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Schedule of this class

date | week lectures exercises teacher

18 feb 1

25 feb 2 Structural genomics R exercises Jacques Rougemont
4 mar 3
11 mar 4
18 mar 5
25 mar 6
1 apr 7
8 apr 8
15 apr 9
29 apr 10
6 may 1"
13 may 12

Regulation, chromatin Mini-projects Jacques Rougemont
20 may 13
27 may 14




Schedule of this class

Lecture 1: Feb 18

Lecture 2: Feb 25

Lecture 3: March 4

Lecture 4: March 11

Lecture 5: March 18 — Assignment 1 available on March 20

Lecture 6: March 25 — Problem class devoted to assignment 1; deadline on March 28
Lecture 7: April 1

Lecture 8: April 8

Lecture 9: April 15 — Assignment 2 available on April 18

Lecture 10: April 29 — Problem class devoted to assignment 2; deadline on May 2
Lecture 11: May 6 — Mini-projects available on April 28; choose yours by May 6
Lecture 12: May 13

Lecture 13: May 20

Lecture 14: May 27 — Mini-project deadline on May 30



« Studying the evolution of species and genes

» Traditionally: based on traits such as physical or morphological features

Angel fish Frog Crocodile Platypus Kangaroo Elephant

Group animals using
shared characters

(assume that traits only

s appeared once)

mammary glands
hair

amniote egg

four legs

Digital atlas of ancient life



« Studying the evolution of species and genes

» Traditionally: based on traits such as physical or morphological features
 More modern: based on molecular sequence data

Bacteria Archaea Eucarya 3 major domains of life

14 15
6 |
’ i Euryarchaeota

16 Inferred from analyzing
17 (rRNA) sequences

1 12 13
Crenarchaeota ! 11

19

Woese et al 1990 — redrawn in Pace et al 2012



« Studying the evolution of species and genes

At shorter timescales: understanding the phylogeny of a virus can help design vaccines

Influenza A/H3NZ2 evolution
(sequence coding for
hemagglutinin protein)

9)69) (O8]
BRI O

XICD

https://nextstrain.org/flu/seas
onal/h3n2/ha/12y

2009 2011 2015 2017 2019 2021 2023



Sequence data and phylogeny

= Starting point: biological sequence data

Multiple sequence alignments, of amino-acid sequences or nucleotide sequences
Q5E940_BOVIN ——————————— MPREDRATWfSNYéLKII ;DD KCFiVEA : a

N--PAL

K I
RLAO0 HUMAN ----------- MPREDRATWKSNYFLKIIQLLDDYPKCFIVGA K I N--PAL
RLA0 MOUSE ----------- KSNYFLKITOLLDDYPKCFIVGA K I N--PAL
RLKO_RRT ——————————— SNYFLKITOLLDDYPKCFIVGA K I N--PAL
RLAO0 CHICK ----------- SNYFMKITQLLDDYPKCFY VGA] K I N--PAL
RLAO RANSY ----------- KSNYFLKITOQLLDDYPKCFIVGA] K IF N--SAL
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RLAO:DROME ——————————— MYRENKAAWKAQYFIKYVELFDEFPKCFIVGA K I N--PQL

S IF
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Q54LP0_DICDI ----------- MSGAG-SKRKNYFIEKATKLFTTYDKMIVAEA R K RDLADSK--PELD
RLAO PLAF8 ----------- KOMYTEKLSSLIQQOX¥SKILIVHY | INLIAV

0 --ROIH|
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RLAO_ ARCFU ------ Mnnvaﬁs———ppE KVRAVEE IKRMISSKPVVAIVSFRNVPAG 2 LERALDALG----- GDEL
RLAO_ METKA GOPPSGYEPKVAEW REVKELK.LMDEI:NVGLVDL.EIDnp MR IALEEKLDER--PELE
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ruler 1....... 10, ... .... e B0 A0 ... 50..... .60 ... .. o TO0. e B0,

Acidic ribosomal
protein PO (first
90 positions)
from several
organisms

Row = sequence
Column = site
(given position in
3D structure)

Colors = level of
conservation



Sequence data and phylogeny

« Starting point: biological sequence data

Conserved Coevolved Sp eC|f|'C|'ty
Position Positions Determining
Position

IS

LDVBDSAQ Y

-~EVBCAV Multiple sequence alignment
ITEVBSAR of homologous sequences:
ITEVESAD > same ancestry,

LEIEAIP similar function,
LE-DCIP similar 3D structure

QF FO0n PP
oo ) ) 9 g

KELBAIP J Teppaetal2012



Sequence data and phylogeny

« Starting point: biological sequence data

Conserved  Coevolved Specificity
Position Positions Determining
Position

IS

? —A2A@PRLDVDSAQ Y
| T ARPE-EVECAV Multiple sequence alignment
GEPRIEVDSAR of homologous sequences:
—GE@GKIEVESAD » sameancestry,
ABCRKILFIELAIP similar function,
—| B 2RLE-DCIP similar 3D structure
——GCEBRRKELBDAIP J Teppaetal 2012

Goal: infer evolutionary tree (phylogenetic tree) from sequence data
Simplification: ignore coevolution — assume each site (column) evolves independently



Sequence data and phylogeny

= Structure of a phylogenetic tree

« Assume only bifurcations (2 branches, not more, from 1 node)
* Rooted versus unrooted trees:

A Leaf nodes = observed
arbitrary order species/sequences |
— g A . Internal nodes = hypothetical

\1 ancestors
C B /
E

Root = hypothetical common
/ ancestor of all leaves
. (difficult to know where it is)

Root

» Important features of a tree:
« Branching events — tree topology

« Branch length may represent nothing or evolutionary distances (phylogram) or time (chronogram)

oI w o



Sequence data and phylogeny

= Inferring a phylogenetic tree from sequence data

+ Distance-based methods: start from evolutionary distances between sequences, and
construct a tree based on them, using clustering algorithms
* Unweighted Paired Group Mean Arithmetic (UPGMA)
* Neighbor Joining (NJ)

« Character-based methods: use a score that quantifies how well a tree describes the raw data,
and find the tree with the best score. These methods directly aim to fit the states (characters,
i.e. amino acids or nucleotides) observed at each site in each sequence to a tree

* Maximum parsimony
* Maximum likelihood
» Bayesian (maximum a posteriori)

 Difficulty: many possible trees!

» Phylogenetic tree construction has been shown to be NP-complete (no solution in polynomial time)
for many models



Sequence data and phylogeny

= Counting possible trees with n sequences (n leaf nodes)

@
* Move from leaves to root — 2 edges join at each internal node (bifurcating tree) ’
— at each internal node, the number of edges decreases by one 8
— there are n-1 internal nodes
* Thus, there are 2n-1 total nodes (and 2n-2 total edges) in the rooted tree m 7
« And there are 2n-2 nodes and 2n-3 edges in the unrooted tree 1 2 3 4 5

« Add an extra sequence: extra edge with new (n+1)th leaf can be added at any edge
— 2n-3 times more unrooted trees with n+1 leaves than with n leaves
* Thus, 1x3x5x...x(2n-5) unrooted trees with n leaves [1 with 3, 3 with 4...] — notation: (2n-5)!!
o @
1 1 3 S 3 (2n-5)! = 1x3x5x...x(2n-5) unrooted trees
D ? >—=, >, This is already >102 for n=20...
2: :4 §3

N - N - N - N = N -

< Volker Roth, U. of Basel



Phylogeny inference: distance-based methods

=« General method

« Step 1: MSA — pairwise distances between sequences
» Step 2: pairwise distances between sequences — tree matching observed distances

MPREDRATWKSNYFLKITIQLLDDYPKCFIVGRE
MPREDRATWKSNYFLKITQLLDDYPKCFIVGE

MYRENKAAW QYFIKYV FDEFPKCF I V(

MSEAG- SKRKKL FIEKATKLETT¥DKMIVAEA
Msgzg—sxn VFIEKATKLETT¥DKMIVAER
MAKLSKQQKKOMYTEKLSSLIQQOY¥SKILIVHY
TTTKKIAKWKVYDEVAELT LKT TIIIANI

TQERKIAKWKIEEVKELEQKLREYHTITIIANT

LKQRKYASWKLEEVKELTEL IKNSNT ILIGNL;
KREKP IPERKT LMLRE LEELESKHRYVLFADLT |
VRTRQ¥PARKVK I¥SEATELLOKYP Y¥FLFDLH|
HHTEHIPQWRKDEIENIKELIQSHKVFGMYGT
HHTEHIPQWRKKDEIENIKELIQS vpgvnl
S---PPEYRVRAVEE IKRMISSKPVVAIVSFR
%YE PKYAEWKRREVKE LKELMDE Nvgmmx.l
--MAHYAEWKKKEVQELHDLIKGYEVVGIANLA
ESEHKIAPWKIEEVNKLKELLKNGQIVALYDMM

Step 1

o K
o O

o o
DO

Pairwise distances

o O
o N

Step 2

nh

« Limitation: restricting to pairwise distances leaves out some information contained in the raw data
(sequences). Two different pairs of sequences can have the same distance

» However, a lot of evolutionary information is contained in distances



Phylogeny inference: distance-based methods

= Step 1: Determining pairwise distances between sequences

Ideally: evolutionary distance — number of mutations that actually occurred between two sequences
(= sum of the number of mutations that occurred from their last common ancestor to each of them)

Hamming distance: count sites that differ between two sequences (can then divide by number of

sites to obtain number between 0 and 1)

AGATC
AGGCA

Between these two nucleotide sequences, Hamming distance=3/5

Limitation: evolutionary distance is underestimated due to multiple substitutions at the same site
Example: if A— T — A, we observe no difference but 2 mutations occurred

Jukes-Cantor distance: simplest correction that takes into account multiple substitutions

Evolutionary model where:

- each site evolves T==¢
independently of others

- all substitutions are
equally likely: rate A A= G

(Jukes-Cantor 1969)

Remark: more
sophisticated models
exist, e.g. transitions
more likely than
transversions
(Kimura 1980)

i

Yang 2006



Phylogeny inference: distance-based methods

= Step 1: Determining pairwise distances between sequences

Jukes-Cantor distance (typed notes): simplest correction that takes into account multiple substitutions
Evolutionary model where:

- each site evolves independently of others d&(t) = A[1 — 4P4(t)]
- all substitutions are equally likely: rate A dt
1 1
If the initial state at t=0 is A, then: P4(t) = %e“m + i and Pg(t) = Ps(t) = Pr(t) = —Ze““t +7
1
Under the Jukes-Cantor model, the evolutionary distance
0.8 | d,c between two proteins can be estimated from their
0.6 - Pa(t) Hamming distance dy as:
| 3 4
41 T djc =3t = —_log |1 — cdn (natural logarithm)
0.2 -
Pc(t) Examples: dy: 0.1, 0.3, 0.5, 0.7
0 r T T .
0 0.5 T 1s 5 d,c : 0.11, 0.38, 0.82, 2.03
d,c=3At Remarks: For small dy, djc=dy. If dy — 3/4, djc — =

Yang 2006



Phylogeny inference: distance-based methods

= Step 2: Building a tree from a matrix of pairwise distances between sequences

Goal: Find a phylogenetic tree that agrees with the empirical pairwise distances
Distance d;" between leaves i and j along the tree T should match the empirical d;, as well as possible

Least-square approach: find the tree T that minimizes Z Z(dij — d;r’;- 2 (n: number of leaves)
i=1 j#i
Difficult because there are many trees; NP-complete. But efficient (polynomial) approximate algorithms:
* Unweighted Paired Group Mean Arithmetic (UPGMA)
* Neighbor Joining (NJ)

If all leaves have the same distance from the root (all species evolve at the same rate — constant

molecular clock — “ultrametric tree”), then UPGMA will find the correct topology
If distances are additive (less strong than ultrametric, rates can differ across species), there exists a
tree T such that d;"=d;, and NJ works well

Four point condition: For every set of four leaves 4, j, k and [, . 2 . k _ 2
two of the distances d;; + dy;, d;x. + dj; and d;; + dj, must be equal : 1< ' ‘= .
and larger than the third. For instance

J j J
dij + dry < dig + dji = dig + dji Volker Roth, U. of Basel

Generally, data is neither ultrametric nor additive, but NJ can often give reasonable approximations



Phylogeny inference: distance-based methods

« Step 2: Building a tree from a matrix of pairwise distances between sequences

UPGMA: it is a form of hierarchical clustering — iteratively joins two nearest clusters.

Initially, each leaf is a cluster.
Find the 2 clusters i,j with the smallest distance d;. Group them into new cluster, and compute distance

from it to all other ones as a weighted average: d;,; = (
Connect i,j to new node k, at height dy/2. Ilterate.

I 6 I :t1=tz=1/2d12
1 2

1

1

)i+ (

J

nj

’I’L.,;+’nj

)dji




Phylogeny inference: distance-based methods

= Step 2: Building a tree from a matrix of pairwise distances between sequences

NJ: The idea is to find direct ancestor of 2 species, join them, iterate.

Initially, each leaf is a cluster.

For each node i, compute u; =3, ., (:1—’3) : average distance to all other leaves k

Choose i and j with smallest value of dj-u;i-u; (thus i and j are close together and far from the rest)
Join i and j with ancestor k. The distances between k and other leaves m is defined as follows:

d_)‘m — djk + dkm
dim = dix + dim ﬁl dikm = 3(dim + djm — dij)
dij = dij + di;

Volker Roth, U. of Basel

Branch lengths from i and j to the new node k are calculated as: dix = %(dij +ui—uj) ,  djk= %(dz-j + u; — u;)
lterate.

Reminder: limitations:
« Starting from distances — we lose information from data (+ distance calculation is approximate)
» Generally, data is not ultrametric or additive, but NJ can often give reasonable approximations



Phylogeny inference: distance-based methods

=« General method

« Step 1: MSA — pairwise distances between sequences
» Step 2: pairwise distances between sequences — tree matching observed distances

MPREDRATWKSNYFLKITIQLLDDYPKCFIVGRE
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Msgzg—sxn VFIEKATKLETT¥DKMIVAER
MAKLSKQQKKOMYTEKLSSLIQQOY¥SKILIVHY
TTTKKIAKWKVYDEVAELT LKT TIIIANI

TQERKIAKWKIEEVKELEQKLREYHTITIIANT

LKQRKYASWKLEEVKELTEL IKNSNT ILIGNL;
KREKP IPERKT LMLRE LEELESKHRYVLFADLT |
VRTRQ¥PARKVK I¥SEATELLOKYP Y¥FLFDLH|
HHTEHIPQWRKDEIENIKELIQSHKVFGMYGT
HHTEHIPQWRKKDEIENIKELIQS vpgvnl
S---PPEYRVRAVEE IKRMISSKPVVAIVSFR
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ESEHKIAPWKIEEVNKLKELLKNGQIVALYDMM

Step 1

o K
o O

o o
DO

Pairwise distances

o O
o N

Step 2

nh

« Limitation: restricting to pairwise distances leaves out some information contained in the raw data
(sequences). Two different pairs of sequences can have the same distance

» However, a lot of evolutionary information is contained in distances



Phylogeny inference: character-based methods

» General method

+ MSA — tree explaining the MSA
» Use a score that quantifies how well a tree describes the raw data, and find the tree with the best score.

These methods directly aim to fit the states (characters, i.e. amino acids or nucleotides) observed at

each site site in each sequence to a tree
« Simplifying assumption: each site evolves independently from all others

MPREDRATWKSNYFLKIIQLLDD
MPREDRATWKSNYFLKIIQLLDD
SNYFLKIIQLLDD
SNYFLKIIQLLDD
MPREDRATWKSN YEMKITIQLLDD
MPREDRATWKSNYFLKIIQLLDD
MPREDRATWKSNYFLKITIQLLDD
MPREDRATWKSNYFLKIIQLLND

EVKELKELMDE ¥ENY
KEVQELHDLIK

KIVSEATELLOQKYPYYELFDLH
DEIENIKELIQSHKVE!
DEIENIKELIQSHKVF
RAVEEIKRMISSKPVVAIVSFR

hh

IEEVNKLKELLKNGQIVALYDMM



Phylogeny inference: character-based methods

» Parsimony

« Score: total number of substitutions (mutations) along all edges of the tree
Minimizing this score — Occam’s razor — simplest way to explain the data
« Scoring a given tree:

i

/

8

AN
N N\

3: A 4:G 5: A 6: A



Phylogeny inference: character-based methods

» Parsimony

Score: total number of substitutions (mutations) along all edges of the tree
Minimizing this score — Occam’s razor — simplest way to explain the data
Scoring a given tree: Fitch algorithm:

Label internal nodes with intersection 7
of states of their leaves. (A}
If intersection is empty, replace with union,
and increase score by 1 (1 mutation). /
8
{A,C,G} +1
/ 11
9 {A}
{C} 10

/N X

[ 3: A 4:G 5: A

6: A




Phylogeny inference: character-based methods

» Parsimony

Score: total number of substitutions (mutations) along all edges of the tree
Minimizing this score — Occam’s razor — simplest way to explain the data
Scoring a given tree: Fitch algorithm:

Label internal nodes with intersection 7
of states of their leaves. (A}
If intersection is empty, replace with union,
and increase score by 1 (1 mutation). /
8
{A,C,G} +1
A —)% 11
9 {A}
{C} 10

{A,G} +1
/\A—> G
C O &

[ 3: A 4:G 5: A 6: A



Phylogeny inference: character-based methods

= Parsimony

Score: total number of substitutions (mutations) along all edges of the tree
Minimizing this score — Occam’s razor — simplest way to explain the data

Scoring a given tree: Fitch algorithm:
Label internal nodes with intersection
of states of their leaves.

If intersection is empty, replace with union,

and increase score by 1 (1 mutation).
Remark — scoring a given tree: Sankoff
algorithm (dynamic programming):
Mutation score matrix — score subtrees,
for all possible states of the root of

the subtree: T,C,A,G.

i

[5 |4 [25[3.5]

3525

T/IC| C

/

9

10

Yang 2006
11
1.5 1.5 1

25

2.5

1

G|A/G

G

/\

/\

[1 |0|15|15| [1.5]1.5]0] 1] |15|15|1|o||15|15|o|1| |15|15|0|1|

To
From | T C A G / \
T 0 1 15 1.5
C 1 0O 15 15
A 15 15 0 1 [1 |0 |15|15|
G 1.5 15 1 0

3:A

4:G




Phylogeny inference: character-based methods
« Maximum likelihood

» Score: likelihood of the data (MSA) given the model (the tree, with topology and branch lengths, under
a certain nucleotide evolution model)

« Scoring a given tree:
(1) Assume that each site (each MSA column) evolves independently of others
(2) Assume that the probability of a node having a certain state only depends on the state of its parent
node and on the branch length (genetic distance) t between them
(3) Assume that nucleotide frequencies P(x) are fixed through the phylogeny

Using (1), the likelihood is £ = HP (:c1 ,...,:c%))T) with L: number of sites; D: number of sequences

Observed data at one given site i, for D=3: u, w, s (= X4, Xo, X3)

P(u,w,s|T) = ZP u,w,s,v,r|T) Sum over ancestral statesr, v

P(r |P s|r,trs) IP(v|'r, trv)P(w|v,tvw)|P(u|v,tw)
T\ P(y)
P(z)

For each branch, use a nucleotide evolution model, e.g. Jukes-Cantor

(2) & (3), using Bayes’ theorem P(y|z) = P(z|y)




Phylogeny inference: character-based methods

« Maximum likelihood

* Reminder: Jukes-Cantor distance (see typed notes):
Evolutionary model where:

- each site evolves independently of others d&(t) = A[1 — 4P4(t)]
- all substitutions are equally likely: rate A dt
1 1
If the initial state at t=0 is A, then: P(t) = %e““t + i and Po(t) = Pg(t) = Pr(t) = —Ze‘“t + 1
o | 1 _4d..y3 1.
« Thus, for one given site i, the score of a branchis P(s|r,d,s) = —7¢ el 4 7 ifrit s
3 I |
P(s|r,d,s) = 16_461”/3 + 1 ifr=s

where d is the evolutionary distance between the two nodes (recall that d=3At)

7)

* For a given tree topology, branch lengths can be chosen to maximize this likelihood
» These results can be compared across trees topologies, to find the tree with the highest likelihood

L
—express L=]]P (xg’), o
=1




Phylogeny inference: character-based methods

= Bayesian approach

» Score: posterior probability of the model (the tree, with topology and branch lengths, under a certain
nucleotide evolution model) given the data (the MSA)

« Scoring a given tree: Pltisdd
Reminder: Bayes’ theorem: P(model|data) = P(datajmodel) x y
It is difficult to access the posterior in analytic form (data)

Strategy: draw samples (generate tree) from the posterior, using the Metropolis method

=« Comparison of approaches

» Currently, maximum likelihood and Bayesian methods are considered the most accurate ones
« But they are computationally intensive

» Parsimony is intuitive; distance-based methods are efficient and can be used as starting points
» Distance-based methods can be good enough, e.g. for relatively close sequences

=« Remark: search over possible trees

» So far, we mainly looked at how to score a given tree
* Next, need (in principle) to score all possible trees. But there are many trees!
* Heuristic search strategies exist



Phylogeny inference: character-based methods

= Search over possible trees: heuristic strategies

« lIdea: starting from a tree, construct neighboring trees by elementary operations

» Nearest-neighbor interchange (NNI) Subtree pruning and regrafting (SPR)

St

a b
d
a /
d O e
\ ¢ >\K c )
a mf’j
d b
\
C
d a
b
f Yang 2006




Phylogeny inference: rooting a tree

= Rooting a tree

So far, we mainly saw how to select an unrooted tree
Root = position of the most common recent ancestor; tells us the direction of evolution

Position of the root affects interpretation about relatedness of sequences

[ )
present A

i W EMBL-EBI online training

past

unrooted

vs] >
8
Q
time

root

Where to place the root? (Remark: there are even more rooted trees than unrooted trees)

A common strategy is outgroup rooting:
Include a sequence that is known to be more distant from the sequences considered than they are

among them (e.g. from species information)
Place the root where this outgroup joins the rest of the tree

In the illustration above, E would be the outgroup



Phylogeny inference: estimating confidence

= Bootstrapping

« Reminder: usually, in phylogeny inference methods, each site (each column of the MSA) is assumed to
evolve independently
— This can be exploited to estimate confidence

* Method:
« Resample sites (columns) from the MSA: sample sites uniformly at random with replacement, to
form a new MSA with the same number of columns. This new MSA is called a bootstrap replicate.
» Infer trees for multiple bootstrap replicates
» Bootstrap support value = percentage of bootstrapped trees that contain a particular node
« Higher value (close to 100) means better confidence

« Example:

Original Data Bootstrap Replicate #1 Bootstrap Replicate #2 Bootstrap Replicate #3
A ACT?T LY, B e A CATA M T T T°F
BGGAT — BGGAG —) BGGAG — BATTA —
CGGCC % B c CGGCG CGGCG A B ¢ gccce

A B C A B Cc

Highlighted node present in 67% of bootstrap replicate trees — score 67 Geneious



Phylogeny inference: limitations

« Assumptions

* Independently evolving sites
* Nucleotide evolution model
« Same mutation rate at each site, or limited number of classes of mutation rates

= Approximations

» Starting from distances in distance-based methods
» Search over all trees can’t be done exhaustively — heuristic search strategies

= More fundamentally

Position

QP PO
WO Q'Y YY
H
&
<
0
g
o

» Horizontal gene transfer between species — trees of different genes are inconsistent with each other

* No fundamental species notion in prokaryotes
"Net of Life" Eukaryotes

\/ ') V/

Bacteria  Archaea

A o il
14 / 1%
/‘

Nakhleh 2013
aknie
??.*
V

f

A\ Doolittle 2000
\\<



Homologs, orthologs and paralogs

= Definitions

Reminder: Gene A, in species 1 and gene A in species 2 are homologous if they share a common ancestor
Two homologous genes are:

- Orthologous if they diverged at a speciation event

- Paralogous if they diverged at a duplication event

Gene:  Speciation : & GeneA, .
duplication : P Gene B, ] & Cé_? Generally, orthologs preserve the same
' & |2 function, while paralogs do not and
g |8 P g
03 become more different
Gene A
%, Gene A, ——
& o . GeneB,

= Practical approximate way to find orthologs

Reciprocal best hits: pairs (g,h) of genes from genomes (G,H) such that g is the gene in G most similar to
h, and h is the gene in H most similar to g



