NEURON DIFFERENTIATION

Fibroblasts  iPSC 7, ' NPC(2) pMN MN mMN

E2e>
To <=
£

@/—\ .a Exit i *\’*‘ A
- * BA cell cycle o\ *\‘ A
T i /\.

i T T on NG
0 3

7 14 22 35
time [days]

5Howe et al. 2022.



RNA-sequencing
Pre-processing of the read count table
1. Log-transformation
2. Filter-out lowly expressed genes

3. Normalisation



Pre-processing of the read count table

1. Log-transformation

Motivation

v

To stabilize the variance which is quadratic in the mean.

v

To converts multiplicative relative changes to additive differences.

v

To get the sampled data in line with the assumptions of parametric statistics: the residuals from
a model fit are normally distributed with a homogeneous variance.

v

To deal with outliers.



Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

CELL FRACTIONATION

D

Nucleus
Cytoplasm

Vo

RNA-sequencing




Pre-processing of the read count table

2. Filter lowly expressed genes

Motivation

> Curse of dimensionality
> Sensitivity in differential gene expression analysis

» This value can be used for QC the data. .

Methods

> Based on fixed threshold (count per million)

> Select reliably expressed genes by fitting bimodal distribution



0.4

density

0.0

Pre-processing of the read count table

2. Filter lowly expressed genes

Sample 1

read count [log2]

data
Fitted d1 (background)
Fitted d2 (foreground)



Pre-processing of the read count table
3. Normalisation: Why

Motivation

» Remove systematic technical artefacts:

® Sequencing depth (total number of sequenced and mapped reads)
® Library size

® Gene length

® Sequence composition due to PCR-amplification

> Essential for comparisons between samples and between genes.



RNA-sequencing Normalization

No unique solution.

BRIEFINGS IN BIOINFORMATICS. VOL I4. NO 6. 671-683 doi:10.1093/bib/bbs046
Advance Access published on I7 September 2012

A comprehensive evaluation of
normalization methods for lllumina
high-throughput RNA sequencing
data analysis

Marie-Agnes Dillies”, Andrea Rau®, Julie Aubert", Christelle Hennequet-Antier’, Marine J in*

Nicolas Servant*, Céline Keime”, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bemd Jagla,

Luc Jouneau, Denis Laloé, Caroline Le Gall, Brigitte Schaéffer, Stéphane Le Crom”, Mickaél Gued;", Florence Jaffrézic*
and on behalf of The French StatOmique Consortium

Submitted: 12th April 2012; Received (in revised form): 29th June 2012

Log; normalized values

Med DESeq Q RPKM RawCount



RNA-sequencing Normalization
Gene Length effect

|
Read count

Short transcript

.
Long transcript 1
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RNA-sequencing Normalization
The Reads Per Kilobase per Million mapped reads (RPKM)

RPKM = NX"f - % 10° (1)

lj X L

N; = total number of reads sample j (in million)
L; =gene length in kilobase x;j=read count for a gene / in sample j

» Correct for gene length bias and sample to sample variation.
» To compare expression levels between genes.

> Some genes highly expressed may distord the signal (sink many reads)



RNA-sequencing Normalization
Library size might be biased by highly expressed genes

Upper quantile normalization (UQ)

sj = with @3; = upper quantile of sample j

12103

Median Normalisation
median;

S =T
J Zmedlan !

Quantile Normalisation

Identical distribution of the read count across all samples.
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Unsupervised clustering analysis
Hierarchical agglomerative clustering

Compute pair-wise distance between samples

> Flexible distance metrics between samples.

> Euclidean, correlation-based (Pearson or Spearman).

Agglomerative clustering of the samples
» Linkage criterion determines the distance between sets of observations as a function of
the pairwise distances between observations.
Linkage criterion influences shape of the clusters.

» The definition of shortest distance is what differentiates between the different
agglomerative clustering methods.

» Complete-linkage tends to produce more spherical clusters than single-linkage.

> Single-linkage tends to produce long thin clusters in which nearby elements of the same
cluster have small distances



Unsupervised clustering analysis

Hierarchical agglomerative clustering

Complete-linkage clustering

Initially, each sample is in a cluster of its own.

» The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

> At each step, the two clusters separated by the shortest distance are combined.

> Shortest distance between clusters = the distance between the two samples farthest away
from each other.

> D(X,Y) = maxsex,yeyd(x,y) where d(x,y) is the distance between two elements of the
clusters X and Y.



Unsupervised clustering analysis

Hierarchical agglomerative clustering

Single-linkage clustering

» Initially, each sample is in a cluster of its own.

» The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

> At each step, the two clusters separated by the shortest distance are combined.

> Shortest distance between clusters = the distance between the two samples closest away
from each other.

> D(X,Y) = minsex,yeyd(x,y) where d(x, y) is the distance between two elements of the
clusters X and Y.



Unsupervised clustering analysis

Hierarchical agglomerative clustering

UPGMA (unweighted pair group method with arithmetic mean)

> Initially, each sample is in a cluster of its own.

» The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

> At each step, the two clusters separated by the shortest distance are combined.

» Shortest distance between clusters = the average distance between pairs of object in X
and Y.

> D(X,Y) = L erx ZyGY d(x,y)

nxny



Unsupervised clustering analysis

Principal Component Analysis

To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates
The orthogonal coordinates are called principal components (PCs).

PC retain most variability in the data.



Unsupervised clustering analysis

Principal Component Analysis

To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

The orthogonal coordinates are called principal components (PCs).

PC retain most variability in the data.

To reduce the dimensionality of data
To extract essential information

To characterize the structure of the data.



Principal Component Analysis

The goal of PCA is to find a collection of k < d unit vectors v; € R" (for i € 1,..., k) called Principal
Components, or PCs, such that

1. the variance of the dataset projected onto the direction determined by v is maximized

2. V; is chosen to be orthogonal to vi,...,Vi_1
Data in Original Coordinates Data in PC Coordinates
4 4
2 2
o) b2
- ™
S < o 0 'I—"'Ul
o
V1
2 -2
-4 -4
-4 -2 0 2 4 —4 -2 [ 2 4

X PC 1



Principal Component Analysis

To find Vi, the following conditions must be adressed:
L v =1
2. The variance of X projected onto V4 must be maximised.
- The projection of a vector X € R” onto V; is V' X
- The variance of X projected onto Vi is

1 & Tve_ .7 1 o1
n_lg(le;fvl,u) 7v1n_1x Xv;

- Given a matrix X, the covariance of the matrix around the mean can written as

NS SEVE VS SR Y _NT
Cov(X) = ——5X'X = nfli;(xl ) (xi — i)

(2)

(3)

The solution to is therefore Cov(X)vi = A\iv1 < v{ Cov(X)vi = A1 i.e. vi and \; are an eigenvector

and an eigenvalue respectively of Cov(X).



Principal Component Analysis

To find i, the following conditions must be adressed:
1. v =1

2. The variance of X projected onto ¥4 must be maximised.

The solution to is therefore Cov(X)vi = A\1vi <& v/ Cov(X)vi = A1 i.e. vi and A1 are an eigenvector
and an eigenvalue respectively of Cov(X).

Cov(X) = —X'X=VvzV’ (4)



Principal Component Analysis

0.2 7 I ESC ] iPSC @ mMN

| fetal spMN @ adult spMN

» Most biologists focus on the clustering of the samples in PC1 and PC2.
» This is ok for simple experimental set-up (2 or 3 covariates).
> However what if more complex experiment?

1

More subtle but biologically relevant signal might be captured in other components.
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