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Abstract

Aging is associated with dramatic changes to DNA methylation (DNAm), although the
causes and consequences of such alterations are unknown. Our ability to experimen-
tally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability
to study and manipulate these changes using in vitro models. However, it remains
unclear whether the changes elicited by cells in culture can serve as a model of what
is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic
fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced rep-
resentation bisulfite sequencing. By developing a measure that tracked cellular aging
in vitro, we tested whether it tracked physiological aging in various mouse tissues
and whether anti-aging interventions modulate this measure. Our measure, termed
CultureAGE, was shown to strongly increase with age when examined in multiple
tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the
measure was not a marker of cellular senescence, suggesting that it reflects a distinct
yet progressive cellular aging phenomena that can be induced in vitro. Furthermore,
we demonstrated slower epigenetic aging in animals undergoing caloric restriction
and a resetting of our measure in lung and kidney fibroblasts when re-programmed to
iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG)
factors as potentially important chromatin regulators in translational culture aging
phenotypes. Overall, this study supports the concept that physiologically relevant
aging changes can be induced in vitro and used to uncover mechanistic insights into

epigenetic aging.
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1 | INTRODUCTION

Aging is characterized by a progressive decline in cell, tissue, and
organ integrity that manifests as age-related diseases and ultimately
death (Campisi et al., 2019). Telomere attrition, cellular senescence,
DNA damage, stem cell exhaustion, and epigenetic modifications
represent just a few molecular and cellular features of the aging
process (Blasco, 2007; Oh et al., 2014; Tchkonia et al., 2010). While
these hallmarks have been extensively investigated, their interac-
tions, causes, and the resulting emergence that leads to the failure
of the organism is not well characterized. Epigenetic alterations in
aging—specifically alterations in DNA methylation (DNAm)—is a
clear example of a hallmark which has been widely studied but lacks
a conceptual mechanistic framework linking its causes and conse-
quences to other hallmarks or physiological manifestations with
aging.

DNA methylation refers to the addition of a methyl group (CH3)
to a CpG dinucleotide (5'—C—phosphate—G—3’). In most cases,
DNAm is associated with transcriptional repression via its effect on
chromatin accessibility and is thought to control a number of cellu-
lar properties, including differentiation, replication, X-inactivation,
stress response, and genomic imprinting (Ferry et al., 2017; Izzo
et al., 2020; Li et al., 1993; Riggs, 1975). Initially, de novo methyl-
transferases establish methylation patterns that are necessary for
organismal development (Hata et al., 2002). These patterns are then
modulated by maintenance methyltransferases over the course of
the lifespan (Fuks et al., 2000). Subtle changes in DNAm can dra-
matically alter promoter function and distal regulatory elements
(Aran et al., 2013). Changes in DNAm with aging were first reported
more than three decades ago and now occupy a major field in aging
research (Mays-Hoopes, 1989). These changes paint a picture char-
acterized by a gain of DNAm at gene promotors and loss of global
DNAm, representing trends toward hypomethylation in intergenic
regions associated with dispersed retrotransposons, heterochro-
matic DNA repeats, and endogenous retroviral elements. Given
the predictability of these age-related changes, researchers began
applying machine learning techniques to develop age predictors
from DNAm that could serve as biomarkers of aging. To date, these
“epigenetic clocks” have been applied in a plethora of tissues across
diverse mammalian species and are predictive of lifespan and health
span above and beyond chronological age (Hannum et al., 2013;
Horvath, 2013; Levine et al., 2018). However, the mechanistic un-
derpinnings and drivers of epigenetic clocks are relatively unknown,
limiting the conclusions that can be drawn.

Our lack of mechanistic understanding of epigenetic clocks likely
stems from the fact that these models have been almost exclusively
applied to in vivo and ex vivo blood and tissue samples in humans
(and more recently in other mammals) for which experimental inves-
tigation is limited. Thus, we hypothesize that use of culture models
coupled with physiologically relevant tissue samples may facilitate
mechanistic discovery.

Culture aging has been extensively examined within the con-
text of cellular biology, presenting a model to study mechanisms

of epigenetic aging (Itahana et al., 2004). Since Hayflick proposed
the theory now known as the Hayflick limit (Hayflick, 1965), many
studies have contributed to characterizing exhaustive passaging,
providing robust and well-characterized culture models that can
be used to determine the extent culture aging recapitulates phys-
iological aging (Bork et al., 2010; Parrinello et al., 2003). However,
none have applied systems-level measures to directly demonstrate
whether changes that can be induced in culture mimic what hap-
pens with aging in the organism. Thus, the aims of this paper were
as follows: (i) to better characterize the culture aging phenomena by
generating a clock based on DNA methylation changes in vitro, (ii)
test whether such culture models of aging capture a physiologically
relevant signal, and (iii) use this data as a first step toward elucidat-
ing mechanisms of aging. Overall, the results from this study set the
foundation for using culture aging epigenetic models as a transla-

tional bridge to in vivo biomarker studies.

2 | RESULTS

2.1 | Developing a measure of culture aging using
DNAm

To explore culture aging, understand its association with the methy-
lome and determine the extent to which culture phenotypes reca-
pitulate physiological aging, we derived a primary mouse embryonic
fibroblast culture system that was exhaustively passaged to produce
longitudinal DNAm samples (Figure 1a, Figure Sla-d). We selected
mouse embryonic fibroblasts (MEFs) as our model, given their ac-
celerated aging phenotype after relatively few passages (5-7) under
normoxic (20%) conditions (Parrinello et al., 2003). This acceler-
ated aging is hypothesized to occur from extrinsic factors, like oxy-
gen toxicity, rather than intrinsic factors like telomere shortening
(Itahana et al., 2004). It is also a distinct phenotype in contrast to
MEFs grown under physiological conditions of 3% oxygen, which se-
nesce at a much later passage. Given that genotoxic stress is known
to modulate the methylome (Basenko et al., 2015; Colman et al.,
2000; Liu et al., 1996), we reasoned that this model could enable us
to capture the known murine sensitivity to oxidative damage using
DNAm from serially passaged MEFs under normoxia.

DNA methylation was assessed at each passage in three biologi-
cal replicates via reduced representation bisulfite sequencing (RRBS)
with the goal of utilizing machine learning techniques to reduce the
highly dimensional DNAm data into a single meaningful measure
that increases as a function of time in culture (Figure 1b). The pri-
mary data used to train the culture measure, termed CultureAGE,
were obtained from passages 1-6 of the culture MEF system. Of the
three MEF cell lines, two were used in training (MEF 1 and 2) and
the third (MEF3) was used for validation. In both cases, passages 5
and 6 were combined during sequencing (due to low individual DNA
content) and designated as passage 5.5. Thus, our training data in-
cluded samples at passage 1 (N = 2), passage 2 (N = 1), passage 3
(N = 2), passage 4 (N = 2), and passage 5.5 (N = 2). Initial principal
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FIGURE 1 Development of a DNAm (a) Young MEFs
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component analysis (PCA) of training (N = 9) and validation (N = 6)
MEFs revealed passage-based trajectories in all replicates, suggest-
ing the methylome is modulated as a function of time in culture
(Figure Sie,f).

Prior to training CultureAGE, we sub-selected common CpGs
between our MEF data, Petkovich et al., 2017, and Thompson et al.,
2018 to generate a list of 28,323 common CpG sites (Figure S2a).
This was done so that our measure could be calculated in these ex-
ternal datasets to undergo a robust in vivo validation. Next, we con-
ducted principal component analysis (PCA) on the 28k sub-selected
CpGs in our MEF data frame (N = 48). The initial PCA-included
some samples that were not explicitly analyzed, but reported pas-
sage number, so they were included to increase sample size. We
previously found that combining PCA with elastic net yields more
robust and reliable epigenetic age measures (Higgins-Chen et al.,
2021; Levine et al., 2020), and thus, we applied a similar strategy
here. Elastic net penalized regression was used to generate a predic-
tor of passage number, but rather than feeding in CpGs as has been
traditionally done in epigenetic clock development, we used PCs as

Passage

predictors in our model. The lambda penalty was chosen via 10-fold
cross-validation and resulted in a model that included six PCs (PC2,
PC4,PCé6, PC8, PC9, and PC29) (Figure S2b-e). Overall, this measure
is based on data from all 28,323 CpG sites, but is able to identify and
combine the important patterns in genome-wide DNAm to generate
a single score, CultureAGE.

Our results showed that CultureAGE was highly correlated
with passage number in both the training data (r = 0.97), and in
our independent validation samples (r = 0.83), suggesting the
marker is in fact progressively tracking with passage or time in
culture (Figure 1c). In our training samples, we find that the mea-
sure shows a general linear increase. However, in the validation,
there is a slight attenuation of the effect at the last passage. Given
that we only have data on one sample at that passage, we cannot
determine whether the non-linearity is real, and follow-up studies
should increase power. One potential biological explanation is that
there may be a deceleration at later cellular stages due to slow-
ing in the growth rate from oxidative damage as cells approach or
enter senescence.
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2.2 | Distinguishing senescence from
epigenetic aging

Replicative exhaustion in murine cells under normoxic (20% 02)
conditions is a robust inducer of cellular senescence and we con-
firm in our study that MEFs arrest after 6 passages (Figure S1b-
d). Based on this, we tested whether our epigenetic measure was
as follows: (i) linked to senescence induction, likely as a result of
chronic activity of a tumor repressor response to genotoxic stress,
or (ii) reflects aging changes that are independent of senescence
state, which may be overcome by immortalization (Figure 2). To test
these questions, we induced senescence in a passage-independent
fashion using damaging dosages of irradiation (10 gy), doxorubicin
(1 uM), and etoposide (12.5 uM). We show that each of these induc-
ers elicits increased activity of SA-B-gal similar to levels exhibited
in replicative senescence cells (Figure S3a-d); however, SA-p-gal
levels are not related to CultureAGE (r = 0.062, p = 0.81). To further
clarify if CultureAGE was capturing passage-independent states,
we transformed young MEFs with the known mouse immortaliza-
tion agent, Large T antigen (LT) K1 mutant (LTK1) (Lin et al., 2011),
and expanded the cells for 5 passages. Under the reduced p53
activity, the immortalized cells maintained high replicative states
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FIGURE 2 CultureAGE phenotype is independent of cellular
senescence phenotype and requires replicative expansion.
Boxplot displaying varying CultureAGE scores in young (untreated
and DMSO, passage 1 or 2), passage-independent (passage 2)
senescence induction doxorubicin (1 uM), etoposide (12.5 uM),
irradiation (10 gy), old (passage 3-5.5), and LTK1 immortalized
cells (passage 5). Passaged label denotes cells were mitotically
expanded, where B-gal label establishes a binary senescence cutoff
based on flow cytometry data in Figure S3. Statistical significance
calculations were determined via one-way ANOVA and multiple
group comparisons

and demonstrated reduced SA-B-gal levels compared to passaged
match controls (Figure S3e). Further, we found that immortal-
ized cells showed acceleration in CultureAGE, suggesting that the
DNAm changes captured progress or “tick” as a result of replica-
tive events, not senescence status or other stress driven programs
alone (p = 0.0056) (Figure 2).

2.21 | CultureAGE tracks and is correlated with
multi-tissue physiological aging programs

We tested whether these in vitro changes captured by CultureAGE
mirror what is observed in aging tissues and cells in vivo, to de-
termine whether CultureAGE is a valid aging biomarker. We ap-
plied our measure to in vivo multi-tissue mouse DNAm data at
three time points (ages 2, 10, and 20 months) from C57BL/6)J
mice from Thompson et al., 2018. CultureAGE significantly in-
creases with age in five of the six tissues: liver (r = 0.59, p = 7.0e-
7), lung (r = 0.44, p = 0.00062), kidney (r = 0.41, p = 0.0023),
blood (r=0.43, p = 0.014), and adipose tissue (r = 0.27, p = 0.044)
(Figure 3a-f). A moderate-to-low age increase was observed in
skeletal muscle, although it was not significant (r = 0.15, p = 0.25)
(Figure 3f).

2.2.2 | CultureAGE shares common epigenetic
programs with ex vivo trained blood age
estimator, BloodAGE

To further explore the physiological link of our culture aging theory,
we compared the measure against a traditional ex vivo trained epi-
genetic clock measure, BloodAGE. Because RRBS data are sparse
and few CpGs are consistently captured across experiments, we
were unable to utilize previously developed mouse epigenetic
clocks. Thus, we developed a novel BloodAGE clock using the
same selected 28k CpGs used throughout the study. We trained
the blood age predictor in a large blood dataset (age 20-1050 day
C57BL/6J mice) from Petkovich et al., 2017 (cor = 0.98, p = 1.4e-
110) (Figure 3g), which we then validated in the blood dataset
from Thompson et al., 2018 (cor = 0.67, p = 2.7e-5) (Figure 3h),
and confirmed it tracks with passage in the MEF data (cor = 0.79,
p = 0.00046) (Figure 3i). Finally, we tested the overlap in signal
(after residualizing for chronological age) between BloodAGE and
CultureAGE in the blood aging data, which revealed a significant
correlation (cor = 0.25, p = 0.0016), confirming CultureAGE is
capturing similar signals to classically trained clocks (Figure 3j).
Furthermore, CultureAGE demonstrates a strong positive asso-
ciation with age in the BloodAGE training data (r = 0.69, p = 1.6e-
23) (Figure 3k), and interestingly, some older mice demonstrated
very high CultureAGE. Given that lymphoma is a common cause of
death in aging mice, it is possible that Culture AGE reflects a predis-
position to cancer (Haines et al., 2001).
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FIGURE 3 Multi-tissue physiological (a) cor=0.59, p=7e-07 (b) cor=0.44, p=0.00062 (c) cor=0.41, p=0.0023
aging is modeled by CultureAGE measure. @ O
CultureAGE score determined in liver 31>'> = ° aZ.»‘ &
(a), lung (b), kidney (c), blood (d), adipose 3| o 3| a o E
(2]
(e), and muscle () tissue at 2, 10, and § & . ® w S
20 months in aged C57BL/6J mice from g n l § o e °
Thompson et al., 2018. (g) BloodAGE % ' £ O E g o
epigenetic clock age association in blood © o O 2 -5 g 8 o | 8 %
training data from Petkovich et al., 2017. - T T T Q - T T T T
BloodAGE was trained in Petkovich 5 1015 20 LI 5 10 15 20
. Age (months) Age (months) Age (months)
et al., 2017 as a mouse age predictor (d) (e) (f)
using classical elastic net methodology, . cor=0.43, p=0.014 cor=0.27, p=0.044 cor=0.15, p=0.25
but with PCs as input variables, similar o ™ % B g
1] — .
to CultureAGE. The final BloodAGE 2. <3 g o
o i Lol >
measure was constructed with 52 PCs ml o 2 El o
and is validated using blood data from g o g g @
Thompson et al., 2018 in (h). (i) BloodAGE ‘é o < é © |
culture aging association in all MEF % g 25
replicates used in CultureAGE training O « 3 , 3
and validation. Red = MEF1, Blue = MEF2, 5 10 15 20 5 10 15 20 5 10 15 20
and Turquoise = MEF3 replicates. (j) Age (months) Age (months) Age (months)
CultureAGE variance is associated with (9) SOOI el AEITD (h) cor=0.67, p=2.7e-05 (1)) cor=0.25, p=0.0016
BloodAGE when residualizing by age in DA g - [¢)
Petkovich blood data (age range, 20- . o - &
1050 days). (k) CultureAGE measure in 8 | wgie O ‘ 0 ©
Petkovich blood data. Age correlations T 5 g (LIDJI & ©_ %o )
and statistical significance were o g , Se
determined using Pearson correlations 3 g 8
) m 8
w g° ° "Le
g § . ® 5 10 15 20 20 25 80 85 40
3 . Age (months) CultureAGE_resid
2 0] cor=0.79, p=0.00046 (k) cor=0.69, p=1.6e-23
g1 . y
w W
o (O]
& % < 8¢
) 5o 8 o
9 o | £ °® ®
o 2le 3 w
o d
T T T T T T 'c '
0 200 600 1000 © i i i i
1 2 3 4 5 0 200 400 600 800 1000
Age (days) Passage Age (days)
2.3 | Investigation into anti-aging therapies 2.4 | Clustering analysis confirms culture aging

confirms CultureAGE is modulated via caloric
restriction and reprogramming

Using the Petkovich et al.,, 2017 data, we also found that
CultureAGE was responsive to dietary intervention, such that
calorically restricted (CR) mice exhibited significantly lower
CultureAGE scores relative to controls (p = 0.00259), perhaps
highlighting improved cellular maintenance and health from di-
etary intervention (Figure 4a). Finally, using the same dataset we
showed that CultureAGE exhibits a decrease or resetting in lung
(Figure 4b) and kidney fibroblasts (Figure 4c) upon reprogramming
to induced pluripotent stem cells (iPSCs) (p = 0.0001). Specifically,
the re-programmed cells were reset to more youthful origins than
even the passage 1 MEFs (p < 0.0001), suggesting culture aging
established epigenetic networks are possible to completely reset

upon reprogramming (Figure 4d).

exists in physiological context and highlights
Polycomb group (PcG) factors as important culture
aging regulators

Given that CultureAGE is a composite measure stemming from mul-
tiple aspects or domains of DNAm changes, we hypothesized that
some of the signal it encompasses may be physiologically relevant,
while others may be culture artifacts or MEF-specific phenotypes.
For instance, we reasoned that supervised machine learning ap-
proaches, like elastic net, will prioritize strong signals in our culture
models, despite whether they are physiologically relevant, limiting
our ability to isolate important biological mechanisms. To address
this, we applied consensus weighted gene correlation network
analysis (WGCNA) to identify clusters (or modules) of highly co-
methylated sites that are conserved across both in vivo (Petkovich
et al., 2017; Thompson et al., 2018) and in vitro data (Figure 5a,
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Figure S4a). We used 27,035 CpGs as the input, which excluded
beta values of O from the original 28,323 overlapped CpGs. We
identified 12 CpG modules, ranging in size from 105 to 678 CpGs.
Most modules showed bimodal distribution in relation to distance
from transcription start sites (TSS), with many showing peaks at
+100-1000 bp (Figure 5b).

FIGURE 4 CultureAGE predicts naive culture states in caloric
restricted mice and re-programmed fibroblasts. (a) Scatterplot
demonstrating deceleration of culture aging in calorie-restricted
C57BL/6J mice from Petkovich et al., 2017, when comparing normal
chow (20-1050 days) from calorie restriction (300-810 days)
cohorts. Red samples represent normal chow diet and green
samples calorically restricted diet. Calorie-restricted mice began
treatment at 14 weeks of age. Linear modeling demonstrates
statistically significant deceleration in culture aging in CR samples
(p = 0.02479) as well as significant modulation in CR-treated

mice compared to normal chow controls (p = 0.00259), when
corrected by age. iPSC reprogramming in lung (b) and kidney (c)
fibroblasts from Petkovich et al., 2017 demonstrates resetting of
culture signature. (d) CultureAGE assessment of pooled lung and
kidney re-programmed iPSCs from (b and c) compared to MEF
data, demonstrating reprogramming re-sets and erases cellular
states further than passage 1 MEFs (p < 0.0001). Red = MEF1,
Blue = MEF2, and Turquoise = MEF3 replicates. Reprogramming
and iPSC statistical significance calculations were determined via
un-paired two-tailed t test

Next, we estimated module eigengenes that capture the main
signal from each module and tested their associations with passage
number (in vitro MEF data) and age (in vivo tissue data). Eigengenes
were calculated as PC1 estimated from the in vitro data and then
applied as validation to the in vivo data (Figure 5c). Using these
values, we observed several modules that appear to be artifacts
of in vitro aging (turquoise/yellow/red/pink/purple), such that
they showed progression with passage number in MEFs, but did
not track with age in tissues. However, two modules (brown and
greenyellow) stood out as being shared between culture and tis-
sue aging. For instance, the brown module was strongly correlated
with passage number (r = 0.88), as well as age in liver (r = 0.87),
lung (r = 0.80), blood (r = 0.78), and adipose (r = 0.75). It was also
moderately correlated with age in kidney (r = 0.47) and weakly
correlated with age in skeletal muscle (r = 0.22). The greenyellow
module exhibited strong correlations with both passage number
in vitro (r = 0.90) and age in blood (r = 0.88), while showing mod-
erate age correlations with lung (r = 0.60), liver (r = 0.55), adi-
pose (r = 0.42), and kidney (r = 0.33), and a weak correlation with
age in skeletal muscle (r = 0.19). As a comparison, we applied the
CultureAGE PCloadings and coefficients to the module CpGs to
determine the relative CpG contributions by module based on
the initial selection criteria established by CultureAGE (Figure
S5a). We confirm our hypothesis that certain artifactual drivers
are present in CultureAGE (turquoise/red), but also highlight that
major physiological signals do indeed exist, with the brown module
comprising nearly 17% of the normalized CultureAGE score, com-
pared to the average of 8.3%. Additionally, the average CpG con-
tribution across all PCs demonstrates the majority of the brown
module CpGs are enriched when compared to random chance or
artifactual modules like red and pink, and poorly correlating mod-
ules like black (Figure S5b).

Finally, to garner more biological insight into potential mech-
anisms at work in conserved modules, we assessed genome
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FIGURE 5 Clustering analysis confirms culture aging exists in physiological context and highlights Polycomb group (PcG) factors as
important culture aging regulators. (a) Schematic outlining method of using longitudinal aging data (tissue + culturing) from Thompson et al.,
2018 and the MEF1/MEF2 training data to cluster CpGs with WGCNA into distinct modules or ageotypes, which were then compared to
in vitro passaging data and all tissues via principal component analysis and used to determine enriched genes using the Cistrome database.
(b) Module distribution as determined by distance (per base pair) to transcription start site (TSS), generated using LolaWeb. Raw module
CpGs were used to determine principal component correlations in (c), where kME selected CpGs were used to normalize enriched domains
in (d), as further explained in Figure S4b. (c) PC1 correlations of longitudinal tissue and MEF passaging data by module. (d) Module genome
enrichment analysis using Cistrome database from 100 CpG input selected by kME. Enriched genes were further normalized by randomly
selecting 100 CpGs from the background 27,035 CpGs used to create the modules and correcting each enriched GSM_IDs Giggle score.
Note, the enrichment analysis is displaying the average normalized enriched gene Giggle score (Top 10 displayed). Enriched genes are
sorted by decreasing module frequency. Giggle score represents a rank of significance between genomic loci shared between query file
and thousands of genome files from databases like ENCODE. Red genes = PRC2 complex or mediator, Orange genes = PRC1 complex or
mediator, and Black genes = non-Polycomb-related genes
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enrichment of transcription factor (TF) binding motifs and chromatin

regulators using the Cistrome database. This was done by compar-
ing each module by TF and chromatin regulator enrichment score
(Giggle score). The Giggle score represents a rank of significance
between genomic loci shared between query file and thousands of
genome files from databases like ENCODE. Given that scores tend
to increase for lists with a greater number of input genomic loca-
tions (and thus would be biased by module size), we normalized each
module prior to determining the enrichment score so that only 100
CpG locations were being assessed for each module. For instance,
we selected the top 100 CpGs with the highest kME values in a given
module. KME is estimated as the correlation between CpG values
and the module eigengene and can be used to infer connectivity or
identify “hubs” of a module. For the background CpGs, we selected
100 CpGs from the 27,035 CpG background at random and used
the background Giggle score to blank any hit overlap from the mod-
ules. The Giggle score threshold was the actual value below which
scores were blanked. The final 100 input CpGs for each module are
reported by genomic partition distribution (Figure S4b) and scat-
terplots of each raw Cistrome distribution are reported by module
(Figure S4c). We compared the average normalized enriched gene
Giggle score from each module to determine the most enriched gene
regulators.

The Cistrome analysis (Figure 5d) reveals that Polycomb re-
pressive complex 1 and 2 (PRC1 and PRC2) networks are highly
enriched in translational modules (brown and greenyellow), high-
lighting Polycomb group proteins (PcGs) as key epigenetic regula-
tors in both culture and physiological aging. Nearly all of the top
hits for greenyellow (9/10) occurred in PcGs, the highest Giggle en-
richment score occurred in EED (PRC2 components) for the brown
module, and the only shared hit between greenyellow and brown
was PHF19, a PRC2 recruitment zinc-finger domain. Finally, we con-
ducted Cistrome analysis on the top module CpG contributors to
CultureAGE and found that 8/10 of the hits were PcG components,
including EED and PHF19 (Figure S5c). Altogether, our data suggest
PcGs regulate physiologically relevant culture aging phenotypes.

3 | DISCUSSION

Given that well-characterized culture systems exist (Parrinello et al.,
2003), we aimed to classify potential epigenetic drivers of culture
aging and determine if such changes model physiological aging in
various tissues and biofluids. We rationalized that with the wide-
spread use of culture models throughout biology and medicine,
many fields would greatly benefit from clarifying the underlying
epigenetic phenotypes that exist in culture and whether relevant
markers of cellular dysfunction can be trained for use in accelerating
mechanistic and drug development discoveries.

By exhaustively passaging primary MEFs under normoxic con-
ditions (20% 02), we trained a DNAm predictor of passage number
(time in culture), called CultureAGE, and demonstrate that it not
only accurately tracks passage number (Figure 1c) but also strongly

correlates with age in multiple tissues (liver, lung, kidney, blood, and
adipose) in vivo (Figure 3a-f), captures similar signals to a blood
trained epigenetic clock (BloodAGE) (Figure 3g-j), is modifiable by
dietary intervention (Figure 4a), and exhibits resetting upon re-
programming to pluripotency (Figure 4b-d). Interestingly, skeletal
muscle was the only tissue examined where CultureAGE did not
correlate with age (Figure 3b), which may reflect that skeletal mus-
cle remains mostly postmitotic in adulthood or that muscle cells are
multinucleated. The link between proliferation and CultureAGE was
also observed when comparing the other tissue types. For example,
we observed differences in both age correlation/slope, and in the
absolute scores when comparing tissues. Overall, samples from liver
and blood appeared to exhibit the highest values (Figure 3a,d), which
may reflect the higher proliferative capacity of cells in these sam-
ples or the renewable nature of both hepatocytes and blood cells,
perhaps suggesting that lifetime damage is somehow cataloged by
the methylome. This is also substantiated by the observations that
epigenetic aging is not linear with time (Levine et al., 2018). For in-
stance, previous epigenetic clocks have been shown to increase rap-
idly during development and then decelerate after full maturity. We
were able to observe this same trend in our data. We found that
CultureAGE exhibited a sigmoidal function with age, characterized
by accelerated aging during development, a slower and more linear
increase after about 150 days, and exponential increases at late life
(Figure 3k).

Despite the evidence of a relationship between replication and
epigenetic aging, our data suggests that this is independent of se-
nescence accumulation. For instance, we showed that drug and
irradiation-induced senescence in MEFs was not associated with
changes in CultureAGE (Figure 2, Figure S3a-c). Further, our results
demonstrate CultureAGE does not predict cellular senescence when
compared by senescence status (assessed via Beta-galactosidase
activity) for pooled passage-independent senescence (irradiation
and drug induced) and replicative senescence samples (cor = 0.062,
p =0.81) (Figure S3d). Follow-up studies should explore senescence-
associated secretory phenotypes (SASP) in the context of acute cul-
ture stress, in order to build upon our conclusions using p-gal as a
marker of cellular senescence. To fully conclude CultureAGE was
not driven by senescence states, we tested cells immortalized with
LTK1 and still found acceleration in the rate of CultureAGE, despite
suppressed senescence signal (Figure 2, Figure S3e). Cells immor-
talized via LTK1 have inactive p53, leading to reduced senescence
accumulation compared to passage-matched controls (Figure S3e).
Importantly, p53 and/or Rb inactivation are sufficient for murine
fibroblast immortalization (Lin et al., 2011). The maintained cellu-
lar progression captured by CultureAGE in old immortalized (non-
senescent) samples may be attributed to the underlying tumor
suppression inactivation occurring from LTK1 transformation, allow-
ing continued mitotic progression and damage accumulation without
cell cycle arrest and senescence perturbations.

The potential links between epigenetic aging, replication, and
genotoxic stress may also explain the age-related increase in can-
cer susceptibility, particularly among highly proliferative tissues and

85U8017 SUOWILLIOD A1) 3|qeol [dde au Aq peueob ae Sapoie YO ‘8sn JO S9N 10} Aeiq1]8UlUQ A8]IM UO (SUORIPUOD-PUR-SUBIALICO" A3 1M AeIq | U1 UO//SdNL) SUORIPUOD pue Swie 1 8y} &8s *[£202/60/02] Lo AriqiaulluO A8]IM ‘o aiwepeXy ayas1iezemyds Aq EGGET BIe/TTTT 0T/I0P/WO0 A8 IM AIq1juljuo//:Sdiy Wo.j pepeojumod ‘Z ‘2202 ‘92.6v.LyT



MINTEER ET AL.

cells. For instance, we and others have previously reported that epi-
genetic age changes are observed at increasing rates in tumors and/
or the normal (or non-afflicted) tissues of individuals with cancer.
We reason that the epigenetic changes captured by measures like
CultureAGE may underlie susceptibility to spontaneous transfor-
mation or oncogenicity (Levine et al., 2019). Cells that eventually
evade senescence from mutational events may promote oncogenic
states, allowing continued mitotic events and increased damage
accumulation, as a function of cell turnover. In moving forward, it
will be critical to utilize future in vitro experiments to determine
the mechanisms driving epigenetic changes as a function of either
mitotic rate (replication “ticking”) and/or prolonged exposure to
genotoxic stress. Our laboratory has already extended these mouse
culture aging results to human culture models, where we recently
showed exhaustively passaged astrocytes capture epigenetic aging
trajectories when modeled using established clocks (Higgins-Chen
etal., 2021).

While substantial work has gone into developing biomarkers
than enable researchers to track aging changes in vivo and in vitro,
the ultimate goal is to develop measures that are also modifiable
to intervention. Using DNAm assessed in blood, we reported the
effects of two promising interventions in aging—caloric restric-
tion (CR) and cellular reprogramming. Our results suggested that
CultureAGE showed strong response to CR when assessed in blood
(Figure 4a). Multiple studies suggest that CR acts by reducing DNA
damage accumulation and mutations that progress with age (Heydari
et al., 2007), where others show CR downregulates key growth hubs
like the insulin/IGF1 pathway (Li et al., 2011). Importantly, IGF1 is
a growth factor that stimulates cell proliferation and can promote
cancer via inhibition of apoptosis (Kari et al., 1999). Interestingly,
CR, without malnutrition, has also been shown to reduce cancer
incidence and progression in mice (Chaix et al., 2014). Our results
suggest that CR could be acting via the epigenome to regulate DNA
damage maintenance by slowing cellular turnover and thus dam-
aged states, or perhaps from enhanced DNA repair. Additionally,
our results showed that the longer mice underwent CR, the more
they diverged from normal controls on the basis of CultureAGE. This
could suggest that prolonged CR does not simply reverse, or retard
epigenetic aging momentarily, but actually decelerates the rate of
change with age.

We also report renewal in lung and kidney fibroblasts indic-
ative of naive culture states following reprogramming to iPSCs,
supporting the conclusion that CultureAGE cannot only be slowed,
but actually reversed (Figure 4b-d). For instance, both lung and
kidney fibroblasts derived from 10-week-old mice and broadly
passaged were predicted to be equivalent to passage 3-4 cells,
while all iPSC derivatives were reset to more youthful origins than
the passage 1 MEF data (p < 0.0001) (Figure 4d). This suggests
that the major epigenetic changes acquired during culturing and/
or tissue aging (Sturm et al., 2019) can be reset to some extent.
It is unlikely DNA damage and the resulting genome instability is
reversible, thus we propose that CultureAGE may be capturing

Aging

transient epigenetic programs that control survival, proliferation,
and cellular maintenance.

In the current study, we also tested whether we could dis-
tinguish different “types” of DNAm changes in our data, using a
network-based clustering approach. Our results clearly demon-
strate that in vitro DNAm changes captured some modules that
were not physiologically relevant, suggesting that they may be
reflective of culturing or MEF-specific artifacts. In contrast, CpGs
in two modules (brown and greenyellow) appear to capture a
common epigenetic aging phenotype that is established in both
physiological and culture aging context (Figure 5a-c). We found
evidence that PcG factors, including both PRC1 and PRC2, are
key factors in physiologically relevant culture aging (Figure 5d).
Additionally, upon applying the PCloading conditions to the mod-
ules, we confirm major physiological signals do in fact exist in
CultureAGE (Figure S5a,b), and that the top CpG contributors are
also enriched in PcG factors (Figure S5c). It is well established
that the tri-methylated histone H3 at lysine 27 (H3K27me3) mark
denotes transcriptional silencing with PRC2 involved in early de-
velopment and PRC1 later during aging as the more active main-
tenance factor (Cao et al., 2002). The catalytic subunit of PRC2,
EZH2, is routinely overexpressed in oncogenesis (Kim & Roberts,
2016), promoting uncontrolled cell growth, as many repressed
downstream genes of H3K27me3 are tumor suppressors (Bracken
et al., 2007), but the role of PRC2 and its domains are conflicted
in aging. In certain species and cell types, EZH2 mutations reduce
H3K27me3 and confer longevity (Ma et al., 2018), although in oth-
ers reduction of H3K27me3 is associated with aging (Maures et al.,
2011). The relationship between the catalytic subunit (EZH2) and
its co-factors SUZ12, EED, RbAp48, and AEBP2, which are highly
involved with allosteric recognition and binding of substrates like
S-Adenosyl methionine (SAM), is multi-factorial, with many oppor-
tunities for perturbations. As an example, multiple studies demon-
strate EZH2, SUZ12, and EED are essential components for proper
functioning, but RbAp48 and AEBP2 are not (Cao & Zhang, 2004).
Our reported translational modules (brown/greenyellow) further
support the notion that PcGs are important aging factors, and our
culture aging system may be useful for testing hypotheses about
PcG roles in aging.

In conclusion, we report a novel mouse epigenetic measure of
culture aging, termed CultureAGE, that is able to model epigen-
etic changes observed in multiple in vivo tissues. CultureAGE is
independent of senescent state, and instead appears to capture
progressive cellular changes that may confer susceptibility to se-
nescence and/or tumorigenesis. We also provide evidence for po-
tential modifiability in the form of deceleration as a function of CR
or reprogramming. Finally, DNAm changes may be functionally re-
lated to Polycomb group (PcG) factors like EED. Overall, this study
demonstrates that physiologically relevant DNAm changes can be
modeled in vitro, which in the future can be used to interrogate
mechanisms involved in epigenetic aging and/or facilitate in vivo

aging discoveries.
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4 | METHODS

4.1 | Experimental
4.1.1 | Mouse embryonic fibroblast extraction

Mouse embryonic fibroblasts were harvested at day 12.5 of gesta-
tion. Two females were used. From the first female, nine embryos
were sacrificed and split into three cell lines, MEF1-3 from the sec-
ond female, 10 embryos were sacrificed and split into three cell lines,
MEF4-6.

Extraction was achieved by separating embryos into separate
wells in a 6-well dish using PBS, removing inner embryo and using
forceps to carefully remove limbs, head, and internal organs from
dorsal region. The dorsal region was then cut and trypsinized for
10 min at 37°C. To quench reaction cells were transferred to a 15 ml
falcon tube and spun for 3 min at 300g, then supernatant was aspi-
rated and resuspended with 10 ml DMEM. PO cells were split once
to expand cell number prior to freezing. Approximately 2 ml of cells
were incubated overnight with 8 ml DMEM and following growth
were trypsinized and either passaged for experiments or stored at
-80°C in DMEM/DMSO (90:10).

4.1.2 | Replicative passaging and cell culture

Cells were split/passaged six times, where flow cytometry/confocal
microscopy and RRBS sequencing were conducted at each passage.

Cells were split according to the following seeding density—p100
- 0.5 x 10° cells, p60 - 0.25 x 10° cells, and six well - 0.125 x 10°
cells—and were counted using an Invitrogen countess and cell count-
ing chamber slide with trypan blue. For media, we used DMEM +10%
FBS +1% PENSTREP. Note, later passaged cells had a lower plating
efficiency when inspected visually 24 h after seeding, thus we used
a cell scraper prior to transfer otherwise senescent cells remained
attached to the dish. Cells were split at approximately 95% conflu-
ence which occurred around 3-4 days in P1-3 and 5-8 days in P4-6.

4.1.3 | Plasmid transfection

LTK1 (Immortalization) and empty vector (pBABE) plasmids were
described previously (Lin et al., 2011). Briefly, Phoenix Amphotropic
cells were used to grow virus as described previously (Pear et al.,
1993) and puromycin (0.5 ug/ul) and blasticidin (2 ug/ul) were used
for selection.

41.4 | Beta-galactosidase flow cytometry and
confocal microscopy

To conduct beta-galactosidase flow cytometry, approximately
0.25 x 10° cells were seeded into pé0 dishes and pre-treatment

was conducted approximately 16 h after seeding. Cells were first
pre-treated with Bafilomycin A1 (Selleckchem: $1413, 622.83 g/mol,
100 uM stock). Existing DMEM was aspirated, then cells were washed
with PBS and replaced with treated Bafilomycin A1 DMEM for
30 min at a final concentration of 100 nM. Following Bafilomycin Al
pre-treatment to normalize lysosome activity, C12FDG (Invitrogen:
D2893, 853.92 g/mol, 10 mM stock) was added directly to the exist-
ing media for 90 min at a final concentration of 20 uM. Note, due
to light sensitivity, exchange was conducted in a dark environment.

For determining beta-galactosidase activity via flow cytometry,
treated cells were trypsinized (1 ml-p60) for 5 min at 37°C and then
quenched using 3 ml DMEM. Note, cells were completely detached
using a cell scraper prior to transfer otherwise senescent cells re-
mained attached to the dish. After thorough resuspension, cells
were transferred directly to a filter top tube and spun for 3 min at
1200 rpm. Supernatant was aspirated, and cells were resuspended
in 100 pul PBS and immediately assayed using a 488 nM laser on a
StratedigmS1000 benchtop flow cytometer. Fluorescence intensity
was normalized and baselined using an unstained sample. FlowJo
(10.6.1) was used to analyze data. Beta-galactosidase activity/senes-
cence activity was determined as LogFITC treated geometric mean/
control geometric mean after normalizing to untreated control.

For determining beta-galactosidase activity via confocal micros-
copy, cells were split into 12 well dishes with a glass cover slide at
the bottom of each well. Following Bafilomycin A1 and C12FDG
treatment, media was aspirated, and cells were washed with PSB 3x,
fixed with 4% PFA/PBS (10 min), followed by 2x PSB washes and
then counter stained with DAPI and mounted onto coverslips. Fixed
cells were immediately imaged at 4%, 10x, and 40x resolution using
a Keyence confocal cytometer.

4.1.5 | Senescence induction

We induced senescence using previously established conditions
(Tchkonia et al., 2010). In brief, MEFs were thawed and allow to
expand for one passage, then split to a normalized seeding density
of 0.25 x 10° cell/p60 and 0.125 x 10° cells/6-well and treatment
was conducted for 5 days. Note, senescence induction experiments
were conducted at passage 2. Doxorubicin (Sigma: D1515, 1 uM),
Paclitaxel (Sigma: T7402, 50 nM), and Etoposide (Sigma: E1383,
12.5 uM) were all dosed into DMEM when the cells were split and
media was not replaced for the duration of the 5-day treatment. We
irradiated cells (10 Gy) using cesium irradiation and collected these

cells after 5 days as well.

4.1.6 | DNA preparation and quantification

DNA was extracted from selected samples prior to RRBS sequenc-
ing using a Qiagen DNeasy Blood and Tissue extraction kit (69504).
Note, samples were treated with proteinase K and RNAse A and
eluted with 200 pl elution buffer. Following final elution, DNA was
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verified using nanodrop (Thermo Scientific). Spin concentration was
used as necessary with low DNA content samples. Prior to library
preparation, we used a qubit fluorometer (Thermo Scientific) to
quantify the extracted genomic DNA. All samples were assigned a
single-blinded code and randomized for library preparation and se-
quencing to control for any batch errors.

41.7 | Library preparation and reduced
representation bisulfide sequencing

Library preparation was conducted using EZ DNA Methylation RRBS
Library Prep Kit (Zymo: D5461), according to manufacturer's recom-
mendations. Randomized and pooled samples were sequenced on
four Illumina NovaSeq6000 SP lanes (100 bases single-end mode).
Note, each lane produced more than 400 M reads.

4.2 | Statistical analysis
421 | Datapreprocessing

FastQC (v0.11.8) was used to assess the quality of the raw reads and
adapter-trimmed reads (cutadapt, version 2.5). Reads were mapped
to the GRCm38 RRBS genome using BSBolt v0.1.2 (https://github.
com/NuttyLogic/BSBolt) (Farrell et al., 2021). Methylation was
called and the CpG methylation matrix was assembled for CpG sites
common to all samples and covered by more than 10 reads. The final
matrix consisted of 466,359 CpG sites.

4.2.2 | Training and validation of DNAmCULTURE

R was the primary platform used for statistical analysis (Version
3.6.2). After selecting overlapped CpGs between training (in vitro)
and all validation studies (in vivo), PCA (without scaling) was con-
ducted in the training sample. The initial PCA was conducted on
N = 48 MEF samples, all with reported passage number between 1
and 6. Note, some samples were not analyzed in this report. Briefly,
N = 9 passaged (Passage 1-6) samples were used as the culture
training samples for the elastic net regression selection of PCs. The
outcome was 6 PCs, each with a PCloading for all 28,323 CpGs, then
a specific coefficient for each PC, resulting in the predictor of pas-
sage number, called CultureAGE. Lambda penalty represented the
value with lowest mean-squared error, selected via 10-fold cross-
validation (Figure S2b,c). Further details on PC-trained DNAm meas-
ures can be found from our previous reports (Higgins-Chen et al.,
2021; Levine et al., 2020).

To validate the measure, PCs were estimated in independent
MEF passaged samples that were not included in elastic net selec-
tion (MEF3) and external datasets (in vivo) using the loading from the
training sample. These PCs were then incorporated into the selected
elastic net model (Figures 1, 3, and 4). Pearson correlations were
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used to assess associations between CultureAGE and (1) passage

number in both the training and validation sample, and (2) age in
multi-tissue in vivo samples. One-way ANOVA multiple group com-
parisons were used for analyze senescence statistical significance.
Two-tailed t tests were used to compare significance in iPSC repro-
gramming and in MEF4 validation. To test for associations with CR,
OLS regression was used that included age, CR, and an interaction

term (age*CR).

4.2.3 | WGCNA and module construction

Consensus WGCNA (Langfelder & Horvath, 2008) was conducted
using four input datasets—MEF training samples (replicates 1 and
2), and the Thompson et al. data for blood, liver, and adipose. The
remaining Thompson et al. data (kidney, lung, and muscle) were de-
liberately excluded from WGCNA so as to have a true validation. In
total, we used 27,035 CpGs as the input, which excluded beta val-
ues of O from the original 28,323 overlapped CpGs. Adjacency was
estimated for each dataset based on biweight midcorrelations and
negative correlations were treated as unconnected in the network
(signed network). Adjacencies were then converted to Topological
Overlap Matrices (TOMs) and combined into a single consen-
sus TOM, such that overlap for each CpG pair was designated as
the minimum dissimilarity score across the four individual TOMs.
Hierarchical clustering was then conducted with the following pa-
rameters: deepSplit = 1, cutHeight = 0.95, minClusterSize = 50, and
distance = 1-consensus TOM, method = average. This resulted in a
network with n = 16 modules. Given that similar modules can often
be split by WGCNA, we next tested whether modules should be
merged. This was done by estimating module eigengenes and then
assessing dissimilarity between modules. Using a cut height of 0.4,
the 16 modules were merged into 13 that served as our final mod-
ules for all remaining analyses.

One feature of WGCNA is the ability to estimate module eigen-
genes, which serve as single quantitative value meant to represent
the core signal of a whole module—that can consist of tens to thou-
sands of individual variables. Typically, PC1 from PCA run on all
variables in a module is used to represent the module eigengene.
However, the traditional WGCNA package estimates this separately
for all dataset meaning that the eigengenes may not be based on
the same equations across datasets (variables can have different
loadings). This may cause a bias in results and make validation less
straight forward. To overcome this, we estimated PC1 for each mod-
ule using the MEF training data and then applied these loading to
all other datasets, including those used in WGCNA and thus that
were held-out. Finally, we tested whether the module eigengene val-
ues were associated with either passage number (MEF data) or age
(multi-tissue data).

For calculating the module CpG contributions to CultureAGE,
we applied the PCloading and coefficients to each module CpG and
determined a CpG contribution score as the fold increase above
a random event. More specifically, we summed the cumulative
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contribution per PC (across all 28,323 CpGs) and determined the

average CpG contribution (or random chance) by baselining the

score by 28,323 events (or the original CpGs used to calculate
the PCs). Note, the absolute value of each PCloading was used.
We then compared the PCloading sum across each PC (PC2, PC4,
PC5, PC8, PC9, and PC29) by every module selected CpG and de-
termined contribution as [PCloading*coefficient of Module CpG
/ PCloading*coefficient of average CpG]. For example, CpG con-
tribution = 1 means the selected CpG site is not specifically se-
lected over random chance, but CpG contribution >1 means the
CultureAGE measure is selecting the CpG site to drive the score.
The raw CpG contributions are plotted in Figure S5a, and the av-
erage across all PCs is plotted in Figure S5b. Finally, we normalized
each module contribution by the number of CpGs in each module,
which resulted in a normalized weight that we calculated as a per-
centage of the total module CpGs (N = 4137 CpGs) to produce a
final normalized % contribution (Figure S5a).

424 | Cistrome genome enrichment analysis

We used the Cistrome gene analysis tool kit (http://dbtoolkit.cistr
ome.org/) to determine enriched genes. We selected the top 1 k
hits and used the mm10 reference. The outcome of the enrichment
analysis was reported as a Giggle score, which is a rank of genome
significance between the input file and thousands of genome files
from databases like ENCODE. It is important to note that Cistrome
is constantly updating genome files, thus the enrichment analy-
sis was conducted at the same time. Additionally, we selected 100
CpGs from each module using kME to select the most central 100
CpGs. Sub-selected CpGs are reported via genomic partition in
Figure S4b. For selecting the background 100 CpGs, we randomly
selected the 100 CpGs from the cohort of 27,035 CpGs. For Giggle
score reporting, we plotted the raw giggle score of each resulting
module query, although any file (GSM_ID) that was also a back-
ground hit was corrected using the formula; GSM_ID_Hit-GSM_
ID_Background = GSM_ID_Actual. Note, when the background
GSM_ID was not present there was no correction. We report raw
giggle scores in a scatterplot format in Figure S4b and the average
corrected values (Top 10 genes) in Figure 5d. For calculating the
top CpG contributor (>5) enriched domains, we conducted a similar
analysis, except 118 CpGs were used in both the >5 region and in
background. All values are reported in Figure S5c.

Genomic partitioning and CpG locations were determined using
LolaWeb (http://lolaweb.databio.org/).
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