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Preliminary Information
Overview of the four modules

Module I

▶ Bulk RNA-sequencing I

▶ Unsupervised clustering analysis I

Module II

▶ Bulk RNA-sequencing II

▶ Unsupervised clustering analysis II

Module III

▶ Single-cell RNA-seq I

▶ Unsupervised clustering analysis III

Module IV

▶ Single-cell RNA-seq II

▶ Differential gene expression analysis
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Preliminary Information
Objectives of the course

1. Extract knowledge from messy and noisy ata.

2. Understand the analysis, the existing tools and the publicly available data-bases.

3. Get practical hands on statistics and machine learning.

4. Develop a critical view on the results.

5. Stimulate the engineers to develop better or novel technologies.
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Preliminary Information
Structures and evaluations

▶ First period: biological background.

▶ Second period: machine learning.

▶ Exercises: R with more than what you need.

▶ Evaluation:
• Evaluate your knowledge and critical thinking on a new data-set.
• Adapt source code that has been done during exercises.
• Upload your HTML file including source code.
• Criteria: correct answer (50%), quality of the figure (25%), description of the results

(25%).
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RNA Molecules
Central to all biological processes
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RNA Molecules
Underlying all cell behaviours and identities

RNA
metabolism

CELL STATECELL IDENTITY
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RNA Molecules
Strong therapeutics potential

Nanoparticle vector

siRNA

mRNA

Genomic DNA
Transcription

RISC

Cleaved and 
degraded mRNA 

siRNA
RISC

siRNA
RISC

siRNA
RISCRISC

siRNA 
Nanoparticle 

Delivery System



10/61

RNA Molecules
Copies of DNA segments composed of 4 components

Gene 1 Gene N

RNA

Gene 2 ...
Bases (adenine, cytosine, 

guanine, thymine)

A AC CAC UU U UGG

UA

C G
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RNA Molecules
Only a small fraction encode for proteins

Cytoplasm

Nucleus

ncRNAPre-mRNA

DNA

Ribosome

circRNA

mRNA

Protein

tRNA

Pseudogene

snoRNA

snRNA

lncRNA

lncRNA

miRNA

piRNA

siRNA

Repressive smRNAs

1.5% of transcripts



12/61

Versatile RNA Molecules
> 95% of RNA molecules are non-coding

Exon 1 Exon 2 Exon 3 Exon 4Pre-mRNA

Splicing & processing

AExon 1 Exon 2 Exon 3 Exon 4
5' UTR 3' UTR

5' cap 3' poly-A tail
Mature mRNA

Intron 1 Intron 2 Intron 3 Intron 3 Intron 4
5' UTR 3' UTR

A AG
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Versatile RNA Molecules
> 95% of RNA molecules are non-coding

↓
Function beyond their own protein product?
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RNA Molecules
Only a small fraction encode for proteins
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Canonical knowledge

A structured and interacting multifunctional molecule

 Secondary 
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Three phases of discoveries in RNA
Decode RNA versatility with AI
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RNA Molecules
Ubiquitous, versatile with strong therapeutic potential

Gene 1 Gene N

RNA

Gene 2 ...
Bases (adenine, cytosine, 

guanine, thymine)

A AC CAC UU U UGG

UA

C G

▶ Central to all biological process

▶ Implication in most human disorders

▶ Strong therapeutics potential (ASO for SMA)
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RNA-sequencing data
What are we looking at?

1

1
Image fromhttps://chem.libretexts.org/ (CC BY 3.0).
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RNA-sequencing

2

2
https://mbernste.github.io/posts/rnas eqbasics/
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RNA-sequencing
Information retrieved from such analysis

Qualitative - what type of molecule

▶ Identify expressed genes, transcript isoforms

▶ Identify transcript start and end boundaries

Quantitative - how much of each molecule

▶ Relative amount of mRNA produced in a cell, tissue, spatial location

▶ Enable sample clustering, differential gene expression analysis, differential splicing analysis, etc.
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RNA-sequencing
High-throughput measurements of RNA and proteins.

Bulk RNA-sequencing

Can resolve the full complexity of the transcriptome, yet confound changes due to gene regulation with
those due to shifts in cell type composition (Simpson’s Paradox, 1951).

Single-cell RNA-sequencing

Resolution at the single-cell level however gene coverage is not even and therefore challenging to study
gene structure.

Spatial RNA-sequencing

Mapping between location, form and gene expression. About 10 cells per spot. Not suitable for AS and
APA analysis.



23/61

RNA-sequencing
High-throughput measurements of RNA and proteins.

▶ Different types of library preparation

▶ 1) ribosomal versus polA RNA enrichment

▶ 2) stranded versus non-stranded

▶ 3) paired-end versus single-end reads.
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RNA-sequencing
Overview of a standard bioinformatic pipeline

1. Quality control (QC) of the fastq files (FASTQC)

2. Mapping of the reads onto a reference genome and/or transcriptome to obtain a count data table.

3. QC of the library

4. Pre-processing (statistical modelling)

5. Down-stream analysis

• Unsupervised analysis (clustering, )
• Supervised analysis (DGE, pathway analysis)

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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RNA-sequencing

FASTQ file store the reads

Field 1 Sequence identifier

Field 2 Raw sequence letters

Field 3 + optionally followed by the same sequence identifier and any description

Field 4 Quality values for the sequence
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RNA-sequencing

Relative quantification of mRNA content

RNA Shatter RNA fragments (~400bp)

Sequence fragment ends Map sequenced fragments (=reads)

ATTATGCGCTGCGGCTG   CGGCGACGCAGCGCAGCAG...
TTATG CGGC ACGC

DNA

Reads

1

3

2

4
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From the reads to gene expression count matrix

Gene A Gene B

read 1
read 2
read 3 
...
read 70k

Chrom
3

21
7
...
8

Start
1045
1998

76323
...

5654

End
2038
3000

76523
...

5900

Strand
+
-
-
...
+

sa
mple

s.....

Genome Annotation

Gene A Gene B

+

gene 1
gene 2
gene 3 
...
gene 40k

sample 1
324533

33
34555

...
3243

sample 2 
3454
6345
966

...
34

sample 30
98

34532
62
...

7544

...

gene count matrix
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UCSC Genome Browser

UCSC

https://genome-euro.ucsc.edu
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RNA-sequencing

Mapping of the reads

(A)

(A) Reads mapped to genome.
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RNA-sequencing

Mapping of the reads

(A)

(B)

(A) Reads mapped to genome.
(B) Spliced reads mapped to transcriptome and genome
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RNA-sequencing

Mapping of the reads

(A)

(B)

Use of splice-aware alignment tools to resolve isoform complexity.
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RNA-sequencing

Mapping of the reads

Different products from the same gene

Intron retentionAlternative exon
▶ Mature RNAs (mRNA) are spliced (without introns)

▶ Key info in the reads spanning the splice junctions)

▶ Mapping of the raw reads (fastq files) with an aligner that uses both a reference genome (fasta)
and gene structure (gtf) information.
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RNA-sequencing

Splice aware alignment tools

Open-source splice-aware aligners

MapSplice 3, HISAT2 4, STAR 5

More info related to different aligners can be found HERE

Required files

▶ A fastq file

▶ A reference genome in fasta format which can be obtained from UCSC HG38 reference genome

▶ The gene structure or genome annotation as obtained from UCSC, Ensembl and NCBI
HG38 Gencode

▶ Make sure that the annotation file (GTF) is exactly matched with the genome file (fasta)!

3Wang et al. 2010.
4Kim et al. 2019.
5Dobin et al. 2013.

https://github.com/LiuBioinfo/MapSplice
https://github.com/DaehwanKimLab/hisat2
https://github.com/alexdobin/STAR/
https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lectures/alignment_quantification.pdf
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.annotation.gtf.gz
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RNA-sequencing

CookBook: BAM/SAM files

Read name Alignement information:   chromosome   ---  start coordinate  ---  Quality  --- CIGAR

BAM file: compressed binary version of a SAM file

SAM file: represent aligned sequences
• Header section followed by Alignement section
• Alignment section have 11 mandatory fields

https://samtools.github.io/hts-specs/SAMv1.pdf
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RNA-sequencing

IGV View of the mapped results
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Identify AS events from RNA-seq data

CookBook:Example spliced reads

1. Open IGV

2. Load in chr21.bam

3. Go to chr21 : 29013935− 29053651

4. Sort alignements by start location

5. Group alignements by read strand
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Use of IGV

↓

PRACTICE
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RNA-sequencing

QC of the library I

1. Strandedness: check fraction of reads mapping to correct strand

2. Relative fraction of reads mapping to intergenic regions

3. Relative fraction of reads mapping to each chromosome

4. RIN scores

5. 5’-3’ coverage biases

6. Ribosomal contamination
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Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical session

Figure 1
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6Howe et al. 2022.
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RNA-sequencing

Pre-processing of the read count table

1. Log-transformation

2. Filter-out lowly expressed genes

3. Normalisation
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Pre-processing of the read count table

1. Log-transformation

Motivation

▶ To stabilize the variance which is quadratic in the mean.

▶ To converts multiplicative relative changes to additive differences.

▶ To get the sampled data in line with the assumptions of parametric statistics: the residuals from
a model fit are normally distributed with a homogeneous variance.

▶ To deal with outliers.
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Bulk RNA-sequencing Analysis of Differentiating Motor
Neurons

Data-set for practical sessionFigure 1
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7Howe et al. 2022.



43/61

Pre-processing of the read count table

2. Filter lowly expressed genes

Motivation

▶ Curse of dimensionality

▶ Sensitivity in differential gene expression analysis

▶ This value can be used for QC the data. .

Methods

▶ Based on fixed threshold (count per million)

▶ Select reliably expressed genes by fitting bimodal distribution
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Pre-processing of the read count table

2. Filter lowly expressed genes

Sample 1

read count [log2]0 20

0.0

0.4
de

ns
ity

Fitted d2 (foreground)
Fitted d1 (background)
data
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Pre-processing of the read count table

3. Normalisation: Why

Motivation

▶ Remove systematic technical artefacts:

• Sequencing depth (total number of sequenced and mapped reads)
• Library size
• Gene length
• Sequence composition due to PCR-amplification

▶ Essential for comparisons between samples and between genes.
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RNA-sequencing Normalization

No unique solution.
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RNA-sequencing Normalization

Gene Length effect
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RNA-sequencing Normalization

The Reads Per Kilobase per Million mapped reads (RPKM)

RPKM =
xij

Nj × Li
× 109 (1)

Nj = total number of reads sample j (in million)
Li =gene length in kilobase xi j=read count for a gene i in sample j

▶ Correct for gene length bias and sample to sample variation.

▶ To compare expression levels between genes.

▶ Some genes highly expressed may distord the signal (sink many reads)
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RNA-sequencing Normalization

Library size might be biased by highly expressed genes

Upper quantile normalization (UQ)

sj =
Q3j

1
n

∑
l Q3l

with Q3j = upper quantile of sample j

Median Normalisation

sj =
medianj

1
n

∑
median l

Quantile Normalisation

Identical distribution of the read count across all samples.
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Unsupervised clustering analysis

Hierarchical agglomerative clustering

Compute pair-wise distance between samples

▶ Flexible distance metrics between samples.

▶ Euclidean, correlation-based (Pearson or Spearman).

Agglomerative clustering of the samples

▶ Linkage criterion determines the distance between sets of observations as a function of
the pairwise distances between observations.

▶ Linkage criterion influences shape of the clusters.

▶ The definition of shortest distance is what differentiates between the different
agglomerative clustering methods.

▶ Complete-linkage tends to produce more spherical clusters than single-linkage.

▶ Single-linkage tends to produce long thin clusters in which nearby elements of the same
cluster have small distances
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Unsupervised clustering analysis

Hierarchical agglomerative clustering

Complete-linkage clustering

▶ Initially, each sample is in a cluster of its own.

▶ The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

▶ At each step, the two clusters separated by the shortest distance are combined.

▶ Shortest distance between clusters = the distance between the two samples farthest away
from each other.

▶ D(X ,Y ) = maxx∈X ,y∈Y d(x , y) where d(x , y) is the distance between two elements of the
clusters X and Y .
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Unsupervised clustering analysis

Hierarchical agglomerative clustering

Single-linkage clustering

▶ Initially, each sample is in a cluster of its own.

▶ The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

▶ At each step, the two clusters separated by the shortest distance are combined.

▶ Shortest distance between clusters = the distance between the two samples closest away
from each other.

▶ D(X ,Y ) = minx∈X ,y∈Y d(x , y) where d(x , y) is the distance between two elements of the
clusters X and Y .
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Unsupervised clustering analysis

Hierarchical agglomerative clustering

UPGMA (unweighted pair group method with arithmetic mean)

▶ Initially, each sample is in a cluster of its own.

▶ The clusters are then sequentially combined into larger clusters until all elements end up
being in the same cluster.

▶ At each step, the two clusters separated by the shortest distance are combined.

▶ Shortest distance between clusters = the average distance between pairs of object in X
and Y .

▶ D(X ,Y ) = 1
nX ny

∑
x∈X

∑
y∈Y d(x , y)
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Unsupervised clustering analysis

Principal Component Analysis

▶ To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

▶ To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

▶ The orthogonal coordinates are called principal components (PCs).

▶ PC retain most variability in the data.
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Unsupervised clustering analysis

Principal Component Analysis

▶ To transform a set of possibly correlated variables (genes) into ”some more fundamental set of
independent variables”.

▶ To project a dataset from many correlated coordinates onto fewer uncorrelated coordinates

▶ The orthogonal coordinates are called principal components (PCs).

▶ PC retain most variability in the data.

↓

- To reduce the dimensionality of data

- To extract essential information

- To characterize the structure of the data.
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Principal Component Analysis

The goal of PCA is to find a collection of k ≤ d unit vectors v⃗i ∈ Rn (for i ∈ 1, . . . , k) called Principal
Components, or PCs, such that

1. the variance of the dataset projected onto the direction determined by v⃗i is maximized

2. v⃗i is chosen to be orthogonal to v⃗1, . . . , v⃗i−1

8

8https://intoli.com/blog/pca-and-svd/
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Principal Component Analysis

To find v⃗1, the following conditions must be adressed:

1. ∥v1∥ = 1

2. The variance of X projected onto v⃗1 must be maximised.

- The projection of a vector x⃗ ∈ Rn onto v⃗i is v⃗
T
i x⃗

- The variance of X projected onto v⃗1 is

1

n − 1

n∑
i=1

(vT1 xi − vT1 µ)
2 = vT1

1

n − 1
XTXv1 (2)

- Given a matrix X, the covariance of the matrix around the mean can written as

Cov(X) =
1

n − 1
XTX =

1

n − 1

n∑
i=1

(xi − µ)(xi − µ)T (3)

The solution to is therefore Cov(X)v1 = λ1v1 ⇔ vT1 Cov(X)v1 = λ1 i.e. v1 and λ1 are an eigenvector
and an eigenvalue respectively of Cov(X).
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Principal Component Analysis

To find v⃗1, the following conditions must be adressed:

1. ∥v1∥ = 1

2. The variance of X projected onto v⃗1 must be maximised.

The solution to is therefore Cov(X)v1 = λ1v1 ⇔ vT1 Cov(X)v1 = λ1 i.e. v1 and λ1 are an eigenvector
and an eigenvalue respectively of Cov(X).

Cov(X) =
1

n − 1
XTX = VΣV T (4)
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Principal Component Analysis

ESC iPSC mMN

fetal spMN adult spMN
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▶ Most biologists focus on the clustering of the samples in PC1 and PC2.

▶ This is ok for simple experimental set-up (2 or 3 covariates).

▶ However what if more complex experiment?

↓
More subtle but biologically relevant signal might be captured in other components.
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