

BIO-463
Genomics and
bioinformatics

Lecture 10: Single-cell RNA sequencing II

Dr Raphaëlle Luisier

EPFL

Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

- Distance metrics

- Unsupervised clustering

- Cell type identification

- Differential gene expression analysis

Single-cell RNA-sequencing

Compare methods

PCA

- + Linear transformation that preserves Euclidean distances between cells in the full PCA space.
- + Interpretable.
- + Effective for capturing global patterns.
- + Computationally efficient.
- The structure of most scRNA-seq datasets cannot be captured by 2 or 3 PCs.

Single-cell RNA-sequencing

Compare methods cont'd

t-SNE

- + Focus on capturing **local similarity** at the expense of global structure. .
- Non-linear i.e. **the interpretability** of the reduced dimensions is **sacrificed**.
- May exaggerate differences between cell populations.
- t-SNE graphs may show strongly different numbers of clusters depending on perplexity parameter.
- Computationally intensive.

Single-cell RNA-sequencing

Compare methods cont'd

UMAP

- + Supposed to better preserve large-scale structures than t-SNE.
- + Fast and able to scale to large numbers of cells.
- Tends to favor fully connected representations of the data rather than the discrete clusters favored by t-SNE.
- Non-linear i.e. **the interpretability** of the reduced dimensions is **sacrificed**.
- Computationally intensive.

Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

Distance metrics

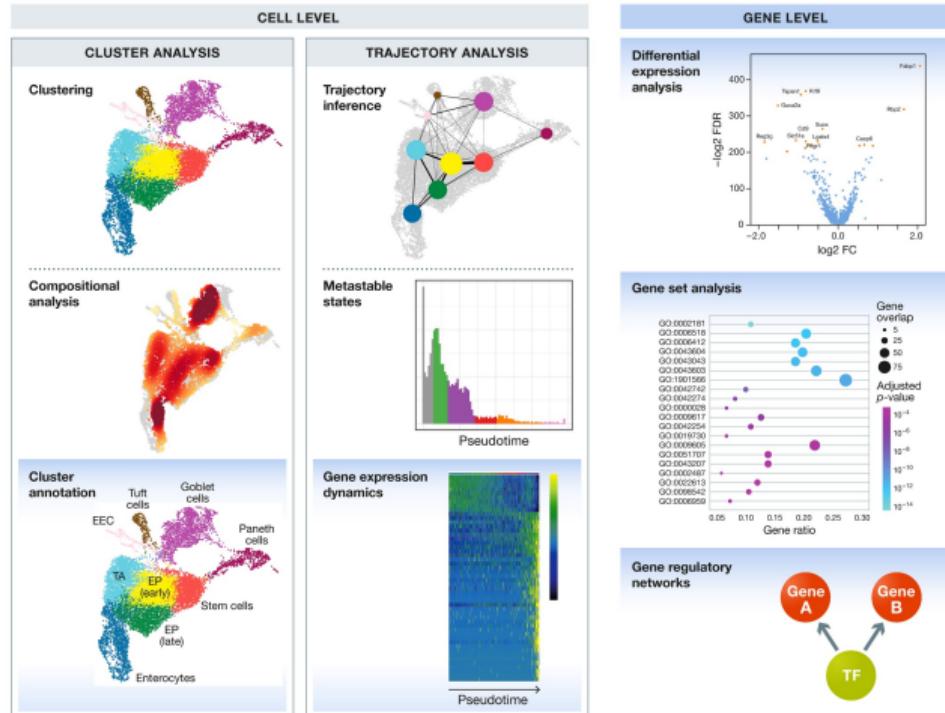
Unsupervised clustering

Cell type identification

Differential gene expression analysis

sc-RNA-seq analysis

Downstream analysis



1

sc-RNA-seq analysis

Downstream analysis

"The first step towards identifying cellular populations is to cluster cells into groups with similar expression profiles that explain the heterogeneity in the data."²

Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

- ▶ To group cells based on the *similarity* of their gene expression profiles.
- ▶ *Step 1:* Compute distances between cells
 - often based on dimensionality-reduced representations
 - Several distance metrics.

Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

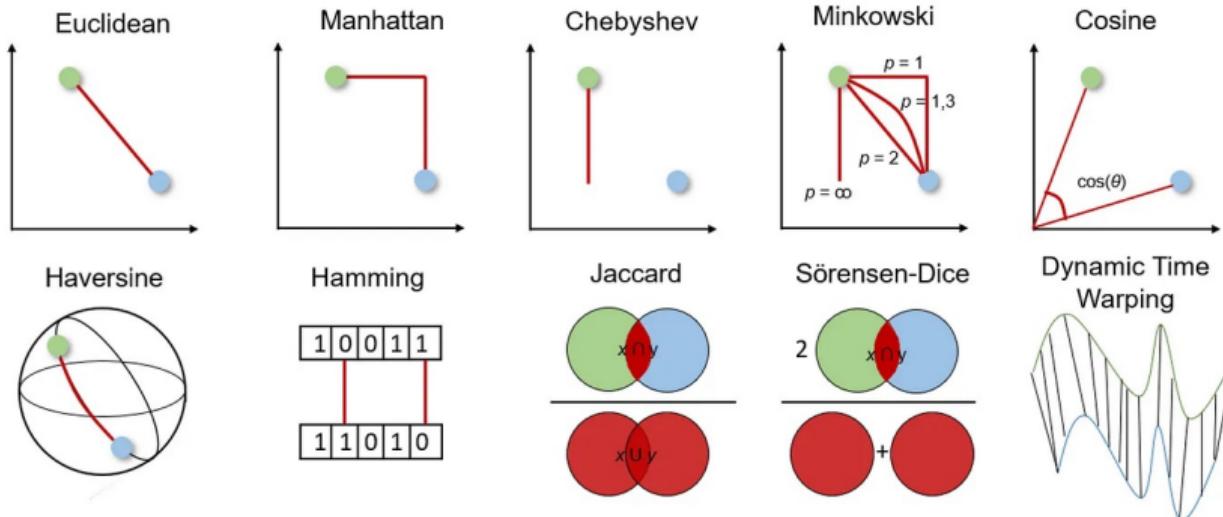


Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

Distance metrics

Unsupervised clustering

Cell type identification

Differential gene expression analysis

Single-cell RNA-sequencing

Distance metrics

Minkowski distance

$$d_{\mathbf{x}\mathbf{y}} = \left(\sum_{i=1}^n |x_i - y_i| \right)^{1/p} \quad (1)$$

when $p = 1$, Manhattan distance, which measures the absolute value between two points; when $p = 2$, Euclidean distance, which measures a straight line between two points.

Cosine similarity⁴

$$d_{\mathbf{x}\mathbf{y}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \cos(\theta) \quad (2)$$

Determines whether two vectors are pointing in roughly the same direction

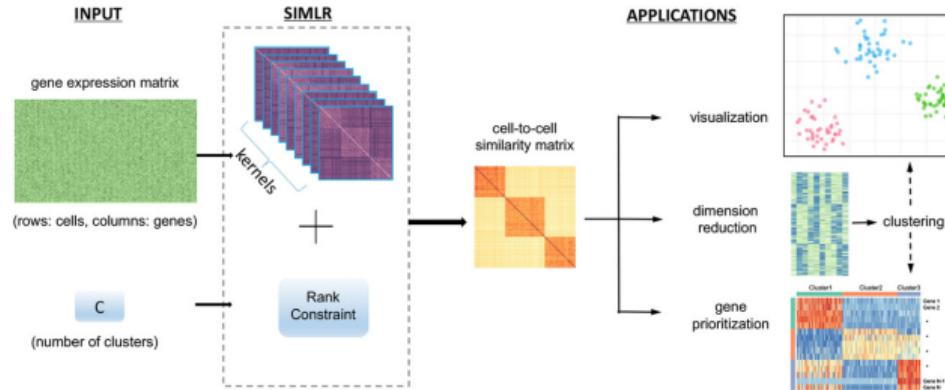
⁴Haghverdi et al. 2018.

Single-cell RNA-sequencing

Distance metrics cont'd

SIMLR method⁵

- Learns a distance metric that best fits the structure of the data via combining multiple kernels.
- Employ graph diffusion to overcome high level of drop-out events.
- Discriminative cell-to-cell similarity.
- Constraints the similarity matrix to have an approximate block-diagonal structure with C blocks where the samples of the same populations to be more similar.



Single-cell RNA-sequencing

Distance metrics cont'd

Pearson Correlation-based distance

$$d_{xy} = 1 - \frac{\sum(x_i - \mu_x)(y_i - \mu_y)}{\sqrt{\sum(x_i - \mu_x)^2(y_i - \mu_y)^2}} \quad (3)$$

- Assumes a Gaussian-like distribution for the data.
- Sensitive to outliers.

Single-cell RNA-sequencing

Distance metrics cont'd

Spearman Correlation-based distance

$$d_{xy} = 1 - \rho = \frac{6 \sum d_i^2}{n(n^2 - 1)} \quad (4)$$

where d_i is the difference between the ranks of x_i and y_i and n is the number of observations.

- For non-linear data.
- Non-parametric.

Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

Distance metrics

Unsupervised clustering

Cell type identification

Differential gene expression analysis

Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

- ▶ To group cells based on the *similarity* of their gene expression profiles.
- ▶ *Step 1:* Compute distances between cells
 - Often based on dimensionality-reduced representations
 - Several distance metrics i.e. Euclidean, cosine similarity, correlation-based, the SIMLR method which learns a distance metric for each dataset using Gaussian kernels
- ▶ *Step 2:* group cells accordingly
 - clustering algorithms methods
 - community detection methods

Single-cell RNA-sequencing

Unsupervised clustering of single-cell RNA-seq data

*"Independent benchmarks⁶ showed that **community detection** based on graph modularity optimization via the Louvain algorithm works best for cluster identification."⁷*

⁶Luecken and Theis 2019; Duò, Robinson, and Soneson 2018; Freytag et al. 2018.

⁷Heumos et al. 2023.

Single-cell RNA-sequencing

Clustering algorithms methods

The general idea

- ▶ Based directly on a distance matrix.
- ▶ Cells are assigned to clusters by
 1. minimizing intracluster distances
 2. finding dense regions in the reduced expression space

The algorithms

- ▶ Hierarchical clustering algorithm is commonly used with PAGODA⁸, SINCERA⁹ and bigSCale¹⁰.
- ▶ k -means clustering algorithm

⁸Fan et al. 2016.

⁹Guo et al. 2015.

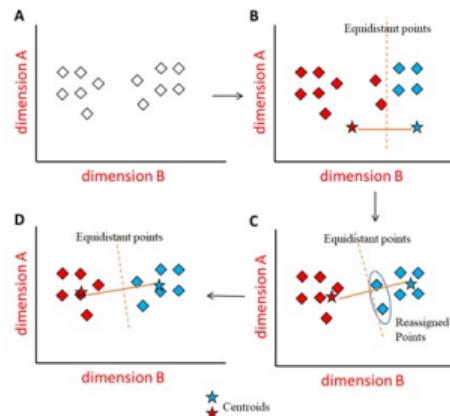
¹⁰Iacono et al. 2018.

Single-cell RNA-sequencing

K-means Clustering Algorithm

The algorithm

1. estimates k centroids;
2. assign cells to the nearest cluster centroid k ;
3. recomputes centroids on the basis of the mean of cells in the centroid clusters;
4. reiterate.



Single-cell RNA-sequencing

K-means Clustering Algorithm cont'd

The algorithm

1. estimates k centroids;
2. assign cells to the nearest cluster centroid k ;
3. recomputes centroids on the basis of the mean of cells in the centroid clusters;
4. reiterate.

- ▶ Parameter: the number of clusters expected; usually unknown and must be calibrated heuristically.
- ▶ Correlation-based distances may outperform other distance metrics when used with k -means¹¹.
- ▶ Works well in cases where the data is well separated and spherical/circular in shape.
- ▶ Struggles to cluster datasets with spiral shapes or varying densities.

¹¹Kim et al. 2019.

Single-cell RNA-sequencing

K-means Clustering Algorithm cont'd

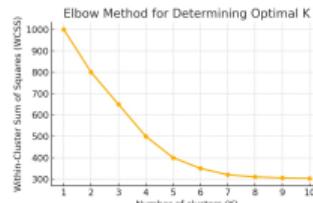
Determining K

1. Calculate the Within Cluster Sum of Squares (WCSS), also known as Inertia:

$$\text{WCSS} = \sum_{k=1}^K \sum_{x_i \in C_k} \|x_i - \mu_k\|^2$$

where C_k is the k -th cluster, x_i are data points in cluster C_k , and μ_k is the centroid of cluster C_k .

2. Plot WCSS for a range of K values and look for the "elbow" point, where the marginal gain in reduced WCSS drops significantly.



Single-cell RNA-sequencing

Community detection methods

- Graph-partitioning algorithms as implemented in SNN-Cliq¹² and in Seurat¹³.
- Graph representation of the data obtained using a K-Nearest Neighbour.
- Nodes represent cells and edges indicating similar expression.
- Partitions the graphs into interconnected 'quasi-cliques' or 'communities'.
- Cluster stability is measured via
 - resampling methods (e.g. bootstrapping);
 - on the basis of cell similarities within assigned clusters (e.g., silhouette index).

¹²Xu and Su 2015.

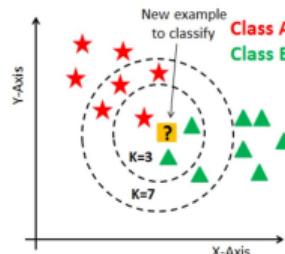
¹³Satija et al. 2015.

Community detection methods

K-Nearest Neighbour (KNN)

Overview

- Similar cells obtained using Euclidean distances on the PC-reduced expression space
- Each cell is connected to its K most similar cells.
- K is commonly set to be between 5 and 100 nearest neighbours.
- Defining K can be a balancing act:
 - Lower values of K can have high variance, but low bias i.e. overfitting.
 - Higher values of K may lead to high bias and lower variance i.e. underfitting.
- The accuracy can be severely degraded by the presence of noisy or irrelevant features.



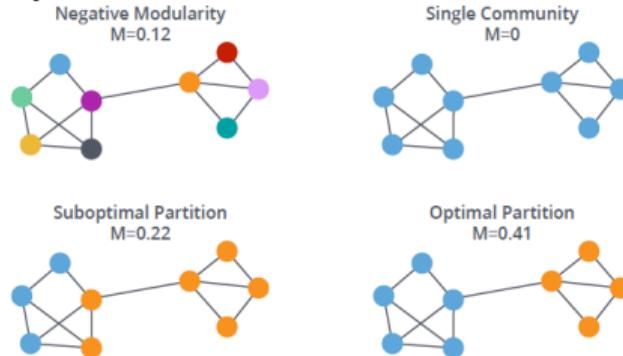
Community detection methods

Louvain Clustering Algorithm

Goal

Detects communities as groups of cells that have more links between them than expected from the number of links the cells have in total.

- ▶ Works on a graph of cells, often constructed using nearest neighbors (kNN).
- ▶ Widely used after dimensionality reduction (e.g., PCA, UMAP).
- ▶ Maximize **modularity**
- ▶ Greedy optimization method with running in time $O(n \cdot \log n)$ where n is the number of nodes.
- ▶ Default clustering method implemented in Seurat.
- ▶ Can lead to arbitrarily poorly connected communities.

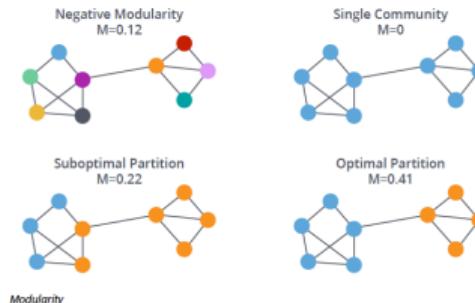


Community detection methods

Louvain Clustering Algorithm

Modularity

- Modularity is a measure of the density of links inside communities compared to links between communities.
- Modularity is a scale value between -0.5 (non-modular clustering) and 1 (fully modular clustering).
- Optimizing this value theoretically results in the best possible grouping of the nodes of a given network.
- The optimized modularity function includes a resolution parameter, which allows the user to determine the scale of the cluster partition.



Community detection methods

Louvain Clustering Algorithm

Equation of Modularity Q

$$Q = \frac{1}{2m} \sum_{i,j}^N \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

- ▶ A_{ij} : weight of edge between nodes i and j
- ▶ k_i : sum of the weights of the edges attached to nodes i
- ▶ m : the sum of all of the edge weights in the graph
- ▶ N : the total number of nodes in the graph;
- ▶ $\delta(c_i, c_j)$: Kronecker delta function; 1 if nodes i and j are in the same community, 0 otherwise

Community detection methods

Louvain Clustering Algorithm

Two-phase approach

1. Modularity Optimization:

- Each node starts in its own community.
- Iteratively move nodes to neighboring communities to increase modularity.

2. Community Aggregation:

- Communities are contracted into "super-nodes."
- Build a new graph with these super-nodes and repeat phase 1.

Repeat until modularity no longer increases.

Community detection methods

Louvain Clustering Algorithm

Why Louvain in Single-cell RNA-seq?

- ▶ Efficient for large cell graphs (millions of nodes).
- ▶ One of the fastest modularity-based algorithms .
- ▶ reveals a hierarchy of communities at different scales, which is useful for understanding the global functioning of a network.
- ▶ Captures non-convex, non-spherical clusters better than K-means.
- ▶ Compatible with nearest-neighbor graphs derived from PCA or UMAP.
- ▶ Implemented in popular tools: Seurat, Scanpy.

Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

Distance metrics

Unsupervised clustering

Cell type identification

Differential gene expression analysis

Single-cell RNA-sequencing

Identification of cell clusters

- ▶ Process of giving detected cell clusters a biological interpretation such as cell type.
- ▶ Clustered data are analysed by finding the gene signatures of each cluster.
- ▶ Manual or automatic approaches.
- ▶ A three-step approach is recommended¹⁴:
 1. automated annotation;
 2. expert manual annotation;
 3. verification to obtain the ideal annotation result.
- ▶ Step 3 is especially relevant for data sets with high complexity or studies that involve rare cell subpopulations for which references might not be available

¹⁴Clarke et al. 2021.

Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 1: Automated cell-type annotation

- ▶ classifier-based methods
 - train a supervised machine learning model using a reference single-cell dataset where cell types are known.
 - Once trained, the classifier predicts the cell types of new, unlabeled cells.
 - strongly affected by the classifier type;
 - strongly affected by the quality of the training data;
 - ▶ `clustifyr`¹⁵, ▶ `CellTypist`¹⁶

¹⁵Fu et al. 2020.

¹⁶Domínguez Conde et al. 2022.

Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 1: Automated cell-type annotation

- ▶ reference mapping-based methods
 - Instead of training a classifier, you directly match your query cells to a pre-annotated reference dataset.
 - perform label transfer on the resulting joint embedding;
 - references can be either individual samples of the data set or well-curated existing atlases;
 - the quality of the annotations depends on the quality of the reference data, the model and the suitability to the data set
 - [▶ scArches](#)¹⁷ [▶ Azimuth](#)¹⁸ [▶ Symphony](#)¹⁹

¹⁷ Lotfollahi et al. 2022.

¹⁸ Hao et al. 2021.

¹⁹ Kang et al. 2021.

Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Step 2: Manual Annotation

- ▶ Leverages gene signatures of each cluster to annotate cell clusters.
- ▶ Gene signatures are commonly known as marker genes.
- ▶ Marker genes characterize the cluster.
- ▶ Marker genes can be found by applying differential expression testing between two groups: the cells in one cluster and all other cells in the dataset.
- ▶ Use t-tests or Wilcoxon rank-sum tests.
- ▶ The obtained markers are then compared with marker genes from well-annotated references to annotate cell clusters.

Single-cell RNA-sequencing

Mapping cell clusters to cell identities

Marker Genes

- ▶ Effective and useful marker genes have specific characteristics that are not shared by all DE genes!²⁰
- ▶ Good marker genes typically exhibit
 - a large difference in expression between cell types
 - are strongly up-regulated in a cell type of interest
 - exhibit high expression in that cell type
 - no or low expression in other cell types.

²⁰Pullin and McCarthy 2024.

Single-cell RNA-sequencing

Mapping cell clusters to cell identities cont'd

The most recent methods

- ▶ ScType²¹
- ▶ Cell BLAST²²
- ▶ scGPT²³
- ▶ scCATCH²⁴

²¹Ianevski, Giri, and Aittokallio 2022.

²²Cao et al. 2020.

²³Cui et al. 2024.

²⁴Shao et al. 2020.

Single-cell RNA-sequencing

Identification of marker genes

- ▶ Most methods use some form of differential expression (DE) testing (Seurat, Scanpy, scran findMarkers(), presto, edgeR, limma).
- ▶ Other methods use ideas of feature selection (RankCorr), predictive performance (NSForest, SMaSH) or alternative statistics (Cepo, scran scoreMarkers(), Venice) to select marker genes.
- ▶ Among DE-based methods a variety of multiple-hypothesis correction methods are used.
- ▶ RankCorr and NSForest return only a specific set of genes determined to be marker genes.

Single-cell RNA-sequencing

Identification of marker genes cont'd

- ▶ To account for the difficulty of selecting a fixed set of markers, follow convention and select only a fixed-size set of the top $n = 5, 10, 15, 20$ marker genes as ranked by the method.
- ▶ The best performing methods were those based on the Wilcoxon rank-sum test, Student's t-test or logistic regression.
- ▶ Methods that only selected a subset of genes (RankCorr and NSForest) had excellent specificity they did not show strong predictive performance.
- ▶ SMaSH and methods designed for bulk RNA-seq data were particularly memory intensive, while Seurat's methods were unexpectedly slow.
- ▶ Scanpy and Seurat have issues and inconsistencies with their implemented methods.

Table of Content

Rekap' week 9: Dimensionality reduction techniques

Single-cell RNA-seq down-stream analysis

Distance metrics

Unsupervised clustering

Cell type identification

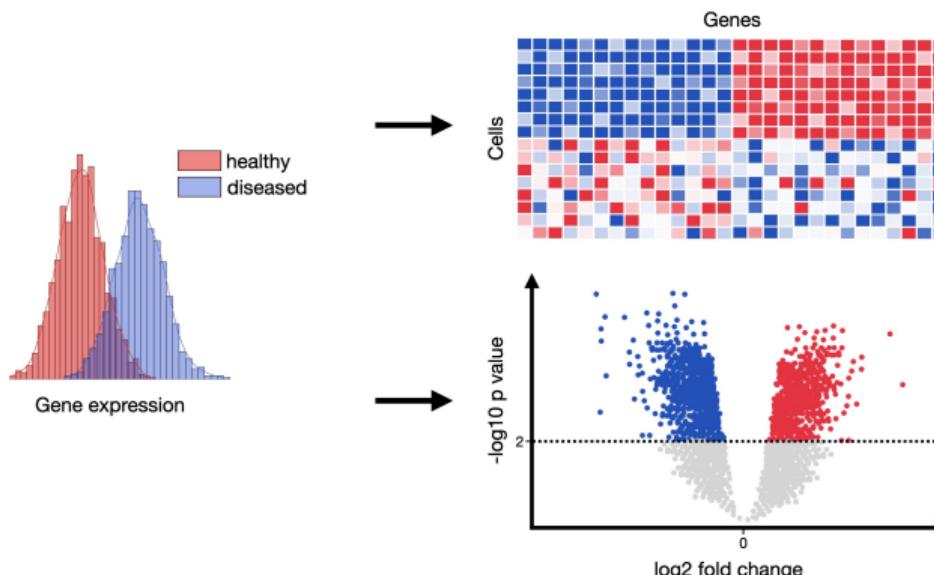
Differential gene expression analysis

Differential gene expression analysis

Noise model in bulk RNA-sequencing

Statistical question

Are the read counts for a given gene drawn from similar distribution between two samples?



Differential gene expression analysis

Why noise matters so much

Effect size

- ▶ Most of the time, changes in gene expression are quantified in $\log 2FC$.
- ▶ A change should be of sufficient magnitude to be considered biologically significant.

P-value

- ▶ Most approaches to testing for DGE test against the null hypothesis of zero $\log 2FC$.
- ▶ Probability of the difference in gene expression between two samples to be greater than or equal to the observed difference, given the null hypothesis that the observed read count originate from same distribution.
- ▶ Can be obtained empirically by shuffling samples or analytically using the form of the null distribution.

Differential gene expression analysis

Noise model in bulk RNA-sequencing

Method

Open Access

Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data

Piotr J Balwierz*, Piero Carninci†, Carsten O Daub†, Jun Kawai†,
Yoshihide Hayashizaki†, Werner Van Belle‡, Christian Beisel‡ and Erik van
Nimwegen*

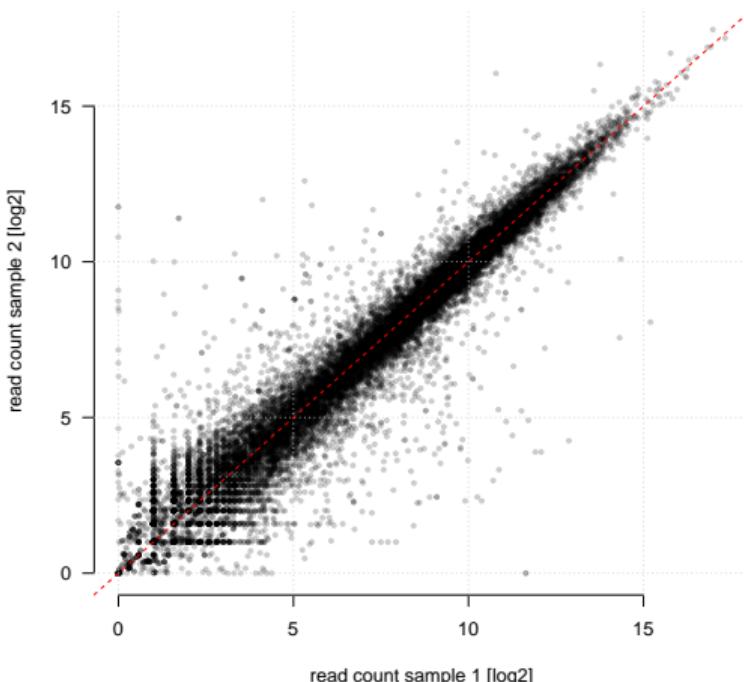
Addresses: *Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Klingelbergstrasse 50/70, 4056-CH, Basel, Switzerland.

†RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan.

‡Laboratory of Quantitative Genomics, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich,
Mattenstrasse 26, 4058 Basel, Switzerland.

Differential gene expression analysis

Noise model in bulk RNA-sequencing



Differential gene expression analysis

Noise model in bulk RNA-sequencing

Technical noise

From library preparation to sequencing, induces systematic biases between samples that can have specific impact on different genes.

Biological noise

Transcription is a stochastic process and variation naturally occurs within samples; dominant noise for strongly expressed genes.

Differential gene expression analysis

Noise model in bulk RNA-sequencing

Poisson Noise

Assuming that a particular gene has fraction f in the read pool, this gene is expected to be sequenced $\langle n \rangle = fN$ times with N the total number of reads. The actual number of times n that this gene is sequenced will be Poisson distributed according to:

$$P(n|f, N) = \frac{(fN)^n}{n!} e^{-fN} \quad (5)$$

Gaussian Noise

Additional noise in the log-count whose size is approximately independent of the total log-count. The noise that is introduced in going from the biological input sample to the final library that goes into the sequencer.

Differential gene expression analysis

Total Noise: Negative Binomial

The total noise can be modelled as a convolution of multiplicative noise, specifically a Gaussian distribution of log-count with variance σ^2 , and Poisson sampling. The probability to obtain n reads for a gene is approximately:

$$P(n|\sigma, f, N) = \frac{\exp\left(-\frac{(\log(n/N) - \log(f))^2}{2\sigma(n)^2}\right)}{n\sqrt{(2\pi)\sigma(n)^2}} \quad (6)$$

where $\sigma^2(n) = \sigma^2 + \frac{1}{n}$, f is the original concentration of mRNA for a given gene in the original pool, and N total number of.

Differential gene expression analysis

Negative Binomial Distribution

$$NB(n, p) = NB(\alpha, \frac{1}{1 + \beta}) \quad (7)$$

$$\text{mean} = \frac{\alpha}{\beta} \text{ and variance} = \frac{\alpha(1+\beta)}{\beta^2}$$

α = dispersion and β = parameter that best fits the data.

A dispersion value of 0.01 means that the gene's expression tend to differ by typically $\sqrt{0.01} = 10\%$ between samples of the same treatment group.

Differential gene expression analysis

Design Matrix

	B.lactating	B.pregnant	B.virgin	L.lactating	L.pregnant	L.virgin
1	0	0	1	0	0	0
2	0	0	1	0	0	0
3	0	1	0	0	0	0
4	0	1	0	0	0	0
5	1	0	0	0	0	0
6	1	0	0	0	0	0
7	0	0	0	0	0	1
8	0	0	0	0	0	1
9	0	0	0	0	1	0
10	0	0	0	0	1	0
11	0	0	0	1	0	0
12	0	0	0	1	0	0

```
attr(", "assign")
[1] 1 1 1 1 1 1
```

Differential gene expression analysis

Multi-test correction

Why is then an issue with P-values

- ▶ P-value is only statistically valid when a single score is computed.
- ▶ When 20,000 genes are tested, the chance to obtain small P-values are higher than predicted P-values.

Bonferroni adjustment

- ▶ If a significance threshold of α is used, but n separate tests (genes \times contrasts) are performed, then $\alpha \rightarrow \alpha/n$ or BH adjusted P-value(BH) = $P \times n$.
- ▶ With a Family-wise error rate of 0.05 (i.e., the probability of at least one error in the family), the expected number of false positives will be 0.05.
- ▶ If error rate equals 0.05, expects 0.05 genes to be significant by chance.

Differential gene expression analysis

Multi-test correction cont'd

Benjamini and Hochberg False Discovery Rate

1. Sort the P-values in ascending order.
2. Divide each observed P-value by its percentile rank.
3. Tolerates more false positives. There will be also less false negative genes.
4. If error rate equals 0.05, 5% of genes considered statistically significant will be identified by chance (false positives).

Single-cell RNA-sequencing

Differential expression analysis

- ▶ In general, agreement among the tools in calling DE genes is not high.
- ▶ Methods with higher true positive rates tend to show low precision.
- ▶ Methods with high precision show low true positive rates due to identifying few DE genes.
- ▶ Methods designed for scRNAseq data do not tend to show better performance compared to methods designed for bulk RNAseq data.
- ▶ Seurat and Scanpy use a "one-vs-rest" cluster comparison strategy.
 - creates a situation with highly imbalanced sample sizes and increased biological heterogeneity in the pooled "other" group;

Single-cell RNA-sequencing

Differential expression analysis cont'd

► Model-based approaches or zero-inflated model

- fit a probabilistic model that explicitly tries to capture how the data is generated, instead of just using simple statistical tests (like Wilcoxon rank-sum).
- account for both the zeros and the nonzero counts
- use two-part joint model and separately handles:
 - The first part models the probability of detection (e.g using logistic regression) i.e. whether the gene is detected at all.
 - The second part models the level of expression (often using a Gaussian or a log-normal model after transformation).
- SCDE²⁵, MAST²⁶, scDD²⁷

²⁵Kharchenko, Silberstein, and Scadden 2014.

²⁶Finak et al. 2015.

²⁷Korthauer et al. 2016.

Single-cell RNA-sequencing

Differential expression analysis cont'd

► Nonparametric methods

- Do not model the distributions of gene expression values nor estimate their parameters.
- Identify DE genes by employing a distance metric between the distributions of genes in two conditions.
- SigEMD²⁸, EMDomics²⁹, and D3E³⁰.

²⁸Wang and Nabavi 2018.

²⁹Nabavi et al. 2016.

³⁰Delmans and Hemberg 2016.

Public repositories of high-content molecular data

Sequence Read Archive (SRA)

- ▶ Public repository of high throughput sequencing data
- ▶ Raw sequencing data and alignment information [▶ Link](#)

Gene Expression Omnibus

- ▶ Public functional genomics data repository
- ▶ Array- and sequence-based raw data, processed data and metadata
- ▶ For high-throughput sequencing, GEO arrange the transfer of the raw data to SRA [▶ Link](#)

jPOSTrepo³¹

- ▶ Public repository of sharing MS raw/processed data [▶ Link](#)

³¹Okuda et al. 2017.