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@® Convolutional Neural Network U-Net
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CNN 488 parameters
1 layer, 4 channels, 11x11
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1 layer, 1 channel, 21x21
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UNet 937 parameters
4 layers, 1 channels, 3x3
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CNN 488 parameters
1 layer, 4 channels, 11x11
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Sharp to Edge

class SimpleCNN_4L4C(nn.Module):

def __init__(self):
size = 3
self.name = f'4L-4x{kernel_size}x{kernel_size}'
super(SimpleCNN_4L4C, self).__init__QO)
self.layerl = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=size)
self.relul = nn.ReLUQ)
self.layerZ2 = nn.ConvZ2d(in_channels=4, out_channels=4, kernel_size=size)
self.reluZz = nn.ReLUQ)
self.layer3 = nn.Conv2d(in_channels=4, out_channels=4, kernel_size=size)
self.relu3 = nn.ReLUQ)
self.layer4 = nn.Conv2d(in_channels=4, out_channels=4, kernel_size=size)
self.relu4 = nn.ReLU()
self.output_layer = nn.ConvZ2d(in_channels=4, out_channels=1, kernel_size=1) CNN 489 parameters
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def forward(self, x):

= self.layerl(x)
self.relul(x)
self.layer2(x)
self.relu2(x)
self.layer3(x)
self.relu3(x)
self.layer4(x)
self.relud4(x)
self.output_layer(x)
return X
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