E P F L Bioimage Informatics

Daniel Sage & Arne Seitz

VVOorksnop

Experiences Convolution Neural Network

m 2025 BlO-410 o BIOIMAGE INFORMATICS

@® Convolutional Neural Network U-Net

Layer Shape Params

V. oA N4 > |
;_r/"’" 21.01 Cr_B.. Input 384 x 384 x 1 0
e | | Conv2D 3x3 384 x 384 x 32 |

RelLU 384 x 384 x 32 0

ConvaD 3x3 384 x 384 x 32 | <

RelU 384x384x32 | O
ConvaD 3x3 384 x 384 x 32 |
RelU 384x384x32 | O
Conv2D 3x3 384 x 384 x 32 ——
RelU 384x384x32 | 0
Conv2D 3x3 384 x 384 x 32 | <
RelU 384x384x32 | O
Conv2D 3x3 384 x 384 x 1 =
Subtract = 384x384x1 | 0O |

Total E

Resnet (200E)

< Sy St 217948 |

pr i ® ‘ ke Questions?
layers
channels
params

receptive field

| Neuschwanstein | Neuschwanstein
Ground-Truth Median filter, radius = 3 Unet (100E)

Neuschwanstein

Course Digital Filtering EPFL & BIO-410 & BOIMAGE INFORMATICS & DS

Pred 0.019833 7 Filters O Pred 0.000073

CNN 488 parameters
1 layer, 4 channels, 11x11

Sharp to Blur

200 epochs

0 25 50 75 100 125 150 175 200
Epochs

Pred 0.000077 Filters 399 Pred 0.000077

CNN 442 parameters
1 layer, 1 channel, 21x21

o i

| -
=
m
@)
e
o
| -
©
L
(/p

0 50 100 150 200 250 300 350 400
Epochs

Pred 0.000423 Filters 399 Pred 0.000423

UNet 937 parameters
4 layers, 1 channels, 3x3

Epochs

Sharp to Blur

Pred 0.034742 Filters O Pred 0.006347

CNN 488 parameters
1 layer, 4 channels, 11x11

Blur to Shape

50 100 150 200 250 300 350 400
Epochs

Pred 0.065745
CNN 489 parameters

4 layers, 4 channels, 3x3

)
Q.
©
L
/p
O
e
—
=
o0

50 100 150 200 250 300 350 400
Epochs

Pred 0.004208

UNet 937 parameters
4 layers, 1 channels, 3x3

Blur to Shape

0 50 100 150 200 250 300 350 400
Epochs

Pred 0.000593 Filters 199

Sharp to Edge

class SimpleCNN_4L4C(nn.Module):

def __init__(self):
size = 3
self.name = f'4L-4x{kernel_size}x{kernel_size}'
super(SimpleCNN_4L4C, self).__init__QO)
self.layerl = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=size)
self.relul = nn.ReLUQ)
self.layerZ2 = nn.ConvZ2d(in_channels=4, out_channels=4, kernel_size=size)
self.reluZz = nn.ReLUQ)
self.layer3 = nn.Conv2d(in_channels=4, out_channels=4, kernel_size=size)
self.relu3 = nn.ReLUQ)
self.layer4 = nn.Conv2d(in_channels=4, out_channels=4, kernel_size=size)
self.relu4 = nn.ReLU()
self.output_layer = nn.ConvZ2d(in_channels=4, out_channels=1, kernel_size=1) CNN 489 parameters

.
N
N
N
N
.

Input
v
Conv 3x3
RelLU
v
Conv 3x3
RelLU
v
Conv 3x3
RelLU
v
Conv 3x3
RelLU
\ 4
Output

def forward(self, x):

= self.layerl(x)
self.relul(x)
self.layer2(x)
self.relu2(x)
self.layer3(x)
self.relu3(x)
self.layer4(x)
self.relud4(x)
self.output_layer(x)
return X

X X X X X X X X X
| | | | | | O | N | N

