
Prof. Anne-Florence Bitbol

Lecture 4:
Molecular evolution, phylogeny and homology



Schedule of this class



Schedule of this class

Lecture 1: Feb 18
Lecture 2: Feb 25
Lecture 3: March 4
Lecture 4: March 11
Lecture 5: March 18 – Assignment 1 available on March 20
Lecture 6: March 25 – Problem class devoted to assignment 1; deadline on March 28
Lecture 7: April 1
Lecture 8: April 8
Lecture 9: April 15 – Assignment 2 available on April 18
Lecture 10: April 29 – Problem class devoted to assignment 2; deadline on May 2
Lecture 11: May 6 – Mini-projects available on April 28; choose yours by May 6
Lecture 12: May 13
Lecture 13: May 20
Lecture 14: May 27 – Mini-project deadline on May 30



n Studying the evolution of species and genes

• Traditionally: based on traits such as physical or morphological features

Digital atlas of ancient life

Group animals using 
shared characters

(assume that traits only
appeared once)

Motivation



n Studying the evolution of species and genes

• Traditionally: based on traits such as physical or morphological features
• More modern: based on molecular sequence data

Woese et al 1990 – redrawn in Pace et al 2012

3 major domains of life
  
Inferred from analyzing 
(rRNA) sequences

Motivation



n Studying the evolution of species and genes

At shorter timescales: understanding the phylogeny of a virus can help design vaccines

https://nextstrain.org/flu/seas
onal/h3n2/ha/12y

Influenza A/H3N2 evolution 
(sequence coding for 
hemagglutinin protein)

Motivation



n Starting point: biological sequence data

Multiple sequence alignments, of amino-acid sequences or nucleotide sequences

Acidic ribosomal 
protein P0 (first 
90 positions)
from several 
organisms

Row = sequence
Column = site
(given position in
3D structure)

Colors = level of 
conservation

Sequence data and phylogeny



n Starting point: biological sequence data

Multiple sequence alignment
of homologous sequences:
same ancestry,
similar function,
similar 3D structure

Teppa et al 2012

Sequence data and phylogeny



n Starting point: biological sequence data

Multiple sequence alignment
of homologous sequences:
same ancestry,
similar function,
similar 3D structure

Goal: infer evolutionary tree (phylogenetic tree) from sequence data
Simplification: ignore coevolution – assume each site (column) evolves independently

Teppa et al 2012

?

Sequence data and phylogeny



• Assume only bifurcations (2 branches, not more, from 1 node)
• Rooted versus unrooted trees:

n Structure of a phylogenetic tree

• Important features of a tree:
• Branching events → tree topology 
• Branch length may represent nothing or evolutionary distances (phylogram) or time (chronogram)

arbitrary order

Leaf nodes = observed 
species/sequences
Internal nodes = hypothetical 
ancestors

Root = hypothetical common 
ancestor of all leaves
(difficult to know where it is)

Sequence data and phylogeny



• Distance-based methods: start from evolutionary distances between sequences, and 
construct a tree based on them, using clustering algorithms

• Unweighted Paired Group Mean Arithmetic (UPGMA)
• Neighbor Joining (NJ)

• Character-based methods: use a score that quantifies how well a tree describes the raw data, 
and find the tree with the best score. These methods directly aim to fit the states (characters, 
i.e. amino acids or nucleotides) observed at each site in each sequence to a tree 

• Maximum parsimony
• Maximum likelihood
• Bayesian (maximum a posteriori)

n Inferring a phylogenetic tree from sequence data

• Difficulty: many possible trees!

• Phylogenetic tree construction has been shown to be NP-complete (no solution in polynomial time)
     for many models

Sequence data and phylogeny



• Move from leaves to root → 2 edges join at each internal node (bifurcating tree)
     → at each internal node, the number of edges decreases by one
     → there are n-1 internal nodes
• Thus, there are 2n-1 total nodes (and 2n-2 total edges) in the rooted tree
• And there are 2n-2 nodes and 2n-3 edges in the unrooted tree

• Add an extra sequence: extra edge with new (n+1)th leaf can be added at any edge
     → 2n-3 times more unrooted trees with n+1 leaves than with n leaves 
• Thus, 1x3x5x…x(2n-5) unrooted trees with n leaves [1 with 3, 3 with 4…] – notation: (2n-5)!!

n Counting possible trees with n sequences (n leaf nodes)

(2n-5)!! = 1x3x5x…x(2n-5) unrooted trees
This is already >1020 for n=20…

Volker Roth, U. of Basel

Sequence data and phylogeny



• Step 1: MSA → pairwise distances between sequences 
• Step 2: pairwise distances between sequences → tree matching observed distances 

n General method
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Step 1 Step 2

• Limitation: restricting to pairwise distances leaves out some information contained in the raw data
     (sequences). Two different pairs of sequences can have the same distance
• However, a lot of evolutionary information is contained in distances

Phylogeny inference: distance-based methods



• Ideally: evolutionary distance – number of mutations that actually occurred between two sequences 
(= sum of the number of mutations that occurred from their last common ancestor to each of them)

• Hamming distance: count sites that differ between two sequences (can then divide by number of 
sites to obtain number between 0 and 1)

n Step 1: Determining pairwise distances between sequences 

Limitation: evolutionary distance is underestimated due to multiple substitutions at the same site
     Example: if A → T → A, we observe no difference but 2 mutations occurred

Between these two nucleotide sequences, Hamming distance=3/5

• Jukes-Cantor distance: simplest correction that takes into account multiple substitutions

Evolutionary model where:
- each site evolves
  independently of others 
- all substitutions are
  equally likely: rate l
(Jukes-Cantor 1969)

Remark: more 
sophisticated models 
exist, e.g. transitions 
more likely than 
transversions 
(Kimura 1980)

Yang 2006

Phylogeny inference: distance-based methods



n Step 1: Determining pairwise distances between sequences 

• Jukes-Cantor distance (typed notes): simplest correction that takes into account multiple substitutions

Evolutionary model where:
- each site evolves independently of others 
- all substitutions are equally likely: rate l

If the initial state at t=0 is A, then:         and

dJC=3lt

1/4

Yang 2006

Under the Jukes-Cantor model, the evolutionary distance 
dJC between two proteins can be estimated from their 
Hamming distance dH as: 

Examples: dH :   0.1,    0.3,    0.5,    0.7
                dJC  : 0.11,  0.38,  0.82,   2.03

(natural logarithm)

Remarks: For small dH, dJC≈dH. If dH → 3/4, dJC → ∞ 

Phylogeny inference: distance-based methods



n Step 2: Building a tree from a matrix of pairwise distances between sequences

• Goal: Find a phylogenetic tree that agrees with the empirical pairwise distances
     Distance dij

T between leaves i and j along the tree T should match the empirical dij, as well as possible

• Least-square approach: find the tree T that minimizes            (n: number of leaves)

• Difficult because there are many trees; NP-complete. But efficient (polynomial) approximate algorithms: 
• Unweighted Paired Group Mean Arithmetic (UPGMA)
• Neighbor Joining (NJ)

• If all leaves have the same distance from the root (all species evolve at the same rate – constant 
molecular clock – “ultrametric tree”), then UPGMA will find the correct topology

• If distances are additive (less strong than ultrametric, rates can differ across species), there exists a 
tree T such that dij

T=dij, and NJ works well

• Generally, data is neither ultrametric nor additive, but NJ can often give reasonable approximations 

Volker Roth, U. of Basel

Phylogeny inference: distance-based methods



n Step 2: Building a tree from a matrix of pairwise distances between sequences

• UPGMA: it is a form of hierarchical clustering – iteratively joins two nearest clusters.
     Initially, each leaf is a cluster. 
     Find the 2 clusters i,j with the smallest distance dij. Group them into new cluster, and compute distance
     from it to all other ones as a weighted average: 
     Connect i,j to new node k, at height dij/2. Iterate.

Phylogeny inference: distance-based methods



n Step 2: Building a tree from a matrix of pairwise distances between sequences

• NJ: The idea is to find direct ancestor of 2 species, join them, iterate.
     Initially, each leaf is a cluster. 
     For each node i, compute                           : average distance to all other leaves k
     Choose i and j with smallest value of dij-ui-uj (thus i and j are close together and far from the rest)
     Join i and j with ancestor k. The distances between k and other leaves m is defined as follows:

     Branch lengths from i and j to the new node k are calculated as:
     Iterate.

• Reminder: limitations:
• Starting from distances → we lose information from data (+ distance calculation is approximate)
• Generally, data is not ultrametric or additive, but NJ can often give reasonable approximations 

Volker Roth, U. of Basel

Phylogeny inference: distance-based methods



• Step 1: MSA → pairwise distances between sequences 
• Step 2: pairwise distances between sequences → tree matching observed distances 

n General method
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Step 1 Step 2

• Limitation: restricting to pairwise distances leaves out some information contained in the raw data
     (sequences). Two different pairs of sequences can have the same distance
• However, a lot of evolutionary information is contained in distances

Phylogeny inference: distance-based methods



• MSA → tree explaining the MSA
• Use a score that quantifies how well a tree describes the raw data, and find the tree with the best score. 

These methods directly aim to fit the states (characters, i.e. amino acids or nucleotides) observed at 
each site site in each sequence to a tree

• Simplifying assumption: each site evolves independently from all others 

n General method

 Human

 Brown Bat

 Bonobo

 Lemur

 Orca

 Wild Boar

 Chinchilla

 Clawed Frog

 Saker Falcon

 Sea Turtle

 Alligator

 Ghostshark

 Zebrafish

 Northern Pike

 Damselfish

 Yellow Croaker

 Tilapia

 Maylandia

 Japanese Rice Fish

Phylogeny inference: character-based methods



• Score: total number of substitutions (mutations) along all edges of the tree
     Minimizing this score → Occam’s razor – simplest way to explain the data
• Scoring a given tree:

n Parsimony

Phylogeny inference: character-based methods



n Parsimony

{C}
{A,G}

{A}

• Score: total number of substitutions (mutations) along all edges of the tree
     Minimizing this score → Occam’s razor – simplest way to explain the data
• Scoring a given tree: Fitch algorithm:
     Label internal nodes with intersection
     of states of their leaves.
     If intersection is empty, replace with union,
     and increase score by 1 (1 mutation).

{A,C,G}

{A}

+1

+1

Phylogeny inference: character-based methods



n Parsimony

{C}
{A,G}

{A}

• Score: total number of substitutions (mutations) along all edges of the tree
     Minimizing this score → Occam’s razor – simplest way to explain the data
• Scoring a given tree: Fitch algorithm:
     Label internal nodes with intersection
     of states of their leaves.
     If intersection is empty, replace with union,
     and increase score by 1 (1 mutation).

{A,C,G}

{A}

+1

+1

A → C

A → G

Phylogeny inference: character-based methods



n Parsimony

• Score: total number of substitutions (mutations) along all edges of the tree
     Minimizing this score → Occam’s razor – simplest way to explain the data
• Scoring a given tree: Fitch algorithm:
     Label internal nodes with intersection
     of states of their leaves.
     If intersection is empty, replace with union,
     and increase score by 1 (1 mutation).
• Remark – scoring a given tree: Sankoff 
     algorithm (dynamic programming):
     Mutation score matrix → score subtrees, 
     for all possible states of the root of
     the subtree: T,C,A,G.     

Yang 2006

Phylogeny inference: character-based methods



• Score: likelihood of the data (MSA) given the model (the tree, with topology and branch lengths, under 
a certain nucleotide evolution model)

• Scoring a given tree: 
     (1) Assume that each site (each MSA column) evolves independently of others
     (2) Assume that the probability of a node having a certain state only depends on the state of its parent
     node and on the branch length (genetic distance) t between them 
     (3) Assume that nucleotide frequencies P(x) are fixed through the phylogeny     
     

n Maximum likelihood

Observed data at one given site i, for D=3: u, w, s (= x1, x2, x3)

Sum over ancestral states r, v

(2) & (3), using Bayes’ theorem

Using (1), the likelihood is        with L: number of sites; D: number of sequences

For each branch, use a nucleotide evolution model, e.g. Jukes-Cantor

Phylogeny inference: character-based methods



n Maximum likelihood

• Reminder: Jukes-Cantor distance (see typed notes):
Evolutionary model where:
- each site evolves independently of others 
- all substitutions are equally likely: rate l

If the initial state at t=0 is A, then:         and

Phylogeny inference: character-based methods

• Thus, for one given site i, the score of a branch is 

where drs is the evolutionary distance between the two nodes (recall that d=3lt) 

→ express

• For a given tree topology, branch lengths can be chosen to maximize this likelihood
• These results can be compared across trees topologies, to find the tree with the highest likelihood



• Score: posterior probability of the model (the tree, with topology and branch lengths, under a certain 
nucleotide evolution model) given the data (the MSA)

• Scoring a given tree: 
     Reminder: Bayes’ theorem:
     It is difficult to access the posterior in analytic form
     Strategy: draw samples (generate tree) from the posterior, using the Metropolis method  
     

n Bayesian approach

n Comparison of approaches

• Currently, maximum likelihood and Bayesian methods are considered the most accurate ones
• But they are computationally intensive
• Parsimony is intuitive; distance-based methods are efficient and can be used as starting points
• Distance-based methods can be good enough, e.g. for relatively close sequences
     

n Remark: search over possible trees

• So far, we mainly looked at how to score a given tree 
• Next, need (in principle) to score all possible trees. But there are many trees!
• Heuristic search strategies exist
     

Phylogeny inference: character-based methods



n Search over possible trees: heuristic strategies

• Idea: starting from a tree, construct neighboring trees by elementary operations

• Nearest-neighbor interchange (NNI)                  Subtree pruning and regrafting (SPR)
     

Yang 2006

Phylogeny inference: character-based methods



n Rooting a tree

• So far, we mainly saw how to select an unrooted tree
• Root = position of the most common recent ancestor; tells us the direction of evolution
• Position of the root affects interpretation about relatedness of sequences

• Where to place the root? (Remark: there are even more rooted trees than unrooted trees)

     A common strategy is outgroup rooting: 
• Include a sequence that is known to be more distant from the sequences considered than they are 

among them (e.g. from species information)
• Place the root where this outgroup joins the rest of the tree
• In the illustration above, E would be the outgroup  

Phylogeny inference: rooting a tree

EMBL-EBI online training



n Bootstrapping

• Reminder: usually, in phylogeny inference methods, each site (each column of the MSA) is assumed to 
evolve independently 

→ This can be exploited to estimate confidence

• Method:
• Resample sites (columns) from the MSA: sample sites uniformly at random with replacement, to 

form a new MSA with the same number of columns. This new MSA is called a bootstrap replicate.
• Infer trees for multiple bootstrap replicates
• Bootstrap support value = percentage of bootstrapped trees that contain a particular node
• Higher value (close to 100) means better confidence 

• Example:

Phylogeny inference: estimating confidence

GeneiousHighlighted node present in 67% of bootstrap replicate trees → score 67



Phylogeny inference: limitations

n Assumptions

• Independently evolving sites
• Nucleotide evolution model
• Same mutation rate at each site, or limited number of classes of mutation rates     

n Approximations

• Starting from distances in distance-based methods
• Search over all trees can’t be done exhaustively → heuristic search strategies

n More fundamentally

• Horizontal gene transfer between species → trees of different genes are inconsistent with each other
• No fundamental species notion in prokaryotes

Doolittle 2000
Nakhleh 2013

Phylogeny inference: limitations



n Definitions

Reminder: Gene A1 in species 1 and gene A2 in species 2 are homologous if they share a common ancestor 
Two homologous genes are: 
- Orthologous if they diverged at a speciation event 
- Paralogous if they diverged at a duplication event

Generally, orthologs preserve the same 
function, while paralogs do not and 
become more different

Reciprocal best hits: pairs (g,h) of genes from genomes (G,H) such that g is the gene in G most similar to 
h, and h is the gene in H most similar to g

n Practical approximate way to find orthologs

Homologs, orthologs and paralogs


