

Adult haematopoietic stem cell niches

Genevieve M. Crane^{1,2}, Elise Jeffery¹ and Sean J. Morrison^{1,3,4}

Abstract | Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells *in vivo*, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.

Haematopoiesis

The process by which blood cells and immune system cells — including erythrocytes, platelets and white blood cells — are formed from haematopoietic stem cells, which undergo lineage restriction and then differentiation by giving rise to various restricted haematopoietic progenitors.

Stem cell niches are local tissue microenvironments that maintain stem cells and regulate their function by producing factors that act directly on stem cells¹. Long-range factors produced by other tissues can also affect stem cells and their niche, but these are not the main focus of this Review. The identification of stem cell niches and the mechanisms by which they regulate stem cells offers the opportunity to better understand tissue homeostasis and regeneration.

Extensive work has been carried out to identify and characterize niches for haematopoietic stem cells (HSCs), which are rare, self-renewing and multipotent progenitors that sustain haematopoiesis. Haematopoiesis is required for the ongoing production of blood cells and immune cells — including erythrocytes, platelets and white blood cells — throughout life. To generate these cells, HSCs give rise to an array of restricted progenitors, which proliferate extensively and then differentiate into mature cells. Without haematopoiesis, we would not be able to maintain blood cell counts and would die within weeks as a result of anaemia (due to erythrocyte depletion), bleeding (due to platelet depletion) and infection (due to the depletion of myeloid and lymphoid immune effector cells). Although restricted progenitors are responsible for most steady-state haematopoiesis, HSCs must be maintained throughout life to replenish these progenitors^{2–5}, and to regenerate haematopoietic cells after stresses such as severe infection or blood loss⁶.

HSCs arise during embryonic development and occupy a series of niches in fetal tissues where they expand in number and initiate haematopoiesis (see BOX 1 for a brief summary of fetal haematopoiesis) before localizing primarily to the bone marrow postnatally. No single article could comprehensively cover all of the work on HSC niches. This Review focuses on the location, cellular composition and regulation of adult HSC niches, particularly in the bone marrow. We hope that

this will prove to be useful for researchers who have an interest in haematopoiesis and HSC biology, clinicians who have an interest in bone marrow transplantation, and stem cell biologists studying niches in other tissues.

Although the main site of haematopoiesis in adult mammals under normal circumstances is the bone marrow, haematopoiesis can transiently expand into facultative niches in extramedullary tissues, such as the liver and the spleen, in response to severe haematopoietic stresses. Our understanding of the bone marrow and extramedullary HSC niches has advanced rapidly in the past 5 years as a result of new markers for HSCs and niche cells, new imaging techniques for niches, functional genetic analyses of the sources of crucial niche factors, and the identification of new mechanisms by which the niche regulates HSC function. These studies have been carried out mainly in mice and zebrafish. HSC niches in humans are presumed to be similar, as most aspects of HSC biology and haematopoiesis are similar in mice and humans. Nonetheless, there are few data so far from humans.

HSCs are the most clinically used type of stem cell as they are the main active ingredient in bone marrow, cord blood and mobilized peripheral blood transplants. These forms of bone marrow and HSC transplantation are potentially curative for patients with certain disorders that involve bone marrow failure (such as Fanconi anaemia), haematopoietic malignancies (such as acute myeloid leukaemia) and benign haematopoietic disorders (such as severe combined immunodeficiency and sickle cell anaemia). Before transplantation, patients are typically given a conditioning regimen to ablate endogenous haematopoietic cells (a process also known as myeloablation) and to enable the engraftment of transplanted HSCs. This leads to a period of pancytopenia before the transplanted cells adequately restore haematopoiesis. Consequently, transplant recipients

¹Children's Research Institute, University of Texas Southwestern Medical Center.

²Department of Pathology, University of Texas Southwestern Medical Center.

³Department of Pediatrics, University of Texas Southwestern Medical Center.

⁴Howard Hughes Medical Institute.

Correspondence to S.J.M.

sean.morrison@utsouthwestern.edu

doi:10.1038/nri.2017.53

Published online 12 Jun 2017

Box 1 | HSCs are closely associated with blood vessels during development

Genetic tools and improved imaging techniques for studying mouse and zebrafish embryos have increased our understanding of haematopoietic stem cell (HSC) niches during development.

Fetal haematopoiesis in mammals

HSCs arise from the haemogenic endothelium^{145–148}, which is associated with blood vessels in embryonic and extra-embryonic sites within the mammalian embryo; these sites potentially include the dorsal aorta^{145–150}, the umbilical and vitelline arteries^{147,149}, the yolk sac¹⁴⁷ and the placenta^{151,152}. Haematopoiesis first occurs in the yolk sac, and then in the liver, spleen and bone marrow by the time of birth¹⁵³. The major expansions in HSC numbers during development occur in the placenta¹⁵¹ and then in the fetal liver¹⁵⁴. Each of these tissues contains HSC niches that are likely to be associated with blood vessels.

The fetal liver HSC niche

40% of fetal liver HSCs are located within 20 µm of portal blood vessels, which are associated with pericytes that express nestin and neural–glial antigen 2 (NG2)¹⁵⁵. Diphtheria toxin-mediated depletion of Ng2-Cre⁺ stromal cells reduces the frequency of dividing HSCs in the fetal liver but increases the reconstituting capacity of fetal liver cells upon transplantation into irradiated mice¹⁵⁵. This suggests that NG2⁺ cells are required for HSC proliferation or for the maintenance of a subset of dividing HSCs in the fetal liver. The conditional deletion of *Scf* (which encodes stem cell factor) using Ng2-Cre also significantly reduced HSC frequency in the liver during fetal development, although no data have been published from transplantation assays in relation to whether this increased or decreased the reconstituting potential of fetal liver cells⁷⁹.

Imaging advances in zebrafish

Recent studies of zebrafish embryos have visualized the interactions of HSCs with vascular and perivascular cells *in vivo*^{156–158}. Confocal time-lapse imaging confirmed that HSCs arise from haemogenic endothelial cells in the zebrafish dorsal aorta¹⁴⁵. Macrophages in the mesenchyme surrounding the dorsal aorta facilitate the intravasation of HSCs into the circulation by secreting matrix metalloproteinases¹⁵⁹. HSCs then migrate through the blood to the caudal haematopoietic tissue, which is a site of haematopoiesis in zebrafish larvae, before transitioning to the kidney in adult fish¹⁶⁰. In the caudal haematopoietic tissue, HSCs migrate through the vessel wall and lodge adjacent to CXC-chemokine ligand 12 (CXCL12)-expressing mesenchymal stromal cells, and this is followed by endothelial cell remodelling to form a pocket that surrounds the HSCs¹⁵⁶. This niche seems to be analogous to mammalian HSC niches^{17,78,84}, as both mouse and zebrafish HSCs are maintained in their niches by endothelial cells and CXCL12⁺ mesenchymal stromal cells. The stromal cells seem to orient HSC divisions¹⁵⁶, whereas the endothelial cells secrete cytokines that promote HSC maintenance, including SCF¹⁶¹. Future studies will be required to characterize the HSC niche in the adult zebrafish kidney and to assess whether it is also similar to mammalian HSC niches.

HSC transplantation

A potentially curative therapy involving the replacement of a patient's blood-forming cells with those from a donor (allogeneic) or with their own cells (autologous) that had been stored before chemotherapy or radiation treatment. This procedure can be carried out by transplanting whole bone marrow cells or enriched populations of haematopoietic stem cells (HSCs), which can be obtained from various sources, including bone marrow, mobilized peripheral blood or umbilical cord blood.

are at risk of serious complications, including anaemia, bleeding and opportunistic infections⁷. The safety of HSC transplantation has been increased in recent years by the provision of improved supportive care to minimize these complications, and by strategies to increase the speed and likelihood of successful engraftment. Ongoing advances in our understanding of the HSC niche offer the opportunity to reduce the toxicity of conditioning regimens, to further accelerate HSC engraftment, to promote haematopoietic regeneration from endogenous progenitors and to promote the *ex vivo* expansion of HSCs.

HSC localization in adult bone marrow

The idea that HSCs occupy a specialized niche in haematopoietic tissues was first proposed in 1978 (REF. 8); however, it took approximately 25 years to develop the tools required to image HSC localization

with confidence in haematopoietic tissues (as reviewed in REF. 9). The fundamental problem was that identifying HSCs by flow cytometry required a combination of approximately a dozen antibodies conjugated to approximately five different fluorochromes. This labelling protocol was too complex for the identification of HSCs in tissue sections by immunofluorescence analysis. The discovery of signalling lymphocyte activation molecule family markers (SLAM family markers) for HSCs made it possible to highly purify HSCs (as CD150⁺CD48[−]CD41[−] cells) using a simple, two-colour combination of antibodies¹⁰. Analysis of the localization of these cells in tissue sections showed that most HSCs reside adjacent to sinusoidal blood vessels in the bone marrow and spleen (FIG. 1). Based on this observation, we proposed the existence of a perivascular niche for HSCs¹⁰.

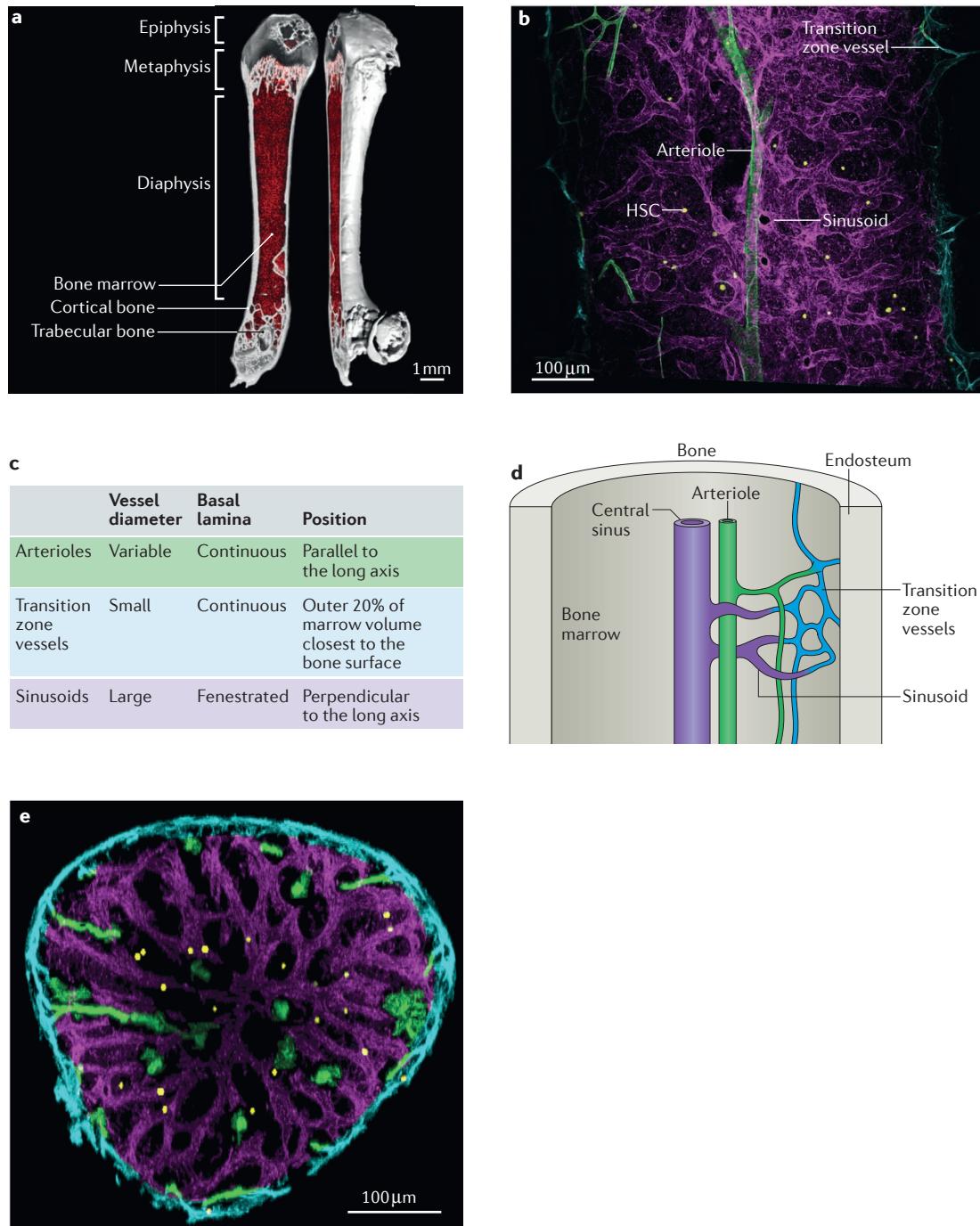
Studies conducted by other laboratories using alternative combinations of HSC markers confirmed that most HSCs localize adjacent to sinusoidal blood vessels^{11–13}. New genetic markers, including *Ctnna1* (which encodes α -catulin)¹⁴ and *Hoxb5* (which encodes homeobox b5)¹⁵, have further simplified the identification of HSCs and refined our understanding of their localization. In *Ctnna1*-GFP knock-in mice, green fluorescent protein (GFP) is expressed by only 0.02% of bone marrow haematopoietic cells, including all or almost all HSCs¹⁴, and *Ctnna1*-GFP⁺KIT⁺ cells have a level of HSC purity that is comparable to cells identified by the best combinations of HSC markers¹⁴. KIT is the receptor for stem cell factor (SCF; also known as KIT ligand), a growth factor that is required for HSC maintenance^{16,17}. The use of *Ctnna1*-GFP and KIT in combination with tissue clearing and deep confocal imaging made it possible to digitally reconstruct large 3D segments of bone marrow and assess the localization of thousands of HSCs¹⁴. Approximately 80% of dividing and non-dividing HSCs are most closely associated with sinusoidal blood vessels, with another 10% of HSCs being adjacent to arterioles, and 10% being adjacent to transition zone vessels (see FIG. 1 for a description of the bone marrow vasculature). Only a small percentage of HSCs are located at the endosteum.

HSCs can also be highly purified on the basis of *Hoxb5* expression¹⁵. An analysis of HSC localization using *Hoxb5*-mCherry knock-in mice confirmed that HSCs are consistently perivascular¹⁵. Multiple distinct sets of markers that each identify HSCs to a high level of purity thus show that HSCs reside perivascularly, mainly around sinusoidal blood vessels, in adult bone marrow. Each of these marker sets identifies cell populations that are overwhelmingly quiescent.

Multiple other genetic markers have been identified that are highly restricted to HSCs, although they have not yet been used to study the HSC niche. Bone marrow cells that express high levels of a *Tie2*-GFP transgene (which labels with GFP those cells that express protein tyrosine kinase with immunoglobulin and EGF homology domains 2) are very highly enriched for HSC activity, and some of these cells localize slightly closer to arterioles than do HSCs that are negative for

Conditioning regimen
Chemotherapy and/or radiation that ablates endogenous haematopoietic cells before haematopoietic stem cell (HSC) transplantation to facilitate the engraftment of the transplanted HSCs.

Ex vivo expansion
Increasing the number of haematopoietic stem cells (HSCs) that are available for transplantation by growing them in culture. For reasons that are not currently understood, it is not yet possible to considerably or sustainably increase the numbers of HSCs in culture, despite decades of effort.


Signalling lymphocyte activation molecule family markers (SLAM family markers). A group of cell-surface receptors (including CD150, CD48, CD229 and CD244) that are differentially expressed among haematopoietic stem cells (HSCs) and other haematopoietic progenitors in a manner that enables them to be used to identify HSCs and multipotent progenitors.

Sinusoidal blood vessels
Fenestrated venous blood vessels that are found in haematopoietic tissues and through which haematopoietic cells can migrate into and out of the circulation.

Perivascular niche
A microenvironment in the bone marrow that is located adjacent to a blood vessel and that supports the maintenance of haematopoietic stem cells and/or other haematopoietic progenitors.

***Ctnna1*-GFP knock-in mice**
A gene-targeted mouse line in which green fluorescent protein (GFP) is knocked into the *Ctnna1* locus (which encodes α -catulin) such that GFP marks α -catulin⁺ cells, which are highly enriched for haematopoietic stem cells.

Arterioles
In the context of this Review, blood vessels of variable diameter that carry arterial blood into the bone marrow.

Figure 1 | The vasculature in the bone marrow and its relationship to HSCs. **a** | A bisected mouse femur showing cortical and trabecular bone, as well as the bone marrow cavity. **b** | A higher magnification image of the vasculature in the bone marrow showing the distribution of α -catulin⁺ haematopoietic stem cells (HSCs; yellow; these cells were also selected for being KIT⁺ relative to sinusoids (purple), arterioles (green) and transition zone vessels (blue)). **c** | Blood vessels in the bone marrow can be distinguished on the basis of diameter, morphology, and whether the basal lamina surrounding the blood vessel is continuous or fenestrated. **d** | In long bones, such as the tibia and femur, arterioles (green) branch from the nutrient arteries that carry blood into the bone marrow and run longitudinally through progressively smaller arterioles near the endosteal surface. These smaller arterioles become transition zone vessels (blue), which connect arterioles to sinusoids and have properties that are intermediate between arterioles and sinusoids. Sinusoids (purple) are larger-diameter vessels that return venous blood into the central sinus, which carries it out of the bone marrow. **e** | A cross-section of the tibial diaphysis showing that HSCs (yellow) are widely distributed throughout the bone marrow, but are modestly enriched in the central marrow and depleted towards endosteal surfaces¹⁴. The images in parts **a**, **b** and **e** were generated by the laboratory of S.M. for this Review. Parts **c** and **d** are reproduced with permission from REF. 14, Macmillan Publishers Limited.

Transition zone vessels

In the context of this Review, small blood vessels that connect arterioles to sinusoids in the bone marrow and that are located near the endosteum.

Endosteum

The internal bone surface at the interface between bone and bone marrow.

Hoxb5-mCherry knock-in mice

A gene-targeted mouse line in which the fluorescence marker mCherry is knocked into the *Hoxb5* locus (which encodes homeobox b5) such that mCherry marks *Hoxb5*⁺ cells, which are highly enriched for haematopoietic stem cells.

CXCL12-abundant reticular cells (CAR cells)

Stromal cells in the bone marrow that are mainly associated with sinusoidal blood vessels and that express high levels of CXC-chemokine ligand 12 (CXCL12), which is an important factor for retaining haematopoietic stem cells in the bone marrow niche.

Leptin receptor-expressing cells (LEPR⁺ cells)

Stromal cells in the bone marrow that are mainly associated with sinusoidal blood vessels and that express high levels of the crucial haematopoietic stem cell niche factors stem cell factor and CXC-chemokine ligand 12. These cells have commonly been identified using *Lepr*-Cre recombination systems, but in young-adult bone marrow nearly all of the bone marrow cells that recombine with *Lepr*-Cre also stain positively with LEPR-specific antibody.

Nes-CreER⁺ cells

Cells that express a tamoxifen-activated form of Cre recombinase under the control of regulatory elements of *Nes* (which encodes nestin). The conditional reporter is expressed by rare periarteriolar stromal cells in adult bone marrow but is more widely expressed in early postnatal bone marrow, where it shows widespread expression in endothelial cells, for example.

Tie2-GFP, although no data have been published on their position relative to sinusoids¹⁸. Cells expressing an *Fgd5*^{mCherry/+} knock-in reporter¹⁹ (which labels with mCherry those cells that express FYVE, RhoGEF and PH domain-containing 5) and cytokeratin 7-expressing cells²⁰ are also highly enriched for HSCs, although no data have been published on the localization of these cells in the bone marrow.

Cell ablation to identify niche cells

The earliest studies that functionally tested whether particular cell types regulate HSC maintenance used mice that were engineered to conditionally express herpesvirus thymidine kinase or diphtheria toxin receptor in specific cell populations, and were then administered ganciclovir or diphtheria toxin, respectively, to ablate these cell populations. Such studies ablated several stromal cell populations in the bone marrow, including osteoblasts^{21,22}, CXCL12-abundant reticular cells (CAR cells)²³, leptin receptor-expressing cells (LEPR⁺ cells)²⁴, *Nes*-CreER⁺ cells²⁵ (*Nes* encodes nestin) and *Ng2*-CreER⁺ cells¹³ (*Ng2* (also known as *Cspg4*) encodes neural-glial antigen 2), as well as a few types of haematopoietic cell, such as megakaryocytes^{26,27} and macrophages^{28–30} (TABLE 1). In each case, HSCs entered the cell cycle and/or became depleted after ablation of the indicated cell populations. However, to our knowledge, no cell type has ever been ablated from the bone marrow without inducing HSC activation or depletion. It is therefore not clear whether these observations reflect direct effects of the ablated cells on HSCs. Perhaps the ablation of any cell type in the bone marrow induces an injury response that activates and/or depletes HSCs in a niche-independent manner.

The consequences of osteoblast ablation are particularly informative. In several studies, a rat collagen promoter was used to drive thymidine kinase expression in osteoblasts such that the treatment of these mice with ganciclovir depleted osteoblasts^{21,22,31}. Osteoblast ablation acutely depleted early lymphoid progenitors from the bone marrow, which suggests that these cells depend on osteoblasts for their maintenance^{21,22}. HSCs also became depleted, but only weeks after osteoblast ablation when the bone marrow became pancytopenic. Given that there was no acute effect of osteoblast ablation on HSC frequency^{21,22}, that few HSCs reside close to bone surfaces¹⁴ and that osteoblasts do not express the crucial niche factor SCF¹⁷, osteoblasts do not seem to directly promote HSC maintenance⁹. Rather, there may be widespread crosstalk in the bone marrow by which many cells indirectly regulate other cells. This may explain why osteoblast ablation eventually leads to pancytopenia even though osteoblasts are not required in other haematopoietic tissues (such as the liver and spleen) for HSC maintenance or haematopoiesis. The potential for widespread indirect effects of cell ablation is even more pronounced when vascular cells are ablated, owing to the disruption of blood flow through the bone marrow (for example, *Nes*-CreER is expressed by bone marrow endothelial cells^{25,32}).

Growth factors required for HSC maintenance

An alternative approach to identifying niche cells is to identify the cells that synthesize the factors that promote HSC maintenance. A few growth factors are known to be non-cell-autonomously required for HSC maintenance, including SCF^{16,33,34}, CXC-chemokine ligand 12 (CXCL12)^{12,35–37} and thrombopoietin^{38–41}.

SCF. SCF binds to the receptor KIT^{42–49}, which is expressed by HSCs⁵⁰. Both *Scf* and *Kit* are required for HSC maintenance^{16,34,51}. SCF is present in both membrane-bound and soluble forms, each of which activates signalling by the receptor KIT^{42–49}. The membrane-bound form of SCF seems to be important for HSC maintenance as HSCs are depleted in *Sl/Sl^d* mutant mice¹⁶, which express soluble SCF but lack the membrane-bound form⁵². Mice with a mixture of wild-type and *Sl/Sl^d* stromal cells exhibit normal haematopoiesis only in the immediate vicinity of the wild-type cells, which indicates that SCF functions locally to create the niche⁵³. Niche cells would thus be expected to express SCF, and HSCs would be expected to have direct contact with these cells. Other early haematopoietic progenitors, as well as mast cells, also depend on SCF–KIT signalling, although it remains unclear whether they derive this signal from the same niche cells as do HSCs.

CXCL12. CXCL12 promotes HSC maintenance and retention in the bone marrow by activating signalling through CXC-chemokine receptor 4 (CXCR4), which is expressed by HSCs⁵⁴. CXCL12–CXCR4 signalling also regulates HSC engraftment after transplantation and HSC proliferation^{55,56}. Global conditional deletion of *Cxcl12* or *Cxcr4* depletes HSCs from adult bone marrow^{12,57}. HSC niche cells must, therefore, express CXCL12 in addition to SCF. CXCL12–CXCR4 signalling also regulates the proliferation and retention of multiple restricted progenitor populations in the bone marrow, including various myeloid and lymphoid progenitors^{35,55,58,59}.

Thrombopoietin. Thrombopoietin activates signalling by myeloproliferative leukaemia protein (MPL; also known as TPOR) on HSCs. Both thrombopoietin and MPL are required for HSC maintenance^{38–41}, as well as for megakaryocyte and platelet production^{60–62}. Thrombopoietin is expressed at high levels in the liver and to a lesser extent in kidney, and there is limited expression in the bone marrow under normal circumstances^{60,63}. It has not been tested whether HSC maintenance is promoted by thrombopoietin that is produced locally in the bone marrow or at a distant site, such as in the liver. The identification of the cellular sources of the thrombopoietin that is required for HSC maintenance is an important area for future research.

Other factors. Many other factors in the bone marrow non-cell-autonomously modulate HSC function but are not necessarily required for HSC maintenance (TABLE 2). Several growth factors that are not required for HSC maintenance or haematopoiesis under steady-state conditions nonetheless promote haematopoietic

Table 1 | Bone marrow cell types associated with the HSC niche

Cell population	Percentage of total bone marrow cells	Location	Included cell types	Time when present
Adipocytes ¹⁶²	Rare in most bones; can increase with age and irradiation	Can be present throughout bone marrow, and are abundant in the tail vertebrae of mice	Perilipin ⁺ and Oil Red O ⁺ cells, and cells marked by the expression of <i>Adipoq</i> -CreER	Become increasingly abundant during adulthood
CAR cells ¹²	0.3% ²³	Perivascular; mainly perisinusoidal but also periarteriolar	Nearly all cells that express high levels of CXCL12 and SCF; skeletal stem cells; and LEPR ⁺ cells	Characterized in adult bone marrow
Endothelial cells ^{91,96,97}	0.01–0.03% ¹⁷ , depending on dissociation conditions	Blood vessels throughout the bone marrow, including sinusoids and arterioles	CD31 ⁺ VE-cadherin ⁺ VEGFR1 ⁺ VEGFR2 ⁺ cells, and laminin ⁺ cells marked by the expression of Tie2-Cre	Beginning in the late fetal stage and persisting throughout adulthood
HSCs ¹⁰	0.007% ¹⁰	Mainly associated with sinusoids, with a smaller proportion present near arterioles ^{10,13,14}	CD150 ⁺ , CD48 ⁺ , KIT ⁺ (REF. 10) and SCA1 ⁺ cells, <i>Ctnna1</i> -GFP ⁺ cells ¹⁴ and <i>Hoxb5</i> -mCherry ⁺ cells ¹⁵	Colonize the bone marrow during late fetal development then persist throughout adulthood
LEPR ⁺ stromal cells ¹⁷	0.3% ^{24,163}	Perivascular; mainly perisinusoidal but also periarteriolar	Nearly all cells that express high levels of CXCL12 and SCF, including skeletal stem cells	Beginning in postnatal bone marrow and persisting in adult bone marrow
Megakaryocytes ^{26,27}	~0.1% ¹⁶⁴	Closely associated with sinusoids throughout the bone marrow	CD41 ⁺ cells, and cells marked by the expression of <i>Cxcl4</i> -Cre	Present at all postnatal and adult stages
Monocytes and macrophages ^{29,30,165}	~0.4% ¹⁶⁶	Throughout the bone marrow	CD11b ⁺ F4/80 ⁺ cells, including DARC ⁺ (REF. 30) and SMA ⁺ (REF. 111) subsets, osteoclasts and CD169 ⁺ macrophages ¹⁶⁵	Present at all postnatal and adult stages
Nes-CreER ⁺ stromal cells ²⁵	0.001% ²⁴	Periarteriolar in adult bone marrow	Endothelial cells and periarteriolar stromal cells ^{24,25,32}	Common in early postnatal bone marrow, but rare in adult bone marrow ³²
Nes-GFP ⁺ stromal cells ^{13,25,89}	0.08% ²⁵	Includes Nes-GFP ^{low} perisinusoidal cells and Nes-GFP ^{hi} periarteriolar cells	Nes-GFP ^{low} cells include LEPR ⁺ /CAR cells; Nes-GFP ^{hi} cells include stromal cells, Schwann cells and endothelial cells ³²	Characterized in fetal ⁸⁹ and adult ²⁵ bone marrow
NG2 ⁺ stromal cells ¹³	0.003% ²⁴	Periarteriolar, as well as associated with nerve fibres and the endosteum in adults; broader distribution in neonates ⁷⁹	Stromal cells, osteoblasts, Schwann cells, osteocytes and chondrocytes	Fetal liver ¹⁵⁵ and adult bone marrow ¹³
Neurons, specifically nerve fibres ^{77,106,107,167}	Rare	Usually associated with arterioles in central bone marrow ^{13,90} ; rare synapses on some perivascular stromal cells ¹¹⁰	PGP9.5 ⁺ and neurofilament ⁺ cells, including neurons (specifically their processes), Schwann cells, perineurial cells and fibroblasts	Persist throughout postnatal life in the bone marrow
Osteoblasts	Predominant cell type along the endosteum	Bone-lining endosteal cells	Alkaline phosphatase ⁺ , osteocalcin ⁺ and CD10 ⁺ cells, and cells marked by the expression of <i>Col1a1</i> -Cre, <i>Col1a1</i> -CreER, <i>Col1a1</i> -GFP, <i>Runx2</i> -CreER, <i>Osx</i> -CreER or <i>Ocn</i> -Cre	Arise perinatally and persist throughout adulthood
PRRX1 ⁺ stromal cells ⁸⁴	0.3%	In limb bones but not in the axial skeleton ^{163,168} ; perivascular and endosteal	LEPR ⁺ /CAR cells, osteoblasts, and skeletal stem cells in limb bones	Arise during fetal development and persist in adult bone marrow
Regulatory T cells ¹⁶⁹	~1% of human bone marrow ¹⁷⁰	Widely dispersed but commonly near endosteal surfaces	CD4 ⁺ CD25 ⁺ FOXP3 ⁺ cells and <i>Foxp3</i> -GFP ⁺ cells ¹⁶⁹	Characterized in adult bone marrow
Schwann cells ^{109,167}	Rare	Associated with nerve fibres	Myelinating and non-myelinating Schwann cells; GFAP ⁺ and S100 ⁺ cells; and cells marked by the expression of P0-Cre, Nes-Cre and <i>Wnt1</i> -Cre	All postnatal stages
Skeletal stem cells ⁹⁸	0.04% ^{101,103}	Many in the metaphysis ^{103,104}	CD51 ⁺ , PDGFR ⁺ and CD200 ⁺ cells ¹⁰³ ; CD146 ^{hi} cells in humans ¹⁰⁰ ; and CXCL12 ^{hi} , SCF ^{hi} and LEPR ⁺ cells	Adult bone marrow; different waves of progenitors in fetal and early postnatal bone marrow

Adipoq, adiponectin; CAR cell, CXCL12-abundant reticular cell; *Col1a1*, collagen type I α 1 chain; CreER, tamoxifen-activated form of Cre recombinase; *Ctnna1*, α -catulin; Cxcl4, CXC-chemokine ligand 4; CXCL12, CXC-chemokine ligand 12; DARC, Duffy antigen receptor for chemokines; FOXP3, forkhead box protein P3; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; HSC, haematopoietic stem cell; *Hoxb5*, homeobox b5; LEPR, leptin receptor; Nes, nestin; NG2, neural-glial antigen 2; Ocn, osteocalcin; Osx, osterix; PDGFR, platelet-derived growth factor receptor; P0, protein 0; PGP9.5, protein gene product 9.5 (also known as UCHL1); PRRX1, paired-related homeobox 1; *Runx2*, runt-related transcription factor 2; SCA1, spinocerebellar atrophy type 1 protein (also known as ataxin 1); SCF, stem cell factor; SMA, smooth muscle actin; Tie2, tyrosine kinase with Ig and EGF homology domains 2 (also known as Tek); VE-cadherin, vascular endothelial cadherin; VEGFR, vascular endothelial growth factor receptor.

Table 2 | Locally acting factors in adult bone marrow that modulate HSC or niche function but may not be required for HSC maintenance

Factor	Source	Receptor	Responding cell type or types	Effect on niche or haematopoiesis	Physiological role
Angiogenin ⁶⁴	Mesenchymal stromal cells and haematopoietic cells	Secreted RNase that changes RNA processing in a cell-type-specific manner	HSCs, LSK cells and myeloid progenitors	Promotes quiescence in HSCs and the proliferation of myeloid progenitors	Promotes the recovery of haematopoiesis after myeloablation
Angiopoietin 1 (REF. 101)	HSCs, KIT ⁺ cells and LEPR ⁺ cells	TIE2	Endothelial cells	Promotes the regeneration of patent blood vessels after vascular injury	Regulates regeneration of the niche; not required for HSC maintenance or haematopoiesis
Angiopoietin-like protein 3 (REF. 65)	Sinusoidal endothelial cells and liver cells	Unknown	HSCs	Promotes the maintenance of HSCs and some types of restricted haematopoietic progenitor	Dispensable for steady-state haematopoiesis but promotes recovery after myeloablation; also regulates blood lipids; not clear if the effect on HSCs is direct
BMPs	Osteoblasts, endothelial cells and megakaryocytes	Complexes of BMP type I and type II receptors	HSCs	Canonical signalling does not affect HSC maintenance or haematopoiesis ^{171,172} ; BMP4 is required for normal niche function ¹⁷³	Dispensable for normal haematopoiesis and HSC frequency, but regulate HSC engraftment after transplantation
FGF1 (REFS 27,66)	Megakaryocytes ²⁷	FGFR1 (REF. 66) and potentially others	HSCs and megakaryocytes	Promotes the regeneration of HSCs and megakaryocytes after myeloablation	Dispensable for normal haematopoiesis but promotes recovery after myeloablation
FGF2 (REF. 67)	Bone marrow stromal cells	Multiple FGFRs are present on HSCs	HSCs	Promotes the proliferation of HSCs and stromal cells after myeloablation	Dispensable for normal haematopoiesis but promotes recovery after myeloablation
G-CSF	Monocytes and macrophages ¹⁷⁴ , and various bone marrow stromal cell populations ¹²⁹	G-CSF receptor	Stromal cells ¹³⁰ and myeloid progenitors	Mobilizes HSCs and increases myelopoiesis ^{124,130}	Mobilizes HSCs in response to sepsis and other inflammatory conditions ¹²⁴
IL-6 (REF. 68)	T cells and macrophages	IL-6 receptor	HSCs and restricted progenitors	Promotes HSC self-renewal and regulates the function of restricted progenitors	Dispensable for normal haematopoiesis but required for regeneration after myeloablation
Notch ligands	Bone marrow stromal cells, endothelial cells ¹⁷⁵ and osteoblasts	Notch receptors, particularly Notch 2 (REF. 69)	HSCs, progenitors and endothelial cells	Notch 2 promotes HSC regeneration after myeloablation ⁶⁹	Dispensable for normal haematopoiesis ⁶⁹
Osteopontin ¹⁷⁶	Osteoblasts	Integrins and CD44	HSCs	Negatively regulates HSC frequency	Dispensable for normal haematopoiesis
Pleiotrophin ⁷⁰	Endothelial cells and LEPR ⁺ perivascular stromal cells	Inhibits protein tyrosine phosphatase receptor- ζ	HSCs	Knockout mice have a reduced HSC frequency and show impaired recovery after irradiation	Dispensable for steady-state haematopoiesis but seems to promote HSC maintenance
SLIT ligands ¹⁷⁷⁻¹⁷⁹	SLIT2 and SLIT3 are produced by perivascular stromal cells	ROBO4	HSCs and sinusoidal endothelial cells	Has cell-autonomous and non-cell-autonomous effects on HSC engraftment and mobilization	Dispensable for haematopoiesis, but <i>Robo4</i> ^{-/-} mice have HSC depletion, sinusoid defects and increased vascular permeability
TGF β ²⁷	Multiple cells including megakaryocytes; other cells such as Schwann cells regulate TGF β activation ¹⁰⁹	Multiple type I and type II TGF β receptors	HSCs and other cell types	Promotes HSC quiescence and self-renewal	With multiple ligands and receptors, the genetics of the TGF β family are complex, and genetic manipulation leads to a range of different phenotypes
WNT ligands ^{180,181}	Bone marrow stromal cells and lymphoid cells	Frizzled receptors	HSCs and lymphoid progenitors	Canonical WNT signalling through β -catenin and γ -catenin is dispensable for adult HSC maintenance and for haematopoiesis	Canonical WNT signalling is not required for normal adult haematopoiesis; non-canonical WNT signalling remains under investigation ¹⁸²

BMP, bone morphogenetic protein; FGF, fibroblast growth factor; FGFR, FGF receptor; G-CSF, granulocyte colony-stimulating factor; HSC, haematopoietic stem cell; IL-6, interleukin-6; LEPR, leptin receptor; LSK, lineage 'SCA1'KIT'; ROBO4, roundabout guidance receptor 4; SCA1, spinocerebellar atrophy type 1 protein; TGF β , transforming growth factor- β ; TIE2, tyrosine kinase with Ig and EGF homology domains 2.

regeneration after injury; these growth factors include angiogenin⁶⁴, angiopoietin-like protein 3 (REF. 65), fibroblast growth factor 1 (FGF1)^{27,66}, FGF2 (REF. 67), interleukin-6 (IL-6)⁶⁸, Notch 2 (REF. 69) and pleiotrophin⁷⁰. It is not yet clear to what extent these factors are synthesized by HSC niche cells versus other cell types in the bone marrow. The isolation and characterization of individual stromal cells adjacent to engrafting HSCs may help to identify new factors that regulate haematopoietic regeneration⁷¹. Understanding how the niche changes in response to injury is another important area for future research.

Long-range factors that are synthesized outside the bone marrow at sites distant from the HSC niche also modulate HSC or niche function, sometimes in response to physiological changes (TABLE 3).

In addition to ligand–receptor interactions, it is likely that there are metabolic and physical features of the microenvironment that also promote HSC maintenance. Evidence suggests that most HSCs reside in a relatively hypoxic region of the bone marrow⁷² and that perisinusoidal microenvironments have the lowest oxygen tension in the bone marrow⁷³. HSCs also seem to be more sensitive to valine depletion than to the depletion of other amino acids⁷⁴. An important question for the future is whether the niche regulates nutrient availability in a manner that is necessary for HSC maintenance. If so, this might begin to explain why no known combination of growth factors is sufficient to sustain HSCs in culture.

Identifying the cells that make niche factors

CXCL12 was the first HSC niche factor for which expression was systematically characterized in the bone marrow^{12,75,76}. These studies used immunostaining and *Cxcl12* knock-in reporter mice to conclude that CXCL12 is mainly expressed by perivascular stromal cells and endothelial cells that are associated with sinusoids throughout the bone marrow, and that lower levels of CXCL12 are expressed by osteoblasts^{12,77}. The perivascular stromal cells were described as CAR cells by Nagasawa and colleagues¹². Relative to these perivascular cells, endothelial cells and osteoblasts express *Cxcl12* at approximately 100-fold and 1,000-fold lower levels, respectively⁷⁸. CXCL12 is also expressed by stromal cells localized around arterioles^{78,79}, although such blood vessels are much less numerous than are sinusoids in the bone marrow (FIG. 1).

The perivascular stromal cells and endothelial cells that synthesize CXCL12 are the same cells that are the major sources of SCF in the bone marrow⁷⁸. *Scf* is mainly expressed by perivascular stromal cells that are associated with sinusoidal blood vessels throughout the bone marrow and is expressed at a much lower level by endothelial cells. Similarly to *Cxcl12*, *Scf* is also expressed around small-diameter arterioles¹⁷ (FIG. 2). *Scf* expression is not detectable in osteoblasts, megakaryocytes or other haematopoietic cells¹⁷. Thus, perivascular stromal cells and endothelial cells produce multiple factors that are crucial components of the HSC niche.

Ng2-CreER⁺ cells

Cells that express a tamoxifen-activated form of Cre recombinase from the *Ng2* locus (which encodes neural-glia antigen 2). The conditional reporter is expressed by rare periarteriolar stromal cells in adult bone marrow but is much more widely expressed in early postnatal bone marrow.

The vast majority of the perivascular stromal cells that express *Scf* and *Cxcl12* can be identified on the basis of their expression of the full-length leptin receptor (LEPR)¹⁷: 90–95% of cells that express high levels of *Scf*-GFP or *Cxcl12*-DsRed in young-adult bone marrow are LEPR⁺ cells²⁴. In normal young-adult bone marrow, there is a nearly complete overlap between cells that express high levels of *Cxcl12* (CAR cells) and LEPR⁺ cells²⁴. The LEPR⁺ cells therefore seem to be the same cells that were described as CAR cells^{12,17,23,24,78} (TABLE 1). Consistent with this, the conditional deletion of *Foxc1* — which encodes forkhead box protein C1, a transcription factor that is required by CAR cells — using *Lepr*-Cre substantially depletes HSCs and reduces bone marrow cellularity⁸⁰.

LEPR⁺/CAR cells represent approximately 0.3% of bone marrow cells, but they have long processes that are present throughout the bone marrow. HSCs are closely associated with LEPR⁺ cells^{14,17,24,78} and CAR cells^{12,80}. LEPR⁺ cells that express *Scf* and *Cxcl12* are associated with both sinusoids and small-diameter arterioles, and therefore could potentially contribute to perivascular niches that are associated with both types of blood vessel (FIGS 2,3).

Scf and *Cxcl12* are also expressed by *Nes*-GFP⁺ bone marrow stromal cells^{13,25}. These *Nes*-GFP⁺ cells include both *Nes*-GFP^{low} cells that are perisinusoidal and LEPR⁺ (REFS 17,81), as well as rare *Nes*-GFP^{hi} cells that are periarteriolar, *Nes*-CreER⁺ (REF. 25) and *Ng2*-CreER⁺ (REF. 13) (TABLE 1). Thus, it is not clear whether the expression of *Scf* and *Cxcl12* by *Nes*-GFP⁺ cells reflects expression by perisinusoidal *Nes*-GFP^{low}LEPR⁺ cells or expression by periarteriolar *Nes*-GFP^{hi}*Nes*-CreER⁺ cells. Consistent with the former possibility, RNA sequencing of *Nes*-GFP⁺ cells showed that the cells that express high levels of *Scf* and *Cxcl12* are positive for *Lepr* expression and negative for endogenous *Nes* expression¹³. Results from studies in which *Scf* and *Cxcl12* have been conditionally deleted are also equivocal with respect to the existence of a distinct periarteriolar niche cell (see the next section). It will be important in future studies to determine whether any of the *Scf* and *Cxcl12* expressed by *Nes*-GFP⁺ stromal cells reflects expression by periarteriolar niche cells that are distinct from LEPR⁺/CAR cells. These questions are also complicated by the fact that all of the *Nes* reporter alleles are transgenes that have different genomic integration sites and different expression patterns^{17,82}. Moreover, cells that express *Nes* transgenes do not necessarily express endogenous *Nes*⁸². Therefore, although some studies have interchangeably used nestin-specific antibodies and various *Nes* transgenes as stromal cell markers, these transgenes often have quite different expression patterns in the bone marrow¹⁷, and it remains unclear whether any of the cells that are marked by *Nes* transgene expression express endogenous nestin.

Conditional deletion of niche factors

Niche cells can be functionally identified by conditionally deleting known niche factors from candidate cell populations and then testing for effects on stem cell maintenance. The conditional deletion of

Table 3 | Examples of long-range factors that regulate adult HSCs or the HSC niche

Factor	Source	Receptor	Responding cell type or types	Effect on HSCs or niche	Physiological role
Oestrogen ¹²¹	Ovary	ER α	HSCs as well as other haematopoietic cells	Promotes HSC self-renewal and EMH	Expansion of splenic erythropoiesis during pregnancy
IGF1 (REFS 183, 184)	Liver and osteoblasts	IGF1R	HSCs, myeloid progenitors and pro-B cells	Reduced plasma IGF1 levels promote increased HSC self-renewal and increase the frequency of myeloid progenitors	Prolonged fasting reduces IGF1 levels and improves haematopoietic recovery after myeloablation
Leptin ¹⁶³	Adipocytes	LEPR	LEPR $^+$ /CAR perivascular stromal cells	Causes LEPR $^+$ cells to form adipocytes at the expense of bone ²⁴	Nutritional regulation of SSC fate; dispensable for haematopoiesis
Thrombopoietin	Highest production in the liver and kidney, but the source of the thrombopoietin that acts on HSCs is not known ^{60,63}	MPL	HSCs and megakaryocytes	Required for the postnatal maintenance of HSCs ^{38–41} , and for megakaryocyte and platelet production ^{60–62}	HSC maintenance and thrombopoiesis

CAR cell, CXCL12-abundant reticular cell; CXCL12, CXC-chemokine ligand 12; EMH, extramedullary haematopoiesis; ER α , oestrogen receptor- α ; HSC, haematopoietic stem cell; IGF1, insulin-like growth factor 1; IGF1R, IGF1 receptor; LEPR, leptin receptor; MPL, myeloproliferative leukaemia protein; SSC, skeletal stem cell.

Scf from haematopoietic cells, megakaryocytes, osteoblasts, *Nes*-Cre $^+$ cells, *Nes*-CreER $^+$ cells or *Ng2*-CreER $^+$ cells does not significantly affect HSC frequency, HSC function or haematopoiesis in adult bone marrow^{14,17,24,78}

(TABLE 4). This is consistent with the observation that none of these cell populations detectably expresses an *Scf*-GFP knock-in reporter¹⁷. By contrast, when *Scf* is conditionally deleted from endothelial cells or LEPR $^+$ cells, HSCs are depleted from the bone marrow without any apparent effect on stromal cell frequency or blood vessel morphology^{17,79} (TABLE 4). When *Scf* is deleted from both endothelial cells and LEPR $^+$ cells in *Tie2*-Cre; *Lepr*-Cre; *Scf* $^{fl/fl}$ mice, HSCs are substantially depleted from adult bone marrow and there is a loss of all quiescent and serially transplantable HSCs⁸³ (TABLE 4). The HSC niche in adult bone marrow thus depends on SCF that is produced by endothelial cells and LEPR $^+$ stromal cells. Other haematopoietic progenitors also depend on SCF and may also be depleted as a result of *Scf* deletion from LEPR $^+$ cells.

The same endothelial cells and LEPR $^+$ cells are also functionally important sources of the CXCL12 required for HSC maintenance in adult bone marrow. The conditional deletion of *Cxcl12* from haematopoietic cells, megakaryocytes, osteoblasts, *Nes*-Cre $^+$ cells, *Nes*-CreER $^+$ cells or *Ng2*-CreER $^+$ cells in adult bone marrow does not significantly affect HSC frequency or HSC function^{14,24,78,84} (TABLE 4). The deletion of *Cxcl12* from endothelial cells or paired-related homeobox 1 (PRRX1)-expressing mesenchymal stromal cells (TABLE 1) depletes HSCs from adult bone marrow with no apparent effect on stromal cell frequency or blood vessel morphology^{78,84} (TABLE 4). The conditional deletion of *Cxcl12* using *Lepr*-Cre mobilizes HSCs from the bone marrow without detectable HSC depletion^{78,79}. LEPR $^+$ cells are thus an important source of the CXCL12 that is required for the retention of HSCs in the bone marrow, although HSC depletion is more severe when *Cxcl12* is conditionally deleted using *Prrx1*-Cre than


when using *Lepr*-Cre. This is probably because PRRX1 is more broadly expressed by bone marrow stromal cells than is LEPR: *Prrx1*-Cre recombines in osteoblasts and other stromal cells in addition to LEPR $^+$ cells^{78,84}.

HSCs had previously been proposed to be maintained in osteoblastic (endosteal) niches, but the available evidence no longer supports this model⁹ as osteoblasts are not a necessary source of any niche factor that is known to be required for HSC maintenance. The conditional deletion of *Cxcl12* from osteoblasts does not affect HSC frequency or function, but instead depletes a subset of early lymphoid progenitors^{78,84}. This is consistent with the observation that diphtheria toxin-mediated ablation of osteoblasts acutely depletes lymphoid progenitors but not HSCs^{21,22} (TABLE 4). This osteoblastic niche for lymphoid progenitors seems, however, to support the maintenance of only a subset of these progenitors, as most stages of B cell development occur in perisinusoidal niches in which CXCL12 and IL-7 are synthesized by cells that express osterix (also known as SP7) and LEPR^{23,84–88}.

Sinusoidal versus arteriolar niches

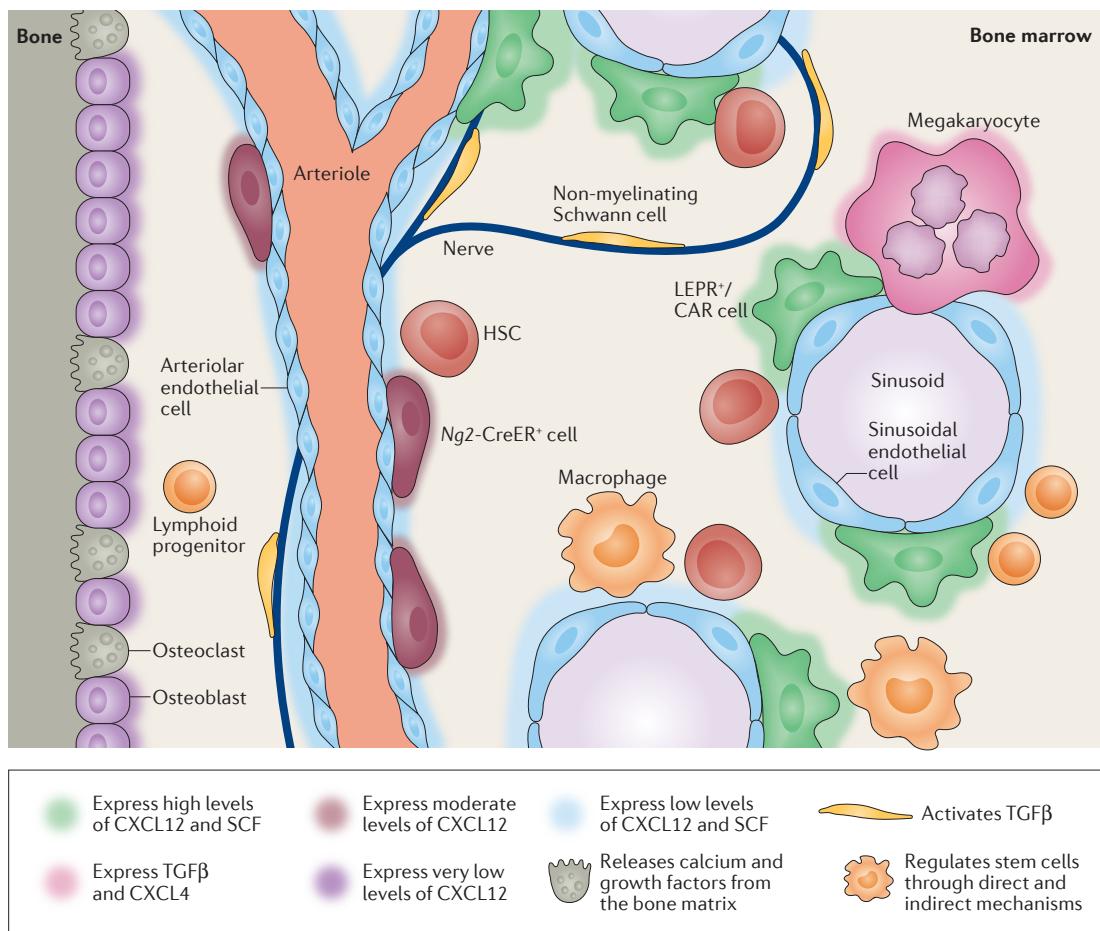
It has also been proposed that there is a periarteriolar niche for HSCs that is distinct from the perivascular niche created by LEPR $^+$ cells¹³. This model was based initially on the suggestion that periarteriolar *Nes*-CreER $^+$ and *Ng2*-CreER $^+$ cells are an important source of SCF and CXCL12 in the bone marrow^{13,79}. However, it now seems clear that these periarteriolar cells are not a source of the SCF required for HSC maintenance, as no *Scf*-GFP expression can be detected in these cells^{14,17} and the conditional deletion of *Scf* using *Nes*-Cre¹⁷, *Nes*-CreER¹⁷ or *Ng2*-CreER^{14,79} has no effect on HSC frequency or haematopoiesis in adult bone marrow.

The data with respect to periarteriolar CXCL12 expression are less clear. Low levels of staining with CXCL12-specific antibody were observed by flow cytometry in fixed *Ng2*-CreER $^+$ bone marrow cells⁷⁹.

Figure 2 | The expression of stem cell factor in the bone marrow. Of the known niche factors, stem cell factor (SCF) is one of the most important in terms of the maintenance of haematopoietic stem cells (HSCs)^{16,33,34,52,53}. **a** | A 3D reconstruction of a thick bone marrow specimen from an *Scf*^{GFP/+} mouse that was stained with antibodies specific for green fluorescent protein (GFP) to identify *Scf*-expressing cells (green), vascular endothelial cadherin (VE-cadherin) to identify endothelial cells (red) and smooth muscle protein 22 (SM22; also known as transgelin) to identify smooth muscle cells associated with arterioles (blue). **b** | A schematic representation of the image shown in part **a**. SCF is expressed mainly by perivascular stromal cells that are associated with sinusoids throughout the bone marrow. These SCF⁺ stromal cells also express high levels of CXC-chemokine ligand 12 (CXCL12)^{23,24} and leptin receptor^{17,24,78,79}. Smaller numbers of SCF⁺ cells are associated with small-diameter arterioles. Endothelial cells express SCF and CXCL12 at much lower levels, which cannot be appreciated in this image. Part **a** is reproduced with permission from REF. 24, Elsevier.

However, no *Cxcl12*-DsRed or *Cxcl12*-GFP knock-in reporter expression could be detected in cells that recombined with either *Ng2*-CreER or *Nes*-CreER^{14,17,24,78,79}. The deletion of *Cxcl12* using *Ng2*-CreER or *Nes*-CreER depletes HSCs when tamoxifen is administered within the first 3 weeks after birth^{79,89}, when these Cre alleles are broadly expressed in the bone marrow³²; however, HSCs are not depleted when tamoxifen is administered at 6 weeks after birth, after the expression of *Ng2*-CreER and *Nes*-CreER becomes more restricted to periarteriolar cells^{14,78}. The conditional deletion of *Cxcl12* using *Ng2*-Cre depletes bone marrow HSCs to a greater extent than does *Cxcl12* deletion using *Lepr*-Cre⁷⁹; however, *Ng2*-Cre is expressed much more widely than is *Lepr*-Cre in perinatal bone marrow, leading to a severe developmental depletion of HSCs in neonatal bone marrow that is not observed with *Lepr*-Cre

(M. M. Murphy and S.J.M., unpublished observations). The simplest interpretation that takes into account all of the data is that NG2⁺ cells are a developmentally important source of the CXCL12 required for the colonization of the bone marrow by HSCs around the time of birth, when NG2 expression in the bone marrow is widespread and not limited to periarteriolar cells. By adulthood, when NG2⁺ cells in the bone marrow are rare, the data do not presently support the conclusion that periarteriolar *Ng2*-CreER⁺ cells are an important source of the CXCL12 required for HSC maintenance.


Irrespective of whether NG2⁺nestin^{hi} periarteriolar cells are a source of the factors required for HSC maintenance, approximately 10% of HSCs are more closely associated with arterioles than with sinusoidal blood vessels^{13,14,90,91}, which raises the question of whether arterioles and sinusoids create functionally

distinct perivascular niches. The periarteriolar and perisinusoidal microenvironments differ with respect to oxygen tension^{73,90}, vessel wall permeability⁹⁰ and the capacity of haematopoietic cells to migrate through the vessel wall^{90,92}. The question is whether these differences affect the properties of the HSCs that localize to these microenvironments.

It has been proposed that HSCs associated with arterioles are more quiescent than are those associated with sinusoids¹³; however, there is not yet any functional evidence that the arteriolar microenvironment is better at promoting quiescence than is the perisinusoidal microenvironment. All of the markers that have been

used to localize HSCs around sinusoids identify overwhelmingly quiescent cell populations^{10,14}. Therefore, the direct evidence continues to suggest that the majority of quiescent HSCs are most closely associated with sinusoids, while leaving open the possibility that a subset of quiescent HSCs is associated with arterioles.

Some differences have been observed between the periarteriolar and perisinusoidal microenvironments. CD150⁺CD48⁻ cells (which are highly enriched for HSCs¹⁰) adjacent to arterioles stain negatively for reactive oxygen species (ROS), whereas 36% of CD150⁺CD48⁻ cells adjacent to sinusoids stain positively for ROS⁹⁰. This may reflect increased ROS levels in perisinusoidal HSCs

Figure 3 | A schematic of the HSC niche in adult bone marrow. Most haematopoietic stem cells (HSCs) localize adjacent to sinusoids, where they are in close contact with leptin receptor (LEPR⁺)-expressing mesenchymal stromal cells (also known as CXC-chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells) and endothelial cells, both of which are necessary sources of the stem cell factor (SCF) and CXCL12 required for HSC maintenance^{10–14}. Approximately 10% of HSCs localize near to small-diameter arterioles¹⁴, which are also associated with LEPR⁺ stromal cells, as well as rare Ng2-CreER⁺ cells¹³ (in which a tamoxifen-activated form of Cre recombinase is expressed from the Ng2 locus, which encodes neural-glial antigen 2) that may^{13,93} or may not¹⁴ be a source of the CXCL12 required for HSC maintenance. Nerve fibres¹⁰⁷, Schwann cells associated with nerve fibres¹⁰⁹, megakaryocytes^{26,27}, macrophages^{28–30,108,111} and osteoclasts^{112–114} also regulate HSC maintenance through several mechanisms. Osteoblasts do not directly regulate HSC maintenance through any known mechanism⁹, but they probably indirectly regulate HSC maintenance through crosstalk with other cell types in the bone marrow, such as the cells comprising the vasculature^{91,96}. Osteoblasts promote the maintenance of a subset of early lymphoid progenitors by secreting very low levels of CXCL12 (REF. 78), but other lymphoid progenitors reside in sinusoidal niches, where they depend on CXCL12 synthesized by LEPR⁺ cells^{85,86}. TGFβ, transforming growth factor-β.

Table 4 | Conditional deletion of *Scf* and *Cxcl12* to determine their cellular sources for HSCs in the bone marrow

Cell type	Cre allele	Effect of <i>Scf</i> deletion	Effect of <i>Cxcl12</i> deletion
Endothelial cells and LEPR ⁺ stromal cells	<i>Tie2</i> -Cre and <i>Lepr</i> -Cre	Loss of all quiescent and serially transplantable HSCs from the bone marrow ^{17,83}	ND
Endothelial cells	<i>Tie2</i> -Cre	HSC depletion ¹⁷	HSC depletion ^{78,84}
Haematopoietic cells	<i>Vav1</i> -Cre	No effect ¹⁷	No effect ⁷⁸
Perisinusoidal stromal cells	<i>Lepr</i> -Cre	HSC depletion ^{17,79}	HSC mobilization ^{78,79}
	<i>Il7</i> -Cre	HSC and multipotent progenitor depletion ⁸⁶	HSC and B cell progenitor depletion ⁸⁶
Osteoblasts	<i>Col2.3</i> -Cre	No effect ¹⁷	Lymphoid progenitor depletion ⁷⁸
	<i>Ocn</i> -Cre	ND	Lymphoid progenitor depletion ⁸⁴
Osterix ⁺ stromal cells	<i>Osx</i> -Cre	ND	HSC mobilization and lymphoid progenitor depletion ⁸⁴
Periarteriolar stromal cells	<i>Nes</i> -Cre	No effect ¹⁷	No effect ⁷⁸
	<i>Nes</i> -CreER	No effect of deletion at 8 weeks of age ¹⁷	No effect in adult bone marrow ⁷⁸ ; HSC depletion in early postnatal bone marrow ⁸⁹
	<i>Ng2</i> -Cre	HSC depletion ⁷⁹	HSC and committed progenitor depletion ⁷⁹
	<i>Ng2</i> -CreER	No effect of deletion at 2–3 weeks ⁷⁹ or 6 weeks ¹⁴ of age	HSC mobilization when deleted at 2–3 weeks of age ⁷⁹ but no effect when deleted at 6 weeks of age ¹⁴
PRRX1 ⁺ stromal cells	<i>Prrx1</i> -Cre	ND	HSC mobilization and depletion, and lymphoid progenitor depletion ^{78,84}
Ubiquitous	<i>Ubc</i> -CreER	HSC depletion when deleted at 8 weeks of age ¹⁷	HSC depletion when deleted at 8 weeks of age ⁷⁸
	<i>CMV</i> -Cre	Embryonic lethal ¹⁷	Embryonic lethal ⁷⁸
	<i>E2a</i> -Cre and <i>TgCAGG</i> -CreER	ND	HSC mobilization, and HSC and lymphoid progenitor depletion when deleted at 10 weeks of age ⁵⁷

Col2.3, 2.3 kb fragment of rat *Col1a1*; CreER, tamoxifen-activated form of Cre recombinase; *Cxcl12*, CXC-chemokine ligand 12; CMV, human cytomegalovirus immediate early enhancer and promoter; HSC, haematopoietic stem cell; *Il7*, interleukin-7; *Lepr*, leptin receptor; ND, not determined (indicates that the experiment has not been carried out to our knowledge); *Nes*, nestin; *Ng2*, neural-glial antigen 2; *Ocn*, osteocalcin; *Osx*, osterix; *Prrx1*, paired-related homeobox 1; *Scf*, stem cell factor; *TgCAGG*-CreER, tamoxifen-inducible Cre recombinase under the control of the ubiquitous CMV-Actb (β-actin) promoter; *Tie2*, tyrosine kinase with Ig and EGF homology domains 2; *Ubc*, ubiquitin C; *Vav1*, vav guanine nucleotide exchange factor 1.

compared with periarteriolar HSCs. However, 37% of CD150⁺CD48[−] bone marrow cells are CD41⁺ megakaryocyte progenitors that lack HSC activity¹⁰, and these cells are likely to associate with sinusoids⁹³. Thus, it is unclear whether the difference in ROS staining reflects heterogeneity among HSCs, or heterogeneity between HSCs and megakaryocyte progenitors.

Sinusoidal blood vessels have a fenestrated basal lamina and are the site of blood cell migration between the bone marrow and the circulation. As such, they are more leaky than are arterioles, and this potentially increases the exposure of perisinusoidal HSCs to blood plasma components and increases ROS levels⁹⁰. Consistent with this, genetic changes that increase vascular permeability *in vivo* increase ROS levels in CD150⁺CD48[−] cells, as well as their mobilization and apoptosis⁹⁰. However, CD150⁺CD48[−] cells from mutant mice with increased vascular permeability did not exhibit significant changes in cell cycle status, and they had an increased capacity to reconstitute the myeloid lineage in irradiated mice⁹⁰; this property is associated with more-quiescent HSCs⁹⁴. These data argue against the idea that increased vascular permeability decreases HSC quiescence. What is clear is that HSCs enter and exit the circulation through sinusoids⁹⁰, and that their sinusoidal localization therefore facilitates their ability to traffic through the blood⁹⁵.

Increased Notch signalling in endothelial cells increases the number of arterioles in the bone marrow, as well as SCF expression and HSC frequency, and reduced Notch signalling decreases the number of arterioles, SCF expression and HSC frequency⁹⁶. This raises the possibility that HSC frequency in the bone marrow is directly or indirectly determined by arteriole density, although the genetic approach that was used to modulate Notch signalling in the experiments that provided these findings (that is, expression of tamoxifen-activated Cre recombinase under the control of the promoter of *Cdh5*, which encodes vascular endothelial cadherin (*Cdh5*-CreER)) would be expected to affect sinusoidal endothelial cells as well as arteriolar endothelial cells. Therefore, it is uncertain to what extent the changes in HSC frequency reflected changes in Notch signalling in arterioles versus sinusoidal blood vessels in these experiments.

Sinusoids are severely damaged by irradiation⁹⁷, whereas arterioles seem to be more resilient and may give rise to the endothelial cells that regenerate sinusoids after irradiation⁹⁶. Thus, HSCs might become more dependent on periarteriolar niches during the regeneration of haematopoiesis after irradiation, and arterioles may be important for the regeneration of normal vasculature in the bone marrow.

Skeletal stem cells and the HSC niche

Skeletal stem cells (SSCs) form fibroblast colonies in culture (colony-forming unit-fibroblasts (CFU-Fs)) and can undergo multilineage differentiation into osteoblasts, chondrocytes and adipocytes⁹⁸. SSCs are maintained throughout life in the bone marrow, and give rise to osteoblasts that maintain the skeleton, as well as the adipocytes that accumulate with age in the bone marrow. SSCs may regulate the formation of HSC niches during development⁹⁹, and they are among the stromal cells that secrete HSC niche factors in adult bone marrow^{17,23,25,84,100}. The first evidence for this came from the observation that CD146⁺ SSCs from human bone marrow give rise to bony ossicles after transplantation into immunocompromised mice that become colonized with endogenous HSCs and that support haematopoiesis¹⁰⁰. The CD146⁺ cells localize around sinusoids in the ossicles and synthesize factors that are associated with the HSC niche, such as angiopoietin 1 (REF. 100), which regulates niche regeneration after injury¹⁰¹. In mice, bone marrow stromal cells that express the *Nes*-GFP transgene, *Scf* or *Cxcl12* are highly enriched for CFU-Fs that differentiate in culture to form osteoblasts, chondrocytes and adipocytes^{23–25}. Consistent with this, bone marrow stromal cells that express *Lepr*-Cre are also highly enriched for CFU-Fs, and give rise to most of the osteoblasts and adipocytes that form in adult bone marrow^{24,102}.

Although the stromal cells that express HSC niche factors are highly enriched for SSCs, this cell population is heterogeneous, and only a subset of the cells are SSCs (perhaps 10%). Consequently, it is not clear whether SSCs colocalize with HSCs or whether SSCs preferentially localize to a distinct region of bone marrow, such as the metaphysis^{103,104}, where they are not necessarily associated with HSCs. More markers are required to resolve the heterogeneity among bone marrow stromal cells.

Niche regulation by other cell types

Multiple cell types directly or indirectly regulate HSC maintenance through mechanisms other than SCF or CXCL12 synthesis.

Megakaryocytes. Megakaryocytes localize to sinusoids⁹³ and are often closely associated with HSCs²⁷. The ablation of megakaryocytes leads to increased HSC proliferation and HSC frequency^{26,27}, although it is unclear to what extent this reflects an injury response to compensate for thrombocytopenia versus a direct inhibition of HSC cell division by megakaryocytes. In support of the latter possibility, megakaryocytes produce transforming growth factor β 1 (TGF β 1; encoded by *Tgfb1*)²⁷, which promotes HSC quiescence *in vivo*¹⁰⁵. Conditional deletion of *Tgfb1* from megakaryocytes increases HSC proliferation *in vivo*²⁷. Megakaryocytes are also a source of CXCL4 (also known as platelet factor 4) and *Cxcl4*-deficient mice have increased HSC numbers and HSC proliferation. The administration of recombinant CXCL4 (REF. 26) or TGF β 1 (REF. 27) after megakaryocyte ablation reduces the HSC proliferation that would otherwise occur.

Megakaryocytes can also promote the regeneration of HSCs after myeloablation by synthesizing FGF1 (REF. 27), a cytokine that acts on HSCs to promote regeneration after injury⁶⁶. Thus, there are multiple mechanisms by which megakaryocytes seem to regulate HSC function.

Nerve cells. Nerve fibres, and the Schwann cells associated with them, also regulate HSC function through multiple mechanisms. Nerve fibres are not required for the maintenance of HSCs in the bone marrow^{106,107}, although they are required for the regeneration of haematopoiesis after chemotherapy¹⁰⁶. Nerve fibres also regulate the daily circadian rhythm of HSC mobilization from the bone marrow into the blood, perhaps by regulating the cyclical expression of CXCL12 by stromal cells¹⁰⁷. Circadian CXCL12 expression and HSC mobilization are also regulated by the clearance of aged neutrophils from the circulation and their subsequent engulfment by macrophages¹⁰⁸, which further highlights the complexity of interactions between cell types in the bone marrow. Finally, non-myelinating Schwann cells regulate the proteolytic activation of latent TGF β in the bone marrow¹⁰⁹, and TGF β promotes HSC maintenance.

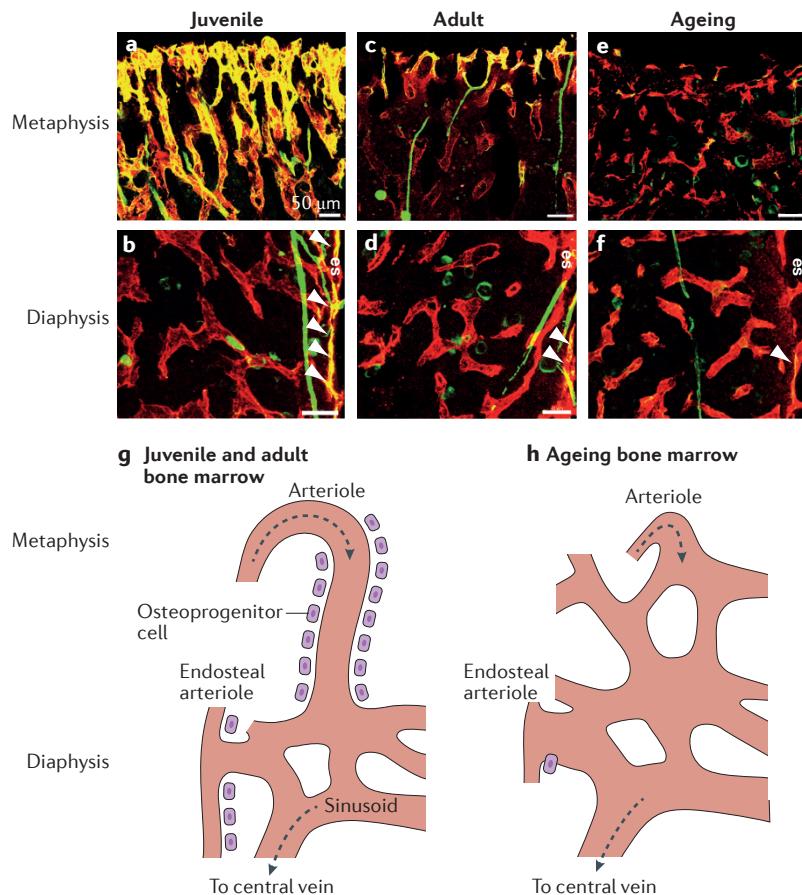
Most nerve fibres are closely associated with arterioles^{13,90} in the bone marrow, whereas most HSCs are associated with sinusoids^{10–13} and do not localize near nerve fibres¹⁴. Therefore, most HSC niche cells are not directly innervated. However, efferent nerve terminals do synapse on a subset of perivascular stromal cells that are associated with sinusoids, and networks of these peri-sinusoidal stromal cells are inter-connected by gap junctions¹¹⁰. Thus, HSCs and niche cells may be regulated by signals that are transmitted through these networks from nerve fibres, or they may be otherwise influenced by diffusible factors produced by Schwann cells¹⁰⁹ or nerve fibres. Nonetheless, little is known about the nature of these signals or the mechanisms by which they might propagate through stromal cell networks.

Monocytes and macrophages. The depletion of bone marrow macrophages reduces CXCL12 expression in the bone marrow and promotes HSC mobilization^{28,29}. A subset of macrophages that express Duffy antigen receptor for chemokines (DARC; also known as CD234 and ACKR1) may regulate TGF β -SMAD3 signalling in HSCs³⁰. A rare subset of smooth muscle actin (SMA)-expressing macrophages express cyclooxygenase 2 (COX2) and are adjacent to HSCs in the bone marrow¹¹¹. These cells expand in number following the administration of lipopolysaccharide and produce prostaglandin E2, and this expansion correlates with decreased ROS levels in HSCs. In addition, osteoclasts — which derive from the monocyte lineage — may regulate HSC function through their effects on bone remodelling, by modulating local Ca²⁺ concentrations, by releasing factors from the bone matrix and by producing cytokines^{112–114}.

Stromal cell changes with age

The stromal cell composition of the bone marrow changes over time between the early postnatal period and adulthood. Multiple waves of mesenchymal stem

Skeletal stem cells
(SSCs). A rare self-renewing stem cell population in the bone marrow that has the potential to form osteoblasts, adipocytes and chondrocytes, and that has the physiological function of maintaining the adult skeleton.


Schwann cells
Neural crest-derived cells that include myelinating and non-myelinating glia that are associated with peripheral nerve fibres in the bone marrow.

and progenitor cells colonize the bone marrow during development, thus altering the composition of the bone marrow stroma over time. During late fetal development, SSCs marked by the expression of *Osx* (which encodes osterix)^{102,115}, *Col2a1* (which encodes collagen type II $\alpha 1$ chain)¹¹⁶ and *Sox9* (which encodes SRY-box 9)¹¹⁶ give rise to bone and bone marrow stromal cells that persist postnatally. However, many of these stromal cells are depleted by adulthood^{102,117}, and these markers do not seem to label SSCs in adult bone marrow^{102,115–117}. Neural crest-derived cells marked by *P0*-Cre (*P0*, also known as *Rplp0*, encodes protein 0), *Sox1*-Cre or *Wnt1*-Cre make a transient contribution to bone marrow stromal cells and CFU-F activity in early postnatal bone marrow, but these neural crest-derived cells are also depleted by adulthood

and are replaced by non-neural-crest-derived stromal cells^{89,118,119}. Consistent with this, *Nes*-CreER⁺ stromal cells contribute to osteogenesis in early postnatal bone marrow³², but make little or no contribution to CFU-F activity or to osteogenesis in adult bone marrow^{24,32}. Conversely, *LEPR*⁺ cells arise postnatally in the bone marrow; they make little contribution to the stromal cell population or to osteogenesis in early postnatal bone marrow, but they expand in number over time and are the main source of osteoblasts and adipocytes in adult bone marrow²⁴.

Consistent with these changes in the stroma, the cellular composition of the HSC niche also changes over time. The depletion of *Nes*-CreER⁺ cells using diphtheria toxin at embryonic day 15.5 impairs the colonization of fetal bone marrow by HSCs, and the conditional deletion of *Cxcl12* using *Nes*-CreER at postnatal day 7 depletes bone marrow HSCs⁸⁹. By contrast, the conditional deletion of *Cxcl12* or *Scf* using *Nes*-CreER in adult mice has no effect on HSC frequency or haematopoiesis^{17,78}. Consistent with this, *Nes*-CreER⁺ stromal cells are abundant in early postnatal bone marrow³² but very rare in adult bone marrow^{17,24}. *Nes*-CreER⁺ cells thus seem to be a component of the HSC niche in early postnatal, but not adult, bone marrow.

There are also changes in the bone marrow vasculature and bone marrow stroma during ageing that can be at least partially reversed by the activation of Notch signalling in endothelial cells⁹⁶ (FIG. 4). These results raise the possibility that some of the changes observed in HSCs during ageing reflect changes in the vasculature or the stromal composition of the niche. Understanding the differences between the early postnatal period, young adulthood and old adulthood will be an important focus for future studies.

Figure 4 | Changes in the bone marrow vasculature with age. Confocal images of metaphyseal and diaphysial portions of tibia taken from juvenile mice (parts **a** and **b**; 4 weeks of age), adult mice (parts **c** and **d**; 11 weeks of age) and ageing mice (parts **e** and **f**; 70 weeks of age), and stained with antibodies specific for CD31 (green) and endomucin (red). Note the age-related decline in the frequency of arterioles expressing high levels of both CD31 and endomucin (yellow), which are predominantly localized in the metaphysis and adjacent to the endosteum (labelled 'es' and indicated by white arrowheads in parts **b**, **d** and **f**)^{91,96}. These endosteal arterioles overlap with the transition zone vessels shown in FIG. 1. These vessels are located near osteoprogenitors, as illustrated schematically in parts **g** and **h**, in which dashed arrows indicate the direction of blood flow. By contrast, sinusoidal vessels, which express lower levels of CD31 and endomucin, remain stable in frequency and distribution during ageing. Reproduced with permission from REF. 96, Macmillan Publishers Limited.

The extramedullary niche

Whereas changes in the stromal composition and vascular structure of the niche may affect HSC function during ageing, more abrupt changes in the HSC microenvironment occur during times of haematopoietic stress when HSCs are mobilized and colonize facultative niches in extramedullary tissues. This may occur in the setting of pregnancy^{120,121}, anaemia, other haematological disorders or infection^{122–124}. The most common sites for extramedullary haematopoiesis (EMH) are the spleen and liver, but EMH can occur in almost any tissue¹²². The niche for EMH has been characterized in the spleen, where EMH and HSCs are sustained by perivascular niches that are associated with sinusoidal blood vessels in the red pulp^{10,120}. Conditional deletion studies show that splenic EMH depends on SCF synthesized by endothelial cells and transcription factor 21 (TCF21)-expressing perivascular stromal cells, as well as CXCL12 synthesized by a subset of TCF21⁺ stromal cells¹²⁰. This demonstrates that, like in the bone marrow, HSCs are mainly perisinusoidal in the spleen, and they depend on SCF and CXCL12 synthesized by endothelial cells and perivascular stromal cells. However, the niche cells

in the spleen express different markers from those expressed by the niche cells in the bone marrow: perivascular stromal cells are TCF21⁺ and LEPR⁻ in the spleen but TCF21⁻ and LEPR⁺ in the bone marrow¹²⁰.

This splenic EMH niche is necessary for the recovery of normal blood cell counts after various haematopoietic stresses in mice, including pregnancy, bleeding and myeloablation¹²⁰. In humans, EMH also seems to occur preferentially in the liver and spleen, and EMH in these tissues may also be necessary for recovery from haematopoietic stresses; patients who have EMH in other tissues have frequently undergone a prior splenectomy, and many of these patients depend on erythrocyte transfusions¹²⁵.

An important unresolved issue is the identity of the signals that induce EMH in response to haematopoietic stress. Some evidence suggests that HSCs migrate to extramedullary tissues as a result of a hypoxia-inducible factor 1 (HIF1)-mediated increase in CXCL12 expression in endothelial cells in response to hypoxia¹²⁶, as can occur in the heart after myocardial infarction¹²⁷. However, SCF⁺ endothelial cells and CXCL12⁺ perivascular stromal cells are always present in the adult spleen, even in the absence of EMH, and the levels of *Scf* and *Cxcl12* expressed by individual stromal cells do not seem to increase following the induction of EMH¹²⁰. However, endothelial cells and TCF21⁺ perivascular stromal cells enter the cell cycle following the induction of EMH, and they expand in number as spleen cellularity increases¹²⁰. Macrophages also promote the retention of HSCs and EMH in the spleen¹²⁸. Thus, like the HSC niche in bone marrow, the EMH niche is complex and involves multiple cell types.

The expression of granulocyte colony-stimulating factor (G-CSF) is upregulated in monocytes and macrophages, as well as in various stromal cell populations in the bone marrow¹²⁹, as part of the response to sepsis and other inflammatory conditions¹²⁴. The mechanism of G-CSF induction probably varies depending on the type of stress. However, during systemic bacterial infections, the ability to sense bacterial components (lipopolysaccharide and peptidoglycan) through Toll-like receptor activation is required for G-CSF induction and for the extramedullary accumulation of HSCs¹²⁴. Increased G-CSF expression downregulates CXCL12 expression in the bone marrow, leading to HSC mobilization and bone marrow hypocellularity^{124,130}. EMH typically involves myelopoiesis, erythropoiesis and thrombopoiesis, but the nature of the inducing stress determines which of these processes are involved. Stimulation with G-CSF in the setting of bacterial sepsis results mainly in myelopoiesis¹²⁴, whereas in pregnancy and severe anaemia, splenic EMH is shifted towards erythropoiesis¹²¹.

AMD3100

Also known as plerixafor.

A CXC-chemokine receptor 4 (CXCR4) antagonist that is used to promote the mobilization of haematopoietic stem cells by reducing CXC-chemokine ligand 12 (CXCL12)–CXCR4 signalling.

Therapeutic implications

Insights gained from studying the HSC niche have already had an impact on autologous HSC transplants, which are an effective treatment strategy for patients with multiple myeloma, certain lymphomas and some diseases that can be treated with gene therapies. Owing

to the potential for involvement of the bone marrow in these malignancies, HSCs are often mobilized to the peripheral blood, isolated and then re-infused into patients following ablative chemotherapy and/or radiation¹³¹. However, standard mobilization regimens involving G-CSF may not mobilize a sufficient number of CD34⁺ HSCs for transplantation, particularly in older patients or in those who have undergone prior therapies. AMD3100, a small-molecule antagonist of CXCR4, has recently been approved by the US Food and Drug Administration (FDA) for use in this setting. Significantly more patients achieved adequate HSC mobilization when treated with AMD3100 and G-CSF than when treated with G-CSF alone¹³¹. Targeting additional niche factors may further increase the efficiency of HSC mobilization and provide a therapeutic benefit, particularly as transplanting higher doses of HSCs is associated with a faster recovery of blood cell counts, shorter periods of hospitalization and reduced transplant-related mortality¹³².

The development and progression of primary bone marrow disorders — such as myeloproliferative neoplasms, myelodysplastic syndrome and acute myeloid leukaemia — are also affected by the interaction between malignant cells and the bone marrow microenvironment. Leukaemia cells remodel the HSC niche to promote tumour growth, as well as to inhibit residual haematopoiesis¹³³. Leukaemia cells may promote EMH by altering the expression of niche factors; indeed, they have been shown to reduce the expression of CXCL12 in bone marrow stromal cells^{134,135}. Increased bone marrow vascularization is common in these settings, and may correlate with more advanced disease, increased aggressiveness of the tumour cells and faster progression to fibrosis¹³⁶. Altered sympathetic nerve signalling in the bone marrow, either as a result of the leukaemia itself or as a consequence of chemotherapy, seems to create a more favourable environment for leukaemia growth^{106,135,137}. Engineered mutations in bone marrow stromal cells can non-cell-autonomously promote the generation of haematopoietic neoplasms in mice^{138–141}. This is not likely to be a mechanism of leukaemogenesis in humans, in whom mutations would stochastically influence only small numbers of stromal cells. Nonetheless, it provides proof of principle that manipulation of the niche can have major non-cell-autonomous effects on neoplastic cells. Consistent with this, certain T cell acute lymphoblastic leukaemia cells cannot engraft after transplantation when *Cxcl12* is deleted from endothelial cells¹⁴².

As supportive care has improved, bone marrow transplants and other forms of HSC transplantation have become safer and more widely used. For non-life-threatening conditions such as sickle cell anaemia, HSC transplants were rarely carried out 20 years ago, despite being potentially curative¹⁴³. However, improvements in supportive care have reduced the risks of this procedure, and so transplants are increasingly being carried out using either allogeneic HSCs or gene-corrected autologous HSCs¹⁴⁴. A better understanding of the HSC niche offers the opportunity to continue to improve supportive care and to identify

Box 2 | Important questions for future research

- How does the niche change after myeloablation or irradiation? What mechanisms regulate the regeneration of haematopoiesis and haematopoietic stem cell (HSC) niches after injury? To address these questions, it will be necessary to systematically image the expression patterns of stem cell factor (SCF) and CXCL12 in haematopoietic tissues after injury, and to conditionally delete these factors from candidate niche cells to functionally identify their key sources during regeneration. Once the relevant niche cells have been identified, it will be interesting to identify new mechanisms by which they promote haematopoietic regeneration.
- Are there undiscovered growth factors that regulate HSC maintenance or haematopoiesis? RNA sequencing of niche cells has the potential to identify such factors. Gene targeting approaches could then be used to test whether the new factors are required for specific aspects of HSC function or haematopoiesis.
- How much cross-regulation is there among cell types in the bone marrow? What is the proximity of niche cells to each other, and what might this mean for crosstalk with or co-regulation by various niche components? The conditional deletion of specific niche factors from specific cell types would make it possible to determine whether they have non-cell-autonomous effects on other cells in the bone marrow.
- Why are there 100 times fewer HSCs than stromal cells that express high levels of SCF and CXCL12 in the bone marrow? Is the HSC niche truly space-limited? Is it limited by competition from other primitive progenitors (that also depend on SCF and CXCL12), or is only a subset of niche cells competent to sustain HSCs at any one time?
- What are the mechanisms that regulate the activation of extramedullary haematopoiesis (EMH)? The identification of the cells that create the EMH niche in the spleen will make it possible to study new mechanisms by which they regulate EMH.
- Are there different perivascular domains that serve as niches for different types of haematopoietic progenitor? It will be important to identify additional markers that resolve functionally distinct subpopulations of mesenchymal stromal cells in the bone marrow.
- To what extent are HSCs and niche cells regulated by long-range signals that integrate HSC function with systemic physiological changes, such as pregnancy and nutrition?

new approaches that can promote haematopoietic regeneration after transplantation or chemotherapy, or in the context of benign haematopoietic diseases.

Conclusions

Advances in imaging and genetic tools have rapidly increased our understanding of HSC niches in the past 5 years, although there are many questions still to be answered (BOX 2). Dividing and non-dividing HSCs are maintained in perivascular niches. They are mainly associated with sinusoidal blood vessels in the adult bone marrow and spleen, but a subset of HSCs is most closely associated with arterioles. The peri-arteriolar and perisinusoidal microenvironments differ in terms of the capacity of HSCs to intravasate into the circulation and in terms of their exposure to blood

plasma components. Endothelial cells and LEPR⁺/CAR perivascular stromal cells are the main sources of factors (such as CXCL12 and SCF) that are known to be required for HSC maintenance in normal, young-adult bone marrow. However, several other bone marrow cell types — including megakaryocytes, monocytes and macrophages, neurons (specifically, nerve fibres) and Schwann cells — directly or indirectly regulate HSCs or niche function through other mechanisms. The vascular and stromal compositions of the bone marrow change during ageing. EMH in the spleen depends on a perivascular niche that is associated with sinusoids in the red pulp, in which endothelial cells and TCF21⁺ stromal cells are the main sources of SCF and CXCL12. This niche is necessary for the recovery of haematopoiesis following stresses such as blood loss.

1. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. *Cell* **132**, 598–611 (2008).
2. Sun, J. *et al.* Clonal dynamics of native haematopoiesis. *Nature* **514**, 322–327 (2014).
3. Busch, K. *et al.* Fundamental properties of unperturbed haematopoiesis from stem cells *in vivo*. *Nature* **518**, 542–546 (2015).
4. Naik, S. H. *et al.* Diverse and heritable lineage imprinting of early haematopoietic progenitors. *Nature* **496**, 229–232 (2013).
5. Sawai, C. M. *et al.* Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. *Immunity* **45**, 597–609 (2016).
6. Walter, D. *et al.* Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. *Nature* **520**, 549–552 (2015).
7. Jenq, R. R. & van den Brink, M. R. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. *Nat. Rev. Cancer* **10**, 213–221 (2010).
8. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. *Blood Cells* **4**, 7–25 (1978).
9. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. *Nature* **505**, 327–334 (2014).
10. Kiel, M. J. *et al.* SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. *Cell* **121**, 1109–1121 (2005).
11. Nombela-Arrieta, C. *et al.* Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. *Nat. Cell Biol.* **15**, 533–543 (2013).
12. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. *Immunity* **25**, 977–988 (2006).
13. Kunisaki, Y. *et al.* Arteriolar niches maintain haematopoietic stem cell quiescence. *Nature* **502**, 637–643 (2013). **This paper uses confocal imaging and spatial modelling to show that although most HSCs are closest to sinusoidal blood vessels, some HSCs are more closely associated with arterioles.**
14. Acar, M. *et al.* Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. *Nature* **526**, 126–130 (2015).
15. Chen, J. Y. *et al.* *Hoxb5* marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. *Nature* **530**, 223–227 (2016). **This study identifies a new HSC marker, *Hoxb5*, the expression of which is highly restricted among haematopoietic cells to HSCs and enables the imaging of HSC localization in the bone marrow.**
16. Barker, J. E. *Sl/S⁺* hematopoietic progenitors are deficient *in situ*. *Exp. Hematol.* **22**, 174–177 (1994).
17. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. *Nature* **481**, 457–462 (2012). **This study systematically images the *Scf* expression pattern in the bone marrow then conditionally deletes *Scf* from candidate niche cells to show that HSCs depend on *Scf* synthesized by endothelial cells and LEPR⁺ stromal cells.**
18. Ito, K. *et al.* Self-renewal of a purified Tie2⁺ hematopoietic stem cell population relies on mitochondrial clearance. *Science* **354**, 1156–1160 (2016).

19. Gazit, R. *et al.* *Fgd5* identifies hematopoietic stem cells in the murine bone marrow. *J. Exp. Med.* **211**, 1315–1331 (2014).

20. Tajima, Y. *et al.* Continuous cell supply from Krt7-expressing hematopoietic stem cells during normal hematopoiesis revealed by targeted *in vivo* gene transfer method. *Sci. Rep.* **7**, 40684 (2017).

21. Visnjic, D. *et al.* Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. *Blood* **103**, 3258–3264 (2004).

22. Zhu, J. *et al.* Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. *Blood* **109**, 3706–3712 (2007).

23. Omatsu, Y. *et al.* The essential functions of adipose-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. *Immunity* **33**, 387–399 (2010). **In this study, short-term cell ablation provides evidence that CAR cells are not only an important source of niche factors required for the maintenance of HSCs, but also an important progenitor population for adipocytes and osteoblasts in the bone marrow, which suggests that SSCs are among the stromal cells that synthesize HSC niche factors.**

24. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. *Cell Stem Cell* **15**, 154–168 (2014).

25. Mendez-Ferrer, S. *et al.* Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. *Nature* **466**, 829–834 (2010). **This study presents evidence that perivascular Nes-GFP⁺ cells are an important source of SCF and CXCL12 in the bone marrow, as well as CFU-F activity, which suggests that SSCs are among the stromal cells that synthesize HSC niche factors.**

26. Bruns, I. *et al.* Megakaryocytes regulate hematopoietic stem cell quiescence through CXL4 secretion. *Nat. Med.* **20**, 1315–1320 (2014).

27. Zhao, M. *et al.* Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. *Nat. Med.* **20**, 1321–1326 (2014).

28. Chow, A. *et al.* Bone marrow CD169⁺ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. *J. Exp. Med.* **208**, 261–271 (2011).

29. Winkler, I. G. *et al.* Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. *Blood* **116**, 4815–4828 (2010).

30. Hur, J. *et al.* CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. *Cell Stem Cell* **18**, 508–521 (2016).

31. Bowers, M. *et al.* Osteoblast ablation reduces normal long-term hematopoietic stem cell self-renewal but accelerates leukemia development. *Blood* **125**, 2678–2688 (2015).

32. Ono, N. *et al.* Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. *Dev. Cell* **29**, 330–339 (2014).

33. Ogawa, M. *et al.* Expression and function of c-kit in hematopoietic progenitor cells. *J. Exp. Med.* **174**, 63–71 (1991).

34. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. *Science* **318**, 1296–1299 (2007).

35. Nagasawa, T. *et al.* Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXCR chemokine PBSF/SDF-1. *Nature* **382**, 635–638 (1996).

36. Petit, I. *et al.* G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. *Nat. Immunol.* **3**, 687–694 (2002).

37. Ara, T. *et al.* Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. *Immunity* **19**, 257–267 (2003).

38. Kimura, S., Roberts, A. W., Metcalf, D. & Alexander, W. S. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. *Proc. Natl. Acad. Sci. USA* **95**, 1195–1200 (1998).

39. Qian, H. *et al.* Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. *Cell Stem Cell* **1**, 671–684 (2007).

40. Yoshihara, H. *et al.* Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. *Cell Stem Cell* **1**, 685–697 (2007).

41. Sitnicka, E. *et al.* The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. *Blood* **87**, 4998–5005 (1996).

42. Williams, D. E. *et al.* Identification of a ligand for the c-kit proto-oncogene. *Cell* **63**, 167–174 (1990).

43. Copeland, N. G. *et al.* Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. *Cell* **63**, 175–183 (1990).

44. Flanagan, J. G. & Leder, P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. *Cell* **63**, 185–194 (1990).

45. Zsebo, K. M. *et al.* Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. *Cell* **63**, 195–201 (1990).

46. Martin, F. H. *et al.* Primary structure and functional expression of rat and human stem cell factor DNAs. *Cell* **63**, 203–211 (1990).

47. Zsebo, K. M. *et al.* Stem cell factor is encoded at the *Sl* locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. *Cell* **63**, 213–224 (1990).

48. Huang, E. *et al.* The hematopoietic growth factor KL is encoded by the *Sl* locus and is the ligand of the c-kit receptor, the gene product of the *W* locus. *Cell* **63**, 225–233 (1990).

49. Anderson, D. M. *et al.* Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. *Cell* **63**, 235–243 (1990).

50. Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. *Proc. Natl. Acad. Sci. USA* **89**, 1502–1506 (1992).

51. Fleischman, R. A. & Mintz, B. Prevention of genetic anemias in mice by microinjection of normal hematopoietic stem cells into the fetal placenta. *Proc. Natl. Acad. Sci. USA* **76**, 5736–5740 (1979).

52. Barker, J. E. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. *Exp. Hematol.* **25**, 542–547 (1997).

53. Wolf, N. S. Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation. *Cell Tissue Kinet.* **11**, 335–345 (1978).

54. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in hematopoiesis and in cerebellar development. *Nature* **393**, 595–599 (1998).

55. McDermott, D. H. *et al.* Chromothriptic cure of WHIM syndrome. *Cell* **160**, 686–699 (2015).

56. Lai, C. Y. *et al.* Stage-specific roles for CXCR4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation. *Stem Cells* **32**, 1929–1942 (2014).

57. Tzeng, Y. S. *et al.* Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. *Blood* **117**, 429–439 (2011).

58. Nagasawa, T., Kikutani, H. & Kishimoto, T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. *Proc. Natl. Acad. Sci. USA* **91**, 2305–2309 (1994).

59. Nie, Y., Han, Y. C. & Zou, Y. R. CXCR4 is required for the quiescence of primitive hematopoietic cells. *J. Exp. Med.* **205**, 777–783 (2008).

60. de Sauvage, F. J. *et al.* Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. *Nature* **369**, 533–538 (1994).

61. Kaushansky, K. *et al.* Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. *Proc. Natl. Acad. Sci. USA* **92**, 3234–3238 (1995).

62. Kaushansky, K. *et al.* Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. *Nature* **369**, 568–571 (1994).

63. Sungaran, R., Markovic, B. & Chong, B. H. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using *in situ* hybridization. *Blood* **89**, 101–107 (1997).

64. Goncalves, K. A. *et al.* Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. *Cell* **166**, 894–906 (2016).

65. Zheng, J., Huynh, H., Umikawa, M., Silvany, R. & Zhang, C. C. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. *Blood* **117**, 470–479 (2011).

66. Zhao, M. *et al.* FGF signaling facilitates postinjury recovery of mouse hematopoietic system. *Blood* **120**, 1831–1842 (2012).

67. Itkin, T. *et al.* FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. *Blood* **120**, 1843–1855 (2012).

68. Bernad, A. *et al.* Interleukin-6 is required *in vivo* for the regulation of stem cells and committed progenitors of the hematopoietic system. *Immunity* **1**, 725–731 (1994).

69. Varnum-Finney, B. *et al.* Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. *J. Clin. Invest.* **121**, 1207–1216 (2011).

70. Hemborg, H. A. *et al.* Pleiotrophin mediates hematopoietic regeneration via activation of RAS. *J. Clin. Invest.* **124**, 4753–4758 (2014).

71. Silberstein, L. *et al.* Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. *Cell Stem Cell* **19**, 530–543 (2016).

72. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. *Proc. Natl. Acad. Sci. USA* **104**, 5431–5436 (2007).

73. Spencer, J. A. *et al.* Direct measurement of local oxygen concentration in the bone marrow of live animals. *Nature* **508**, 269–273 (2014). **In this study, the *in vivo* measurement of oxygen tension within the bone marrow of live mice shows that the most hypoxic regions in the bone marrow are perisinusoidal.**

74. Taya, Y. *et al.* Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. *Science* **354**, 1152–1155 (2016).

75. Dar, A. *et al.* Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. *Nat. Immunol.* **6**, 1038–1046 (2005).

76. Sipkins, D. A. *et al.* *In vivo* imaging of specialized bone marrow endothelial microdomains for tumour engraftment. *Nature* **435**, 969–973 (2005).

77. Katayama, Y. *et al.* Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. *Cell* **124**, 407–421 (2006).

78. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. *Nature* **495**, 231–235 (2013). **Similarly to reference 84, this study uses the conditional deletion of *Cxcl12* from candidate niche cells to show that HSCs depend on CXCL12 synthesized by endothelial cells and LEPR⁺ stromal cells, whereas a subset of lymphoid progenitors depend on CXCL12 synthesized by osteoblasts.**

79. Asada, N. *et al.* Differential cytokine contributions of perivascular haematopoietic stem cell niches. *Nat. Cell Biol.* **19**, 214–223 (2017).

80. Omatsu, Y., Seike, M., Sugiyama, T., Kume, T. & Nagasawa, T. Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. *Nature* **508**, 536–540 (2014).

81. Birbrair, A. & Frenette, P. S. Niche heterogeneity in the bone marrow. *Ann. NY Acad. Sci.* **1370**, 82–96 (2016).

82. Sun, M. Y., Yetman, M. J., Lee, T. C., Chen, Y. & Jankowsky, J. L. Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreER^{T2} lines. *J. Comp. Neurol.* **522**, 1191–1208 (2014).

83. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. *Cell Stem Cell* **13**, 102–116 (2013).

84. Greenbaum, A. *et al.* CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. *Nature* **495**, 227–230 (2013). **Similarly to reference 78, this study uses the conditional deletion of *Cxcl12* from candidate niche cells to show that HSCs depend on CXCL12 synthesized by endothelial cells and PRRX1⁺ stromal cells (which include LEPR⁺ cells), whereas a subset of lymphoid progenitors depend on CXCL12 synthesized by osteolineage progenitors.**

85. Tokuyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. *Immunity* **20**, 707–718 (2004).

86. Cordeiro Gomes, A. *et al.* Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. *Immunity* **45**, 1219–1231 (2016).

87. Ponomaryov, T. *et al.* Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. *J. Clin. Invest.* **106**, 1331–1339 (2000).

88. Jung, Y. *et al.* Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. *Bone* **38**, 497–508 (2006).

89. Isern, J. *et al.* The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. *eLife* **3**, e03696 (2014).

90. Itkin, T. *et al.* Distinct bone marrow blood vessels differentially regulate haematopoiesis. *Nature* **532**, 323–328 (2016).

This paper provides evidence that the perisinusoidal environment is distinct from the periarteriolar environment in the bone marrow because sinusoids are leaky, which allows HSCs to migrate into the circulation and plasma components to leak out.

91. Kusumbe, A. P. *et al.* Age-dependent modulation of vascular niches for haematopoietic stem cells. *Nature* **532**, 380–384 (2016).

This study shows that the vasculature in the bone marrow changes with age in a manner that has consequences for the HSC niche and that can be modulated by Notch signalling in endothelial cells.

92. Becker, R. P. & De Bruyn, P. P. The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation: a scanning electron microscopic investigation. *Am. J. Anat.* **145**, 183–205 (1976).

93. Tavassoli, M. & Aoki, M. Localization of megakaryocytes in the bone marrow. *Blood Cells* **15**, 3–14 (1989).

94. Wilson, A. *et al.* Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. *Cell* **135**, 1118–1129 (2008).

95. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. *Science* **294**, 1933–1936 (2001).

96. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. *Nature* **507**, 323–328 (2014).

97. Hooper, A. T. *et al.* Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. *Cell Stem Cell* **4**, 263–274 (2009).

98. Bianco, P. & Robey, P. G. Skeletal stem cells. *Development* **142**, 1023–1027 (2015).

99. Chan, C. K. *et al.* Endochondral ossification is required for haematopoietic stem-cell niche formation. *Nature* **457**, 490–494 (2009).

100. Sacchetti, B. *et al.* Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. *Cell* **131**, 324–336 (2007).

101. Zhou, B. O., Ding, L. & Morrison, S. J. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. *eLife* **4**, e05521 (2015).

102. Mizoguchi, T. *et al.* Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. *Dev. Cell* **29**, 340–349 (2014).

103. Chan, C. K. *et al.* Identification and specification of the mouse skeletal stem cell. *Cell* **160**, 285–298 (2015).

104. Worthley, D. L. *et al.* Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. *Cell* **160**, 269–284 (2015).

105. Yamazaki, S. *et al.* TGF- β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. *Blood* **113**, 1250–1256 (2009).

106. Lucas, D. *et al.* Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. *Nat. Med.* **19**, 695–703 (2013).

This study shows that nerve fibres are required for the regeneration of HSCs after chemotherapy, despite not being required for HSC maintenance in normal steady-state bone marrow.

107. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. *Nature* **452**, 442–447 (2008).

108. Casanova-Acebes, M. *et al.* Rhythmic modulation of the hematopoietic niche through neutrophil clearance. *Cell* **153**, 1025–1035 (2013).

109. Yamazaki, S. *et al.* Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. *Cell* **147**, 1146–1158 (2011).

110. Yamazaki, K. & Allen, T. D. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the "neuro-reticular complex". *Am. J. Anat.* **187**, 261–276 (1990).

111. Ludin, A. *et al.* Monocytes-macrophages that express α -smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. *Nat. Immunol.* **13**, 1072–1082 (2012).

112. Adams, G. B. *et al.* Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. *Nature* **439**, 599–603 (2006).

113. Kollet, O. *et al.* Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. *Nat. Med.* **12**, 657–664 (2006).

114. Mansour, A. *et al.* Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. *J. Exp. Med.* **209**, 537–549 (2012).

115. Maes, C. *et al.* Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. *Dev. Cell* **19**, 329–344 (2010).

116. Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. *Nat. Cell Biol.* **16**, 1157–1167 (2014).

117. Park, D. *et al.* Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. *Cell Stem Cell* **10**, 259–272 (2012).

118. Komada, Y. *et al.* Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. *PLoS ONE* **7**, e46436 (2012).

119. Takashima, Y. *et al.* Neuroepithelial cells supply an initial transient wave of MSC differentiation. *Cell* **129**, 1377–1388 (2007).

120. Inra, C. N. *et al.* A perisinusoidal niche for extramedullary haematopoiesis in the spleen. *Nature* **527**, 466–471 (2015).

This paper shows that the niche for EMH in the spleen is required for the regeneration of blood cells after injury, and depends on SCF and CXCL12 synthesized by endothelial cells and TCF21⁺ stromal cells that are associated with sinusoidal blood vessels in the red pulp.

121. Nakada, D. *et al.* Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. *Nature* **505**, 555–558 (2014).

122. O'Malley, D. P. Benign extramedullary myeloid proliferations. *Mod. Pathol.* **20**, 405–415 (2007).

123. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN- γ in response to chronic infection. *Nature* **465**, 793–797 (2010).

124. Burberry, A. *et al.* Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signalling. *Cell Host Microbe* **15**, 779–791 (2014).

125. Koch, C. A., Li, C. Y., Mesa, R. A. & Tefferi, A. Nonhepatosplenial extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. *Mayo Clin. Proc.* **78**, 1223–1233 (2003).

126. Ceradini, D. J. *et al.* Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. *Nat. Med.* **10**, 858–864 (2004).

127. Hill, D. A. & Swanson, P. E. Myocardial extramedullary hematopoiesis: a clinicopathologic study. *Mod. Pathol.* **13**, 779–787 (2000).

128. Dutta, P. *et al.* Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. *J. Exp. Med.* **212**, 497–512 (2015).

129. Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. *Blood* **78**, 2791–2808 (1991).

130. Johns, J. L. & Borjesson, D. L. Downregulation of CXCL12 signalling and altered hematopoietic stem and progenitor cell trafficking in a murine model of acute *Anaplasma phagocytophilum* infection. *Innate Immun.* **18**, 418–428 (2012).

131. Mohty, M. *et al.* The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. *Leukemia* **25**, 1–6 (2011).

132. Bittencourt, H. *et al.* Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. *Blood* **99**, 2726–2733 (2002).

133. Schepers, K. *et al.* Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. *Cell Stem Cell* **13**, 285–299 (2013).

134. Zhang, B. *et al.* Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. *Cancer Cell* **21**, 577–592 (2012).

135. Arranz, L. *et al.* Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. *Nature* **512**, 78–81 (2014).

136. Pruner, G. *et al.* Angiogenesis in myelodysplastic syndromes. *Br. J. Cancer* **81**, 1398–1401 (1999).

137. Hanoun, M. *et al.* Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. *Cell Stem Cell* **15**, 365–375 (2014).

138. Raaijmakers, M. H. *et al.* Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. *Nature* **464**, 852–857 (2010).

139. Wang, L. *et al.* Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF- κ B-dependent manner. *Cell Stem Cell* **15**, 51–65 (2014).

140. Dong, L. *et al.* Leukaemogenic effects of *Ptpn11* activating mutations in the stem cell microenvironment. *Nature* **539**, 304–308 (2016).

141. Zambetti, N. A. *et al.* Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. *Cell Stem Cell* **19**, 613–627 (2016).

142. Pitt, L. A. *et al.* CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. *Cancer Cell* **27**, 755–768 (2015).

143. Walters, M. C. *et al.* Bone marrow transplantation for sickle cell disease. *N. Engl. J. Med.* **335**, 369–376 (1996).

144. Hoban, M. D., Orkin, S. H. & Bauer, D. E. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. *Blood* **127**, 839–848 (2016).

145. Bertrand, J. Y. *et al.* Haematopoietic stem cells derive directly from aortic endothelium during development. *Nature* **464**, 108–111 (2010).

146. Zovein, A. C. *et al.* Fate tracing reveals the endothelial origin of hematopoietic stem cells. *Cell Stem Cell* **3**, 625–636 (2008).

147. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. *Nature* **457**, 887–891 (2009).

148. Kissel, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. *Nature* **464**, 112–115 (2010).

149. de Brujin, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. *EMBO J.* **19**, 2465–2474 (2000).

150. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. *Cell* **86**, 897–906 (1996).

151. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. *Dev. Cell* **8**, 365–375 (2005).

152. Rhodes, K. E. *et al.* The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. *Cell Stem Cell* **2**, 252–263 (2008).

153. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. *Development* **133**, 3733–3744 (2006).

154. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. *Proc. Natl. Acad. Sci. USA* **92**, 10302–10306 (1995).

155. Khan, J. A. *et al.* Fetal liver hematopoietic stem cell niches associate with portal vessels. *Science* **351**, 176–180 (2016).

156. Tamplin, O. J. *et al.* Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. *Cell* **160**, 241–252 (2015).

This study uses live imaging of HSC engraftment in the caudal haematopoietic tissue of zebrafish to show that HSCs remodel the perivascular niche and that this involves dynamic interactions with endothelial cells and mesenchymal stromal cells.

157. Kissel, K. *et al.* Live imaging of emerging hematopoietic stem cells and early thymus colonization. *Blood* **111**, 1147–1156 (2008).

158. Bertrand, J. Y., Ciszon, J. L., Stachura, D. L. & Traver, D. Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. *Blood* **115**, 2777–2783 (2010).

159. Travnickova, J. *et al.* Primitive macrophages control HSPC mobilization and definitive haematopoiesis. *Nat. Commun.* **6**, 6227 (2015).

160. Avagyan, S. & Zon, L. I. Fish to learn: insights into blood development and blood disorders from zebrafish hematopoiesis. *Hum. Gene Ther.* **27**, 287–294 (2016).

161. Mahony, C. B., Fish, R. J., Pasche, C. & Bertrand, J. Y. *tfec* controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. *Blood* **128**, 1336–1345 (2016).

162. Naveiras, O. *et al.* Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. *Nature* **460**, 259–263 (2009).

163. Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. *Cell Stem Cell* **18**, 782–796 (2016).

164. Corash, L., Levin, J., Mok, Y., Baker, G. & McDowell, J. Measurement of megakaryocyte frequency and ploidy distribution in unfractionated murine bone marrow. *Exp. Hematol.* **17**, 278–286 (1989).

165. Chow, A. *et al.* CD169⁺ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. *Nat. Med.* **19**, 429–436 (2013).

166. Hettinger, J. *et al.* Origin of monocytes and macrophages in a committed progenitor. *Nat. Immunol.* **14**, 821–830 (2013).

167. Calvo, W. The innervation of the bone marrow in laboratory animals. *Am. J. Anat.* **123**, 315–328 (1968).

168. Logan, M. *et al.* Expression of Cre recombinase in the developing mouse limb bud driven by a *Prx1* enhancer. *Genesis* **33**, 77–80 (2002).

169. Fujisaki, J. *et al.* *In vivo* imaging of T_{reg} cells providing immune privilege to the haematopoietic stem-cell niche. *Nature* **474**, 216–219 (2011).

170. Zou, L. *et al.* Bone marrow is a reservoir for CD4⁺CD25⁺ regulatory T cells that traffic through CXCL12/CXCR4 signals. *Cancer Res.* **64**, 8451–8455 (2004).

171. Singbrant, S. *et al.* Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. *Blood* **115**, 4689–4698 (2010).

172. Crisan, M. *et al.* BMP signalling differentially regulates distinct haematopoietic stem cell types. *Nat. Commun.* **6**, 8040 (2015).

173. Goldman, D. C. *et al.* BMP4 regulates the hematopoietic stem cell niche. *Blood* **114**, 4393–4401 (2009).

174. Christopher, M. J., Rao, M., Liu, F., Woloszynek, J. R. & Link, D. C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. *J. Exp. Med.* **208**, 251–260 (2011).

175. Butler, J. M. *et al.* Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. *Cell Stem Cell* **6**, 251–264 (2010).

176. Stier, S. *et al.* Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. *J. Exp. Med.* **201**, 1781–1791 (2005).

177. Smith-Berdan, S., Nguyen, A., Hong, M. A. & Forsberg, E. C. ROBO4-mediated vascular integrity regulates the directionality of hematopoietic stem cell trafficking. *Stem Cell Rep.* **4**, 255–268 (2015).

178. Smith-Berdan, S. *et al.* Robo4 cooperates with Cxcr4 to specify hematopoietic stem cell localization to bone marrow niches. *Cell Stem Cell* **8**, 72–83 (2011).

179. Waterstrat, A., Rector, K., Geiger, H. & Liang, Y. Quantitative trait gene *Slit2* positively regulates murine hematopoietic stem cell numbers. *Sci. Rep.* **6**, 31412 (2016).

180. Koch, U. *et al.* Simultaneous loss of β - and γ -catenin does not perturb hematopoiesis or lymphopoiesis. *Blood* **111**, 160–164 (2008).

181. Cobas, M. *et al.* β -Catenin is dispensable for hematopoiesis and lymphopoiesis. *J. Exp. Med.* **199**, 221–229 (2004).

182. Sugimura, R. *et al.* Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. *Cell* **150**, 351–365 (2012).

183. Cheng, C. W. *et al.* Prolonged fasting reduces IGF-1/ PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. *Cell Stem Cell* **14**, 810–823 (2014).

184. Yu, V. W. *et al.* Distinctive mesenchymal–mesenchymal cell pairings govern B cell differentiation in the bone marrow. *Stem Cell Rep.* **7**, 220–235 (2016).

Acknowledgements

The authors apologize to those whose work could not be included owing to space limitations. S.J.M. is a Howard Hughes Medical Institute Investigator; the Mary McDermott Cook Chair in Pediatric Genetics; the Kathryn and Gene Bishop Distinguished Chair in Pediatric Research; and the Director of the Hamon Laboratory for Stem Cells and Cancer at the University of Texas Southwestern Medical Center, USA. G.M.C. was supported by the University of Texas Southwestern Medical Center Physician Scientist Training Program. E.J. is a postdoctoral fellow of the Damon Runyon Cancer Research Foundation. This work was supported by the Cancer Prevention and Research Institute of Texas, USA, and by the US National Institutes of Health (grants R37 AG024945 and R01 DK100848).

Competing interests statement

The authors declare no competing interests.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ONLINE CORRESPONDENCE

Nature Reviews Immunology publishes items of correspondence online. Such contributions are published at the discretion of the Editors and can be subject to peer review. Correspondence should be no longer than 500 words with up to 15 references and should represent a scholarly attempt to comment on a specific Review or Perspective article that has been published in the journal. To view correspondence, please go to our homepage at: <http://www.nature.com/nri> and follow the link from the current table of contents. To cite correspondence, please use its doi number.

The following correspondence has recently been published:

The pros and cons of dying tumour cells in adaptive immune responses

Xiaochen Wang, Xiao-Jie Lu and Beicheng Sun

doi:10.1038/nri.2017.87

This correspondence relates to the article:

Dying cells actively regulate adaptive immune responses

Nader Yatim, Sean Cullen and Matthew L. Albert

Nat. Rev. Immunol. **17**, 262–275 (2017)

The following correspondence has recently been published:

The dichotomy of T helper 17 cells in cancer

Lekh N. Dahal

doi:10.1038/nri.2017.93

This correspondence relates to the article:

The dichotomous nature of T helper 17 cells

Brigitta Stockinger and Sara Omenetti

Nat. Rev. Immunol. **17**, 535–544 (2017)