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Single-cell RNA-sequencing

Compare methods

PCA

+ Linear transformation that preserves Euclidean distances between cells in the full PCA space.

+ Interpretable.

+ Effective for capturing global patterns.

+ Computationally efficient.

- The structure of most scRNA-seq datasets cannot be captured by 2 or 3 PCs.
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Single-cell RNA-sequencing

Compare methods cont’d

t-SNE

+ Focus on capturing local similarity at the expense of global structure. .

- Non-linear i.e. the interpretability of the reduced dimensions is sacrificed.

- May exaggerate differences between cell populations.

- t-SNE graphs may show strongly different numbers of clusters depending on perplexity parameter.

- Computationally intensive.
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Single-cell RNA-sequencing

Compare methods cont’d

UMAP

+ Supposed to better preserve large-scale structures than t-SNE.

+ Fast and able to scale to large numbers of cells.

- Tends to favor fully connected representations of the data rather than the discrete clusters
favored by t-SNE.

- Non-linear i.e. the interpretability of the reduced dimensions is sacrificed.

- Computationally intensive.
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sc-RNA-seq analysis
Downstream analysis

1
1Luecken and Theis 2019.
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sc-RNA-seq analysis
Downstream analysis

”The first step towards identifying cellular populations is

to cluster cells into groups with similar expression profiles

that explain the heterogeneity in the data.”2

2Heumos et al. 2023.
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Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

▶ To group cells based on the similarity of their gene expression profiles.

▶ Step 1 : Compute distances between cells

- often based on dimensionality-reduced representations
- Several distance metrics.
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Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

3

310 often used distance measures (based on M. Grootendorst).
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Single-cell RNA-sequencing

Distance metrics

Minkowski distance

dxy =
( n∑

i=1

|xi − yi |
)1/p

(1)

when p = 1, Manhattan distance, which measures the absolute value between two points; when p = 2,
Euclidean distance, which measures a straight line between two points.

Cosine similarity4

dxy =
x · y

∥x∥∥y∥ = cos(θ) (2)

Determines whether two vectors are pointing in roughly the same direction

4Haghverdi et al. 2018.
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Single-cell RNA-sequencing

Distance metrics cont’d

SIMLR method5

- Learns a distance metric that best fits the structure of the data via combining multiple kernels.

- Employ graph diffusion to overcome high level of drop-out events.

- Discriminative cell-to-cell similarity.

- Constraints the similarity matrix to have an approximate block-diagonal structure with C blocks
where the samples of the same populations to be more similar.

5Wang et al. 2017.
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Single-cell RNA-sequencing

Distance metrics cont’d

Pearson Correlation-based distance

dxy = 1−
∑

(xi − µx)(yi − µy)√∑
(xi − µx)2(yi − µy)2

(3)

- Assumes a Gaussian-like distribution for the data.

- Sensitive to outliers.
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Single-cell RNA-sequencing

Distance metrics cont’d

Spearman Correlation-based distance

dxy = 1− ρ =
6
∑

d2
i

n(n2 − 1)
(4)

where di is the difference between the ranks of xi and yi and n is the number of observations.

- For non-linear data.

- Non-parametric.
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Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

▶ To group cells based on the similarity of their gene expression profiles.

▶ Step 1 : Compute distances between cells

- Often based on dimensionality-reduced representations
- Several distance metrics i.e. Euclidean, cosine similarity, correlation-based, the SIMLR
method which learns a distance metric for each dataset using Gaussian kernels

▶ Step 2 : group cells accordingly

- clustering algorithms methods
- community detection methods
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Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

”Independent benchmarks6 showed that community detection based

on graph modularity optimization via the Louvain algorithm

works best for cluster identification.”7

6Luecken and Theis 2019; Duò, Robinson, and Soneson 2018; Freytag et al. 2018.
7Heumos et al. 2023.
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Single-cell RNA-sequencing

Clustering algorithms methods

The general idea

▶ Based directly on a distance matrix.

▶ Cells are assigned to clusters by

1. minimizing intracluster distances
2. finding dense regions in the reduced expression space

The algorithms

▶ Hierarchical clustering algorithm is commonly used with PAGODA8, SINCERA9 and bigSCale10.

▶ k-means clustering algorithm

8Fan et al. 2016.
9Guo et al. 2015.

10Iacono et al. 2018.



20/54

Single-cell RNA-sequencing

K-means Clustering Algorithm

The algorithm

1. estimates k centroids;

2. assign cells to the nearest cluster centroid k;

3. recomputes centroids on the basis of the mean of cells in the centroid clusters;

4. reiterate.
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Single-cell RNA-sequencing

K-means Clustering Algorithm cont’d

The algorithm

1. estimates k centroids;

2. assign cells to the nearest cluster centroid k;

3. recomputes centroids on the basis of the mean of cells in the centroid clusters;

4. reiterate.

▶ Parameter: the number of clusters expected; usually unknown and must be calibrated
heuristically.

▶ Correlation-based distances may outperform other distance metrics when used with k-means11.

▶ Works well in cases where the data is well separated and spherical/circular in shape.

▶ Struggles to cluster datasets with spiral shapes or varying densities.

11Kim et al. 2019.
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Single-cell RNA-sequencing

K-means Clustering Algorithm cont’d

Determining K

1. Calculate the Within Cluster Sum of Squares (WCSS), also known as Inertia:

WCSS =
K∑

k=1

∑
xi∈Ck

∥xi − µk∥2

where Ck is the k-th cluster, xi are data points in cluster Ck , and µk is the centroid of cluster Ck .

2. Plot WCSS for a range of K values and look for the ”elbow” point, where the marginal gain in
reduced WCSS drops significantly.
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Single-cell RNA-sequencing

Community detection methods

- Graph-partitioning algorithms as implemented in SNN-Cliq12 and in Seurat13.

- Graph representation of the data obtained using a K-Nearest Neighbour.

- Nodes represent cells and edges indicating similar expression.

- Partitions the graphs into interconnected ’quasi-cliques’ or ’communities’.

- Cluster stability is measured via

• resampling methods (e.g. bootstrapping);

• on the basis of cell similarities within assigned clusters (e.g., silhouette index).

12Xu and Su 2015.
13Satija et al. 2015.
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Community detection methods

K-Nearest Neighbour (KNN)

Overview

- Similar cells obtained using Euclidean distances on the PC-reduced expression space

- Each cell is connected to its K most similar cells.

- K is commonly set to be between 5 and 100 nearest neighbours.

- Defining K can be a balancing act:

• Lower values of K can have high variance, but low bias i.e. overfitting.
• Higher values of K may lead to high bias and lower variance i.e. underfitting.

- The accuracy can be severely degraded by the presence of noisy or irrelevant features.
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Community detection methods

Louvain Clustering Algorithm

Goal

Detects communities as groups of cells that have more links between them than expected from the
number of links the cells have in total.

▶ Works on a graph of cells, often constructed using nearest neighbors (kNN).
▶ Widely used after dimensionality reduction (e.g., PCA, UMAP).
▶ Maximize modularity
▶ Greedy optimization method with running in time O(n · log n) where n is the number of nodes.
▶ Default clustering method implemented in Seurat.
▶ Can lead to arbitrarily poorly connected communities.
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Community detection methods

Louvain Clustering Algorithm

Modularity

- Modularity is a measure of the density of links inside communities compared to links between
communities.

- Modularity is a scale value between -0.5 (non-modular clustering) and 1 (fully modular
clustering).

- Optimizing this value theoretically results in the best possible grouping of the nodes of a given
network.

- The optimized modularity function includes a resolution parameter, which allows the user to
determine the scale of the cluster partition.
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Community detection methods

Louvain Clustering Algorithm

Equation of Modularity Q

Q =
1

2m

N∑
i,j

[
Aij −

kikj
2m

]
δ(ci , cj)

▶ Aij : weight of edge between nodes i and j

▶ ki : sum of the weights of the edges attached to nodes i

▶ m: the sum of all of the edge weights in the graph

▶ N: the total number of nodes in the graph;

▶ δ(ci , cj): Kronecker delta function; 1 if nodes i and j are in the same community, 0 otherwise
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Community detection methods

Louvain Clustering Algorithm

Two-phase approach

1. Modularity Optimization:
• Each node starts in its own community.
• Iteratively move nodes to neighboring communities to increase modularity.

2. Community Aggregation:
• Communities are contracted into ”super-nodes.”
• Build a new graph with these super-nodes and repeat phase 1.

Repeat until modularity no longer increases.
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Community detection methods

Louvain Clustering Algorithm

Why Louvain in Single-cell RNA-seq?

▶ Efficient for large cell graphs (millions of nodes).

▶ One of the fastest modularity-based algorithms .

▶ reveals a hierarchy of communities at different scales, which is useful for understanding the global
functioning of a network.

▶ Captures non-convex, non-spherical clusters better than K-means.

▶ Compatible with nearest-neighbor graphs derived from PCA or UMAP.

▶ Implemented in popular tools: Seurat, Scanpy.
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Single-cell RNA-sequencing

Identification of cell clusters

▶ Process of giving detected cell clusters a biological interpretation such as cell type.

▶ Clustered data are analysed by finding the gene signatures of each cluster.

▶ Manual or automatic approaches.

▶ A three-step approach is recommended14:

1. automated annotation;.

2. expert manual annotation;

3. verification to obtain the ideal annotation result.

▶ Step 3 is especially relevant for data sets with high complexity or studies that involve rare cell
subpopulations for which references might not be available

14Clarke et al. 2021.
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Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 1: Automated cell-type annotation

▶ classifier-based methods

- train a supervised machine learning model using a reference single-cell dataset where cell
types are known.

- Once trained, the classifier predicts the cell types of new, unlabeled cells.
- strongly affected by the classifier type;
- strongly affected by the quality of the training data;
- clustifyr 15, CellTypist 16

15Fu et al. 2020.
16Doḿınguez Conde et al. 2022.

https://github.com/rnabioco/clustifyr
https://pypi.org/project/celltypist/
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Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 1: Automated cell-type annotation

▶ reference mapping-based methods

- Instead of training a classifier, you directly match your query cells to a pre-annotated
reference dataset.

- perform label transfer on the resulting joint embedding;
- references can be either individual samples of the data set or well-curated existing atlases;
- the quality of the annotations depends on the quality of the reference data, the model and
the suitability to the data set

- scArches 17 Azimuth 18 Symphony 19

17Lotfollahi et al. 2022.
18Hao et al. 2021.
19Kang et al. 2021.

https://github.com/theislab/scarches
https://satijalab.github.io/azimuth/articles/run_azimuth_tutorial.html
https://github.com/immunogenomics/symphony
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Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 2: Manual Annotation

▶ Leverages gene signatures of each cluster to annotate cell clusters.

▶ Gene signatures are commonly known as marker genes.

▶ Marker genes characterize the cluster.

▶ Marker genes can be found by applying differential expression testing between two groups: the
cells in one cluster and all other cells in the dataset.

▶ Use t-tests or Wilcoxon rank-sum tests.

▶ The obtained markers are then compared with marker genes from well-annotated references to
annotate cell clusters.



35/54

Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Marker Genes

▶ Effective and useful marker genes have specific characteristics that are not shared by all DE
genes!20

▶ Good marker genes typically exhibit

• a large difference in expression between cell types

• are strongly up-regulated in a cell type of interest

• exhibit high expression in that cell type

• no or low expression in other cell types.

20Pullin and McCarthy 2024.
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Single-cell RNA-sequencing

Mapping cell clusters to cell identities cont’d

The most recent methods

▶ ScType 21

▶ Cell BLAST 22

▶ scGPT 23

▶ scCATCH 24

21Ianevski, Giri, and Aittokallio 2022.
22Cao et al. 2020.
23Cui et al. 2024.
24Shao et al. 2020.

https://github.com/IanevskiAleksandr/sc-type
https://github.com/gao-lab/Cell_BLAST
https://github.com/bowang-lab/scGPT
https://github.com/ZJUFanLab/scCATCH
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Single-cell RNA-sequencing

Identification of marker genes

▶ Most methods use some form of differential expression (DE) testing (Seurat, Scanpy, scran
findMarkers(), presto, edgeR, limma).

▶ Other methods use ideas of feature selection (RankCorr), predictive performance (NSForest,
SMaSH) or alternative statistics (Cepo, scran scoreMarkers(), Venice) to select marker genes.

▶ Among DE-based methods a variety of multiple-hypothesis correction methods are used.

▶ RankCorr and NSForest return only a specific set of genes determined to be marker genes.
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Single-cell RNA-sequencing

Identification of marker genes cont’d

▶ To account for the difficulty of selecting a fixed set of markers, follow convention and select only
a fixed-size set of the top n = 5, 10, 15, 20 marker genes as ranked by the method.

▶ The best performing methods were those based on the Wilcoxon rank-sum test, Student’s t-test
or logistic regression.

▶ Methods that only selected a subset of genes (RankCorr and NSForest) had excellent specificity
they did not show strong predictive performance.

▶ SMaSH and methods designed for bulk RNA-seq data were particularly memory intensive, while
Seurat’s methods were unexpectedly slow.

▶ Scanpy and Seurat have issues and inconsistencies with their implemented methods.
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Differential gene expression analysis

Noise model in bulk RNA-sequencing

Statistical question

Are the read counts for a given gene drawn from similar distribution between two samples?

https://www.sc-best-practices.org/conditions/differentialg eneexpression.html
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Differential gene expression analysis

Why noise matters so much

Effect size

▶ Most of the time, changes in gene expression are quantified in log2FC .

▶ A change should be of sufficient magnitude to be considered biologically significant.

P-value

▶ Most approaches to testing for DGE test against the null hypothesis of zero log2FC.

▶ Probability of the difference in gene expression between two samples to be greater than or equal
to the observed difference, given the null hypothesis that the observed read count originate from
same distribution.

▶ Can be obtained empirically by shuffling samples or analytically using the form of the null
distribution.
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Differential gene expression analysis

Noise model in bulk RNA-sequencing
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Differential gene expression analysis

Noise model in bulk RNA-sequencing
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Differential gene expression analysis

Noise model in bulk RNA-sequencing

Technical noise

From library preparation to sequencing, induces systematic biases between samples that can have
specific impact on different genes.

Biological noise

Transcription is a stochastic process and variation naturally occurs within samples; dominant noise for
strongly expressed genes.
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Differential gene expression analysis

Noise model in bulk RNA-sequencing

Poisson Noise

Assuming that a particular gene has fraction f in the read pool, this gene is expected to be sequenced
< n >= fN times with N the total number of reads. The actual number of times n that this genes is
sequenced will be Poisson distributed according to:

P(n|f ,N) =
(fN)n

n!
e−Nf (5)

Gaussian Noise

Additional noise in the log-count whose size is approximately independent of the total log-count. The
noise that is introduced in going from the biological input sample to the final library that goes into the
sequencer.
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Differential gene expression analysis

Total Noise: Negative Binomial

The total noise can be modelled as a convolution of multiplicative noise, specifically a Gaussian
distribution of log-count with variance σ2, and Poisson sampling. The probability to obtain n reads for

a gene is approximately:

P(n|σ, f ,N) =
exp(− (log(n/N)−log(f ))2

2σ(n)2
)

n
√

(2π)σ(n)
(6)

where σ2(n) = σ2 + 1
n
, f is the original concentration of mRNA for a given gene in the original pool,

and N total number of.
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Differential gene expression analysis

Negative Binomial Distribution

NB(n, p) = NB(α,
1

1 + β
) (7)

mean= α
β
and variance= α(1+β)

β2

α =dispersion and β =parameter that best fits the data.

A dispersion value of 0.01 means that the gene’s expression tend to different by typically
√
0.01 = 10%

between samples of the same treatment group.
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Differential gene expression analysis

Design Matrix

The binary design matrix contains as many columns as covariates and as many rows as samples.
It indicates whether sample j is associated with a given covariate (treatment, sex, ..) r .
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Differential gene expression analysis

Multi-test correction

Why is then an issue with P-values

▶ P-value is only statistically valid when a single score is computed.

▶ When 20,000 genes are tested, the chance to obtained small P-values are higher that predicted
P-values.

Bonferroni adjustment

▶ If a significance threshold of α is used, but n separate tests (genes×contrasts) are performed,
then α → α/n or BH adjusted P-value(BH)=P×n.

▶ With a Family-wise error rate of 0.05 (i.e., the probability of at least one error in the family), the
expected number of false positives will be 0.05.

▶ If error rate equals 0.05, expects 0.05 genes to be significant by chance.
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Differential gene expression analysis

Multi-test correction cont’d

Benjamini and Hochberg False Discovery Rate

1. Sort the P-values in ascending order.

2. Divid each observed P-value by its percentile rank.

3. Tolerates more false positives. There will be also less false negative genes.

4. If error rate equals 0.05, 5% of genes considered statistically significant will be identified by
chance (false positives).
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Single-cell RNA-sequencing

Differential expression analysis

▶ In general, agreement among the tools in calling DE genes is not high.

▶ Methods with higher true positive rates tend to show low precision.

▶ Methods with high precision show low true positive rates due to identifying few DE genes.

▶ Methods designed for scRNAseq data do not tend to show better performance compared to
methods designed for bulk RNAseq data.

▶ Seurat and Scanpy use a ”one-vs-rest” cluster comparison strategy.

• creates a situation with highly imbalanced sample sizes and increased biological
heterogeneity in the pooled ”other” group;
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Single-cell RNA-sequencing

Differential expression analysis cont’d

▶ Model-based approaches or zero-inflated model

• fit a probabilistic model that explicitly tries to capture how the data is generated, instead of
just using simple statistical tests (like Wilcoxon rank-sum).

• account for both the zeros and the nonzero counts
• use two-part joint model and separately handles:

The first part models the probability of detection (e.g using logistic regression) i.e.
whether the gene is detected at all.
The second part models the level of expression (often using a Gaussian or a
log-normal model after transformation).

• SCDE 25, MAST 26, scDD 27

25Kharchenko, Silberstein, and Scadden 2014.
26Finak et al. 2015.
27Korthauer et al. 2016.

https://hms-dbmi.github.io/scde/diffexp.html
https://rglab.github.io/MAST/
https://bioconductor.org/packages/release/bioc/vignettes/scDD/inst/doc/scDD.pdf
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Single-cell RNA-sequencing

Differential expression analysis cont’d

▶ Nonparametric methods

• Do not model the distributions of gene expression values nor estimate their parameters.
• Identify DE genes by employing a distance metric between the distributions of genes in two

conditions.
• SigEMD28, EMDomics29, and D3E30.

28Wang and Nabavi 2018.
29Nabavi et al. 2016.
30Delmans and Hemberg 2016.



54/54

Public repositories of high-content molecular data

Sequence Read Archive (SRA)

▶ Public repository of high throughput sequencing data

▶ Raw sequencing data and alignment information Link

Gene Expression Omnibus

▶ Public functional genomics data repository

▶ Array- and sequence-based raw data, processed data and metadata

▶ For high-throughput sequencing, GEO arrange the transfer of the raw data to SRA Link

jPOSTrepo31

▶ Public repository of sharing MS raw/processed data Link

31Okuda et al. 2017.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/
https://repository.jpostdb.org/
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